
Adversarial and self-adaptive domain decomposition physics-informed
neural networks for high-order differential equations with discontinuities

Mingsheng Peng a, Hesheng Tang a,*, Yingwei Kou a,b

a Department of Disaster Mitigation for Structures, College of Civil Engineering, Tongji University, Shanghai, 200092, China
b China Shipping Environment Technology (Shanghai) Co., LTD, Shanghai, 200135, China

A R T I C L E I N F O

Keywords:
Physics-informed neural networks
Adversarial
Self-adaptive domain decomposition
Discontinuity
Multi-material problems
High-order problems

A B S T R A C T

The technique of solving differential equations using physics-informed neural networks (PINNs) has received
extensive attention and application. Analogous to the concept of adaptive mesh refinement in finite element
methods, the PINNs framework should be tailored to the specific characteristics of the problem to further
improve performance. However, the adaptive techniques in PINNs focus primarily on sampling and weighting,
lacking the capability for adaptive domain decomposition. To address the limitations of PINNs in solving high-
order problems with discontinuities, this paper proposes a novel type of adversarial and self-adaptive domain
decomposition physics-informed neural networks (AS-PINNs). AS-PINNs leverage residual differences between
subdomains to implement adversarial training among subnetworks, enabling the automatic and universal
adjustment of subdomain interface positions and the capture of discontinuities with varying characteristics,
representing a novel neural network approach. Compared to traditional domain decomposition methods, AS-
PINNs eliminate the need for imposing tedious boundary and interface conditions through the loss function,
particularly in high-order differential equations, thereby significantly reducing the complexity of the loss
function and intrinsically improving accuracy. The results show that the self-adaptive adjustment of subdomain
and the network structure makes AS-PINNs to be tailored to specific engineering problems, such as multi-
material issues, high-order problems. As the order of the differential equations increases, the accuracy and
speed advantages of AS-PINNs become more pronounced. For sixth-order differential equations, the solution
speed of AS-PINNs is nine times faster compared to traditional domain decomposition PINNs. Code available at:
https://github.com/Ning343/AS-PINNs.git.

1. Introduction

Deep learning have achieved significant breakthroughs in areas such
as image recognition (Krizhevsky et al., 2012), cognitive science (Lake
et al., 2015), genomics (Alipanahi et al., 2015), and scientific computing
(Karniadakis et al., 2021). The integration of physical information
broadens the application scenarios and interpretability of purely
data-driven methods. Physics-Informed Neural Networks (PINNs)
(Raissi et al., 2019) represent a mesh-free approach to solving differ-
ential equations, enhancing prediction accuracy and efficiency by
incorporating physical equations into deep neural networks. Due to the
mesh-free nature and the powerful nonlinear expressive ability of neural
networks (Cybenko, 1989), PINNs show great potential in solving
high-dimensional problems and complex boundary problems, and find
extensive applications in forward problems (Faroughi et al., 2023;

Vadeboncoeur et al., 2023; Wang et al., 2023; Wu et al., 2023), inverse
problems (Bhowmick and Nagarajaiah, 2023; Li et al., 2022; Miao and
Chen, 2023; Yu et al., 2021), operator learning (Hao et al., 2024; Kashefi
et al., 2023; Lu et al., 2021a), and topology optimization (Jeong et al.,
2023; Lu et al., 2021c). Despite these significant successes, some
well-known drawbacks undeniably limit the further development and
application of PINNs, such as low accuracy (Mattey and Ghosh, 2022;
Wang et al., 2022b), lack of convergence guarantees (Saadat et al.,
2022), and difficulty in hyperparameter tuning (Cao and Zhang, 2024;
Wang et al., 2022a).

Due to the requirements of differentiation, PINNs typically use
smooth and continuous activation functions. In engineering applica-
tions, the presence of heterogeneous materials, complex forces, and
specific boundary and initial conditions often results in solutions that
exhibit sharp discontinuities. Smooth activation functions hinder the

* Corresponding author.
E-mail address: thstj@tongji.edu.cn (H. Tang).

Contents lists available at ScienceDirect

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

https://doi.org/10.1016/j.engappai.2025.110156
Received 14 November 2024; Received in revised form 25 December 2024; Accepted 22 January 2025

Engineering Applications of Artiϧcial Intelligence 145 (2025) 110156

Available online 5 February 2025
0952-1976/© 2025 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

https://github.com/Ning343/AS-PINNs.git
mailto:thstj@tongji.edu.cn
www.sciencedirect.com/science/journal/09521976
https://www.elsevier.com/locate/engappai
https://doi.org/10.1016/j.engappai.2025.110156
https://doi.org/10.1016/j.engappai.2025.110156
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2025.110156&domain=pdf

precise approximation of discontinuous functions. High-order differen-
tiation can expose singularities even in functions with weak disconti-
nuities, potentially causing solution failures. Furthermore,
discontinuities in high-order differential equations can cause interfer-
ence between derivatives of different orders. This not only increases the
computational burden but also makes it difficult to achieve the highest
accuracy for all variables. After high-order differentiation or integration,
significant error accumulation can severely limit the accuracy of the
highest or lowest-order variables.

The network setup is the core of PINNs and should be adjusted ac-
cording to the characteristics of the problem at hand. In the context of
solving high-order differential equations with discontinuities, it is
beneficial to adapt the network’s configuration based on the current
solution state and the information derived from it, in order to obtain
more accurate results. A similar approach is employed in finite element
methods, where the mesh configuration is adjusted according to the
properties of the elastic body and external loading conditions. However,
to date, neither the original nor the various improved versions of PINNs
possess adaptive domain decomposition capabilities.

Existing research has not fully incorporated such adaptive strategies
when addressing problems involving discontinuities and high-order
equations. For problems involving steep gradients, increasing the
number of residual points near the discontinuities (Hou et al., 2023; Lu
et al., 2021b) enhances the attention of PINNs to discontinuities, thereby
improving the accuracy of the solution. Modifying the network struc-
ture, as demonstrated by Chang et al. (2022) and Tseng et al. (2023),
strengthens the network’s ability to represent nonlinear behaviors.
Reducing the weight assigned to singular value locations and employing
weak forms to constrain the discontinuous points, thereby avoiding
derivations at these points, effectively alleviates such issues (Antonio
et al., 2024; Liu et al., 2023). Additionally, Reduced-order PINNs
(RD-PINNs), which transform high-order differential equations into
systems of lower-order equations, circumvent the need for repeated
differentiation within a single network, thereby reducing computational
overhead (Luong et al., 2024).

Another commonly used approach is domain decomposition, where
the computational domain is pre-decomposed based on the locations of
discontinuities, and the problem is solved accordingly. However, these
methods rely on manually decomposing the computational domain, and
the domain cannot be further adjusted during training based on the
solution information. The interface conditions between subnetworks
must be enforced through additional sampling and loss functions, which
increases the complexity and difficulty of the solving process. In high-
order differential equations, when discontinuities arise in a particular
order of derivative, e.g., the primary variable or the flux, the remaining
orders of quantities that adhere to continuity conditions are also subject
to decomposition. This scenario results in a substantial rise in the
number of loss function terms. The complexity is further compounded
when derivatives of different orders experience discontinuities at
different locations. Jagtap and Karniadakis (2020), which possess
powerful representation and parallelization capabilities. Diao et al.
(2023) successfully solved multi-material problems in solid mechanics
using a domain decomposition approach and explored the potential
optimal network framework. Hu et al. (2022) proposed augmented
network structures that replace multiple networks with increased di-
mensions, thereby decreasing the total number of networks required.
Sarma et al. (2024) proposed using the same parameters with different
activation functions in different subnetworks, significantly reducing the
number of parameters required for training. Despite the significant
success of these efforts, the interface conditions rely on inefficient
manual handling and additional residual points,

Research on self-adaptive PINNs primarily focuses on adaptive
sampling (Hou et al., 2023; Wu et al., 2023; Yu et al., 2022), adaptive
activation functions (Wang et al., 2023), and adaptive weights
(McClenny and Braga-Neto, 2023; Subramanian et al., 2023), while
lacking techniques for adaptive domain decomposition. The primary

approach involves constructing functions based on residual information,
such as adaptive sampling depending on the magnitude of residuals or
using NKT theory (Wang et al., 2022a) for weight updating in the loss
function. Another approach involves embedding specific trainable pa-
rameters within the loss function. PINNs update these parameters based
on gradient descent to implement adaptive methods automatically, such
as updating the weights of residual points, activation functions, and loss
function terms (Kendall et al., 2018). The most relevant existing
research focuses on adaptively adjusting the weighting coefficients for
the summation of subnetworks, but these subnetworks still solve the
problem over the entire domain, failing to address the singularities
caused by discontinuities (Hu et al., 2023). Furthermore, some discon-
tinuities only emerge over time (Bonkile et al., 2018), and the locations
of parameter discontinuities are often unclear when solving inverse
problems. Methods using prior knowledge for domain decomposition
may become ineffective. Therefore, it is necessary to develop techniques
for automatic localization of discontinuities.

The Adversarial and Self-Adaptive Domain Decomposition Physics-
Informed Neural Networks (AS-PINNs) proposed in this paper adjust
the network configuration based on the solution state and information,
thereby solving high-order differential equations with discontinuities.
The specific contributions of this paper are summarized as follows.

a) The mutual influence of variables of different orders in high-order
differential equations with discontinuities is revealed. Specifically,
the singularity caused by the discontinuity and its impact on PINNs is
emphasized, with this impact affecting different orders of variables
through different loss function terms. Moreover, the influence of this
singularity on higher-order or lower-order variables differs.

b) A completely new PINNs computational framework is proposed.
Unlike classical domain decomposition approaches that rely heavily
on manual selection of decomposition schemes, AS-PINNs automat-
ically capture discontinuity positions and adaptively adjust the
domain decomposition scheme through the competition of sub-
networks. The core innovation lies in the characteristic of neural
networks to minimize the loss function. During training, each sub-
network tends to minimize its own loss function, resulting in
adversarial competition at the interfaces. This competitive process
drives the interfaces to dynamically adapt, ensuring that each sub-
network achieves the best possible local solution. As a result, the
overall loss function is minimized in a coordinated manner, enabling
automatic optimization of the domain decomposition scheme and
achieving a balance between the subnetworks. In comparison,
traditional domain decomposition methods require predefined or
fixed interfaces, which lack flexibility when dealing with complex
problems involving discontinuities.

c) Traditional PINNs relying on residual points or penalty-based loss
functions face challenges in enforcing interface constraints, espe-
cially due to the mobility of interfaces in adaptive domain decom-
position. To address this, the interface condition hard constraint
method is proposed, which ensures that continuity conditions across
subnetwork interfaces are consistently satisfied throughout the
training process. This approach significantly reduces the complexity
of setup and alleviates training difficulties. Compared to traditional
domain decomposition methods, AS-PINNs achieve a ninefold speed
improvement in solving sixth-order differential equations.

Through these advancements, AS-PINNs not only capture steep
gradients and discontinuities with varying characteristics but also
dynamically adjust sub-domains within a unified framework. This
adaptive capability establishes AS-PINNs as a novel computational
method that overcomes the limitations of existing domain decomposi-
tion and reduced-order approaches in solving complex high-order dif-
ferential equations with discontinuities.

The remainder of this paper is organized as follows. In Section 2,
after introducing the algorithm of PINNs, the extension to AS-PINNs is

M. Peng et al. Engineering Applications of Artiϧcial Intelligence 145 (2025) 110156

2

presented. Section 3 systematically compares the performance of PINNs,
AS-PINNs, RD-PINNs, and XPINNs for discontinuous function fitting.
Section 4 demonstrates the effectiveness of AS-PINNs in capturing dis-
continuities and performing self-adaptive domain decomposition for
high-order problems. Finally, the paper concludes in Section 5.

2. Methodology

2.1. PINNs and RD-PINNs

To maintain generality, consider the following m-th order differen-
tial equation:

a0λ0(x)
dku(x)

dxk +… + arλr(x)
dk− ru(x)

dxk− r + … + akλk(x)u(x) − q(x) = 0 (1)

where r, k⊂N, r < k. ar⊂R and is a constant. λr(x) are the system pa-
rameters, and q(x) is the source term, with x ∈ [0,L]. λr(x) represents the
system parameter, and q(x) denotes the source term, such as external
loads. In practical engineering problems, both system parameters and
source terms often exhibit spatial variation characteristics. Therefore,
λr(x) and q(x) are considered spatially varying parameters. The equation

is denoted as F
(

x; u, ..., dku(x) /dxk; λ
)

and is subject to the boundary

condition

B C (x; û;λ)= 0 (2)

where λ = [λ0, λ2,⋯, λk]. û(t, x; θ) is the output of the neural networks
(NNs), θ is the set of parameters for the networks. Throughout this
paper, variables with a hat symbol represent the output of the neural
network. Residual points are collected inside the computational domain
(T F) and on boundaries (T B C). The loss functions of PINNs are
defined

L (θ;T)=wF L F (θ;T F) + wB C L B C (θ;T B C) (3)

where wF and wB C are the weight coefficients, and

L F (θ;T F)=
1

|T F |

∑

x∈T F

⃒
⃒
⃒F
(

x; û,⋯, dk û(x)
/

dxk;λ
)⃒
⃒
⃒
2

(4)

L B C (θ;T B C)=
1

|T B C |

∑

x∈T B C

|B C (x; û;λ)|2 (5)

Using optimization algorithms such as Adam and L-BFGS, the
parameter set θ* that minimizes L (θ;T) is found. The reduced-order
form of RD-PINNs for this problem is (Luong et al., 2023)
⎧
⎨

⎩

dvi

dx
− vi+1 = 0 (i = 0,1, 2,, k − 1)

F (x; v0,⋯, vk; λ) = 0
(6)

where

F (x; v0,⋯, vk;λ)= a0λ0(x)vk +…+ arλr(x)vk− r +…+ akλk(x)v0 − q(x)
(7)

v0 is equal to u, and vi is the i-th derivative of u. The idea of RD-PINNs
involves using distinct networks v̂0(x; θ), v̂1(x; θ), …, v̂k(x; θ) to
approximate v0, v1, …, vk respectively. Since each derivative function is
approximated by the corresponding network, all boundary conditions
can be implemented through hard constraints on specific networks, such
as v̂i(x; θ) = v̂i(x; θ)⋅x⋅(x − L), ensuring v̂i satisfies x and x-L equal to
zero. Thus, the loss function of RD-PINNs includes only L F i , with the
form

L (θ;T)=
∑k+1

i=1
wF i L F i

(
θ;T F i

)
(8)

where wF i is the weight of L F i , and
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

L F i =
1

NF i

∑

x∈T F i

wF i

⃒
⃒
⃒
⃒
dv̂i− 1

dx
− v̂i

⃒
⃒
⃒
⃒

2

(i = 1, 2,, k)

L F k+1 =
1

NF k+1

∑

x∈T F k+1

wF k+1 |F (x; v̂0,⋯, v̂k; λ)|2
(9)

The primary advantage of RD-PINNs is their ability to unify the
characteristics of the optimization task, which avoids the appearance of
boundary loss functions.

2.2. AS-PINNs

2.2.1. Modified network structure
Inspired by mesh partitioning in finite elements, which adjusts based

on the shape of the elastomer and the load application, an optimal so-
lution strategy is to adjust the network settings of PINNs according to the
characteristics of the problem. The principle of AS-PINN is illustrated in
Fig. 1. In PINNs, the “discontinuity condition” specifically applies to u.
Instead, each order of the derivative in AS-PINNs has its own distinct
discontinuity characteristics, such as C0 discontinuity, C1 discontinuity,
and so on. Functions with C0 continuity but discontinuities in high-order
derivatives, are considered weak discontinuities, meaning the function
itself is continuous, but its derivatives exhibit discontinuities. On the
other hand, functions with C0 discontinuity are considered strong dis-
continuities, where the function itself experiences a jump, and its left
and right limits are not equal.

Fig. 1 (a) illustrates the problem this paper aims to address, i.e., the
primary variable or certain derivatives are smooth and continuous,
while the remaining derivatives exhibit discontinuities with different
characteristics. The solving mode using a single network encounters
significant difficulty.

Fig. 1 (b) demonstrates the adversarial and self-adaptive domain
decomposition principle of AS-PINNs. Specifically, for vi that may have
discontinuities, define a set of n trainable parameters S{1}

i to capture the
positions of discontinuities, where S{1}

i = {s{1}
i , …, s{j− 1}

i , s{j}
i , …, s{n}

i },
n ∈ N, satisfying s{j− 1}

i <s{j}
i . s{j}

i is denoted as the transition point. Since
the number discontinuity points are unknown, n is initialized based on
problem characteristics. The computational domain is divided into n + 1
regions, [0, s{1}

i), …, [s{j− 1}
i , s{j}

i), …, [s{n}
i , L], forming the non-

overlapping subdomains Ω{j}
i , where Ωi = ∪n+1

j Ω{j}
i . Define the net-

works v̂{1}
i , …, v̂{j}

i , …, v̂{n+1}
i for approximation of vi in subdomains

Ω{1}
i , …, Ω{j}

i , …, Ω{n+1}
i , forming

v̂i(x; θ) =
∑j

j=1
v̂{j}

i (x; θ)⋅GΩ{j}
i
(x) (10)

where the operator GΩ{j}
i
(x) is defined as

GΩ{j}
i
(x) =

⎧
⎨

⎩

0 x ∕∈ Ω{j}
i

1 x ∈ Ω{j}
i

(11)

Once the parameter set S{1}
i is stable after a certain number of iter-

ations, add s{n+1}
i , forming the second iteration of the trainable param-

eter set S{2}
i = {s{1}

i , …, s{j− 1}
i , s{j}

i , …, s{n}
i , s{n+1}

i }. The network
framework also gets updated. When S{2}

i becomes stable, compare s{n+1}
i

with each parameter in S{1}
i . If either

s{n+1}
i ≅ s{j}

i s{j}
i ∈ S{1}

i (12)

or

M. Peng et al. Engineering Applications of Artiϧcial Intelligence 145 (2025) 110156

3

s{n+1}
i ∕∈ Ωi (13)

is satisfied, s{n+1}
i is considered invalid, indicating that the domain

decomposition by S{1}
i represents the optimal scheme. Otherwise, the

newly added s{n+1}
i is regarded as a valid transition point and a new

transition point. s{n+2}
i is added to search for potential discontinuities

and update the domain decomposition scheme and network framework.
Repeating these steps facilitates the automatic determination of the final
optimal domain decomposition scheme and network framework.

Fig. 1 (c) illustrates the solution flowchart under the reduced-order
framework. Different subnetwork frameworks approximate the pri-
mary variable and its various derivative functions: complex derivatives
with discontinuities are approximated using multiple subnetworks in
each subdomain, while smooth derivatives are approximated using a
single subnetwork. The solution mode under the reduced-order frame-
work unifies the loss function form and ensures the network fully con-
siders the difficulty of fitting tasks for each derivative order, maximizing
the use of solution information to adjust domain decomposition scheme.
Using L AS to denote the loss function of AS-PINNs, L AS

F i
represents the

loss function term related to the network v̂i. Different neural networks

are combined through the residuals of L AS
F i

to form the final loss func-
tion. Combining physical information and data to construct the loss
function, the gradient descent algorithm updates network parameters.
To provide structural clarity, Fig. 1 illustrates a series of subnetworks. In
practice, it is possible to use a single larger neural network with shared
inputs to output multiple variables. A single variable output can be
regarded as a subnetwork. This approach not only reduces network
complexity but also achieves competitive results. Similar strategies have
been adopted in existing studies (Diao et al., 2023; Lu et al., 2021a).

Since the solution involves only the first-order derivative function of
the network, if vi exhibits C1 continuity, a single subnetwork can be used
for approximation without singularity arising from differential opera-
tions. Considering the case where only vi exhibits C1 discontinuous while
vi+1 exhibits C0 discontinuous, the loss function for AS-PINN is as follows

L
AS
(θ;T) =

∑k+1

i=1
wF i L

AS
F i

(
θ;T F i ; S

{j}
i

)
(14)

where

Fig. 1. The schematic of AS-PINNs. (a) The reduced-order form of the function; (b) Self-adaptive domain decomposition achieved through adversarial competition
among subnetworks; RAR stands for Residual-based Adaptive Sampling. (c) The subnetworks formed after self-adaptive domain decomposition combine to create the
final network framework used for loss function computation.

M. Peng et al. Engineering Applications of Artiϧcial Intelligence 145 (2025) 110156

4

Fig. 2. Residual activation function in spatial domain. (First column) the initial domain decomposition scheme. (Second column) the domain decomposition scheme
after training completion.

M. Peng et al. Engineering Applications of Artiϧcial Intelligence 145 (2025) 110156

5

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L
AS
F 1

=
1

NF 1

∑

x∈T F 1

wF 1

⃒
⃒
⃒
⃒
dn0 v̂0

dxn0
− v̂1

⃒
⃒
⃒
⃒

2

⋮

L
AS
F i

=
1

NF i

∑

x∈T F i

wF i

⃒
⃒
⃒
⃒
⃒

dni− 1 v̂i− 1

dxni− 1
−
∑n+1

j=1
v̂{j}

i ⋅GΩ{j}
i

⃒
⃒
⃒
⃒
⃒

2

L
AS
F i+1

=
1

NF i+1

∑

x∈T F i+1

wF i+1

⃒
⃒
⃒
⃒
⃒

∑n+1

j=1

dni v̂{j}
i

dxni
⋅GΩ{j}

i
− v̂i+1

⃒
⃒
⃒
⃒
⃒

2

⋮

L
AS
F k

=
1

NF k

∑

x∈T F k

wF k

⃒
⃒
⃒
⃒
dnk− 1 v̂k− 1

dxnk− 1
− v̂k

⃒
⃒
⃒
⃒

2

L
AS
F k+1

=
1

NF k+1

∑

x∈T F k+1

wF k+1 |F

⎛

⎝x; v̂0,⋯, v̂{j}
i ,⋯, v̂k;λ

⃒
⃒
⃒2

(15)

only L AS
F i

and L AS
F i+1

are changed compared to Equation (9).

2.2.2. Self-adaptive domain decomposition method for sub-networks
The operator GΩ{j}

i
in equation (10) is a Boolean function that acti-

vates the network and cannot update interface locations through
gradient descent of the loss function. Inspired by window functions and
compactly supported wavelet functions in wavelet transform
(Daubechies, 1992; Liu et al., 2020), the network activation operator
GΩ{j}

i
is converted into the corresponding residual activation operator

HΩ{j}
i

. L AS
F i

and L AS
F i+1

are modified as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

L
AS
F i

=
1

NF i

∑n+1

j=1
HΩ{j}

i
⋅
∑

x∈T F i

wF i

⃒
⃒
⃒
⃒
dni− 1 v̂i− 1

dxni− 1
− v̂{j}

i

⃒
⃒
⃒
⃒

2

L
AS
F i+1

=
1

NF i

∑n+1

j=1
HΩ{j}

i+1
⋅
∑

x∈T F i

wF i+1

⃒
⃒
⃒
⃒
⃒

dni v̂{j}
i

dxni
− v̂i+1

⃒
⃒
⃒
⃒
⃒

2
(16)

HΩ{j}
i

is defined as

HΩ{j}
i
=

{
0 x ∕∈ Ωi
h(x) x ∈ Ωi

(17)

To enable the update of Si through backpropagation, HΩ{j}
i

cannot be

defined as an indicator function but must satisfy continuity. Taking n =

2, L = 1 as an example, three possible regularized forms of HΩ{j}
i

are

shown in Fig. 2. s{1}
i = 0.25, s{2}

i = 0.75,In the left column of Fig. 2, the
domain decomposition scheme is initialized with boundaries s{1}

i = 0.25
and s{2}

i = 0.75. After training, as shown in the right column, the sub-
domain boundaries s{1}

i and s{2}
i are successfully adjusted and localized

to the positions of the discontinuities at s{1}
i = 0.2 and s{2}

i = 0.6. AS-
PINNs adopt trainable and freely movable window functions, allowing
the method to locate discontinuities and achieve self-adaptive domain
decomposition.

Denote s{0}
i = − s{1}

i and s{n+1}
i = 2L − s{n}

i . H{1}
Ω{j}

i
(x) is defined as

H
{1}
Ω{j}

i
(x)= 1 − Sigmoid

(
p
(

x − s{j− 1}
i

))
− Sigmoid

(
p
(
− x+ s{j}

i

))
(18)

By controlling the size of p, the steepness of the function can be adjusted.
When p is sufficiently large, the function value outside the defined re-
gion is considered to be zero. H{2}

Ω{j}
i
(x) is defined as

H
{2}
Ω{j}

i
(x)=

4
(

s{j}
i − s{j− 1}

i

)2 ⋅ Relu
(

x − s{j− 1}
i

)
⋅Relu

(
− x+ s{j}

i

)
(19)

Unlike H
{1}
Ω{j}

i
(x), even if p is very small, the function value of H

{2}
Ω{j}

i
(x)

outside the defined region is strictly zero. H{3}
Ω{j}

i
(x) is constructed

H
{2}
Ω{j}

i
(x) = p

[

Relu
(

x − s{j− 1}
i

)2
− 3Relu

(

x −
2
3
s{j− 1}
i −

1
3
s{j}
i

)2

+3Relu
(

x −
1
3
s{j− 1}
i −

2
3
s{j}
i

)2

− Relu
(

x − s{j}
i

)2
] (20)

H
{3}
Ω{j}

i
(x) remains continuous in its derivatives, except where it strictly

satisfies zero outside the defined domain.
The residual activation function has a weight of zero at the transition

point, with the weight gradually increasing as it moves away from the
transition point. As training progresses, each subnetwork minimizes its
loss function within its respective subdomain in a manner similar to an
adversarial approach, leading to an improved domain decomposition
scheme that effectively captures discontinuities and enables self-
adaptive decomposition.

To better explain the principle of self-adaptive domain decomposi-
tion in AS-PINNs, detailed and general illustration was provided in
Fig. 3. The blue line represents the residual activation function used to
activate NN1, and the green line represents the residual activation
function used to activate NN2. The gray line depicts the spatial distri-
bution of the residuals (loss function). For each individual subnetwork,
the network aims to minimize the loss function within its respective
computational domain. As a result, the residual activation function for
NN1 tends to shift left, while the residual activation function for NN2
shifts right. This leads to a competitive interaction at the interface po-
sitions. When the residuals in the regions of NN1 and NN2 become
comparable, the competition between the two subnetworks becomes
balanced, and the transition point stabilizes. This is shown in Fig. 3 (a),
where the sizes of the blue and green arrows are equal, indicating no
dominant “competitiveness” between the two subnetworks. However,
when the residual in the region of NN2 is noticeably larger than that of
NN1, the “competitiveness” of NN2 will exceed that of NN1, and the
interface position will shift towards the right. This is illustrated in Fig. 3
(b), where the green arrow is larger than the blue arrow, signifying the
dominance of NN2.

The accuracy of transition point localization largely relies on the
information from residual points. The domain decomposition scheme is
dynamically adjusted based on the loss functions of the residual points.
The magnitude of the residuals at training points reflects the difficulty of
the solution at that location and provides critical information about the
current state of the solution. Initially, residual points are distributed
with a coarse resolution, which may not accurately localize disconti-
nuities due to insufficient density in the regions where singularities
exist, as shown in Fig. 3 (b). The red initialization training points fail to
effectively capture the anomalous values of the loss function near x =
0.8. This limits the precision of transition point localization at the early
stages of training. To address this, AS-PINNs adopt Residual-based
Adaptive Sampling (RAR) method. Instead of globally increasing the
density of training points, the algorithm automatically concentrates
more residual points in the vicinity of discontinuities, as indicated by the
blue scattered points. This localized refinement provides additional
critical information for accurately capturing the discontinuity at a finer
resolution while maintaining computational efficiency. The transition
points are considered stabilized when the changes in their positions
become negligible, indicating convergence of the solution. Transition
points are considered accurately localized when their positions converge
to the actual locations of discontinuities.

M. Peng et al. Engineering Applications of Artiϧcial Intelligence 145 (2025) 110156

6

Due to the continuous movement of subnetwork interfaces, enforcing
continuity conditions through the loss function and residual points be-
comes challenging. To address this, a hard constraint method is
employed for interface conditions.

Given that vi satisfies the C0 continuity condition, vi(0) = 0 and
vi(L) = 0. Using the idea of Lagrangian interpolation, construct the
trainable interpolation function set C = {c1, …, cj, …, cn}. Denote the
output of the network v̂j

i(x; θ) as N {j}
i (x; θ). Let

v̂{j}
i (x; θ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N
{j}
i (x; θ)⋅x⋅

(
x − sj

)
+ vi(0)⋅

(
x − sj

)

(
− sj

)

+ cj⋅
x
sj
, j = 1

N
{j}
i (x; θ)⋅

(
x − sj− 1

)
⋅
(
x − sj

)
+ cj− 1⋅

(
x − sj

)

(
sj− 1 − sj

)

+ cj⋅
(
x − sj− 1

)

(
sj − sj− 1

), j = 2, ..., n

N
{j}
i (x; θ)⋅

(
x − sj− 1

)
⋅(x − L) + cj− 1⋅

(x − L)
(
sj− 1 − L

)

+ vi(L)⋅
(
x − sj− 1

)

(
L − sj− 1

), j = n + 1

(21)

Through the setting in equation (21), despite the continuous move-
ment of the network interface, C0 continuity conditions of the network
will always be satisfied. When solving high-dimensional differential
equations, it is only necessary to replace the parameter set C = {c1, …, cj,

…, cn} with the corresponding network set, i.e., let C j = N
{Cj}
i (x2,x3,

...; θ), where x2, x3,… are the independent variables along the
discontinuity.

Algorithm 1. The AS-PINN for solving high-order differential equa-
tions with discontinuities

Initialize n, the potential lower bound for the number of discontinuity points
Set m = 1
While True:
Step 1: Set parameters and configure the neural network

1.1 Construct the set of trainable transition points S{m}

i = {s{1}
i , …, s{j− 1}

i , s{j}
i , …,

s{n}
i }

1.2 Construct residual activate function
1.3 Construct neural networks with parameters θ{m}

1.4 Randomly sample training data within the domain
1.5 Define the loss function

Step 2: Train the neural network

(continued on next column)

(continued)

2.1 Perform weight updates with a higher learning rate and faster frequency.
Rapidly approach a rough resolution space
2.2 Pause weight updates and collect training points at a slower frequency. Use
smaller learning rates to refine breakpoints in fine resolution space
2.3 Save network parameters θ{m} and the set S{m}

i
Step 3: Check termination condition

If m! = 1
If s{n}

i ≅ s{j}
i , s{j}

i ∈ S{m− 1}
i or s{n}

i ∕∈ Ωi

n = n - 1
m = m - 1

end
Reload S{m}

i and network parameters θ{m}

Break
end

n = n + 1
m = m + 1

end

Using interface condition hard constrain method between sub-
networks and hard BCs constraint method under the reduced-order
model, the loss function of AS-PINNs will include only L AS

F i
, which is

the fitting residual of the network to the gradient information or the
target function. The fitting residuals can be expressed using the L2 error
ε(v, v̂), a relative measure, defined as

ε(v, v̂)= ‖v − v̂‖
‖v‖

(22)

and

‖v‖=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅∫

Ω

v2dx

√
√
√
√ (23)

The absolute error in the loss function of PINNs, due to variations in
magnitude, often results in loss function terms being on different scales.
Therefore, the absolute error can be replaced by the L2 error, or the
weight of the loss function can be adjusted using the L2 error, thereby
achieving a balance among different loss terms. Specifically, if the L2

errors of current loss function terms are
{
L{1}

2 , ...L{i}
2 , ...

}
, the weights can

be updated according to

wF i
ʹ= L{i}

2
/

min
{
L{1}

2 , ...L{i}
2 , ...

}
(24)

wF i
ʹ= L{i}

2
/

max
{
L{1}

2 , ...L{i}
2 , ...

}
(25)

Weight updates will make AS-PINNs focus on tasks with relatively
low training accuracy, ensuring all tasks converge with similar accuracy.
Additionally, discontinuities may be distributed across different orders

Fig. 3. The subnetworks aim to minimize their respective computational domains to reduce their individual loss functions, thereby creating competition at the
interface. (First column) The competition between the two subnetworks is balanced as there is no significant difference in the residuals of their respective regions.
(Second column) The right subnetwork exhibits greater competitiveness compared to the left one, as the left region has a larger residual. The red scatter points
represent the initially sampled training points, while the blue scatter points are the adaptively sampled training points. The size of the arrows indicates the level of
competitiveness.

M. Peng et al. Engineering Applications of Artiϧcial Intelligence 145 (2025) 110156

7

of derivatives, and improper weights wF i may prevent AS-PINNs from
capturing discontinuities of certain derivatives which are not strong (e.
g., C0 continuity but a C1 discontinuity). Dynamic adjustment of weights
can further enhance the ability of AS-PINNs to capture discontinuities
with various characteristics. The AS-PINN for solving high-order dif-
ferential equations with discontinuities is summarized in Algorithm 1.

3. AS-PINNs for function approximation

Problems exposed by PINNs when fitting discontinuous functions
reflect the inefficiency or failure in solving differential equations with
discontinuous characteristics. To illustrate the impact of discontinuities
on function fitting, the original PINNs (denoted as PINNs), RD-PINNs,
XPINNs, and AS-PINNs are used to complete the following discontin-
uous function fitting task. Assuming the domain is Ω = [0, L], and the
primary variable is

u =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

4x, x ∈ [0,0.4]

− x2 + 4.8x − 0.16, x ∈ (0.4,0.9]

3x + 0.65, x ∈ (0.9,2]

2x + 2.65, x ∈ (2, 3]

(26)

u has discontinuities at d1 = 0.4, d2 = 0.9, d3 = 2. Considering
noticeable discontinuities, the primary variable u has C1 discontinuities,
the first derivative uʹ has both C0 and C1 discontinuities, and the second
derivative uʹ́ has C0 discontinuities. Given that uʹ and uʹ́ , as well as u(0),
are known, different methods require varying numbers of output vari-
ables. A single network is configured to output multiple variables. In
different computational methods, 100 residual points are randomly
sampled within the computational domain, employing 3 hidden layers
with 50 neurons per layer in fully connected neural networks to output
the required variables. Training is performed for 160,000 epochs. The

Adam optimizer is employed for optimization, starting with a learning
rate of 10− 3 for the first 20,000 iterations, which is then reduced to 10− 4.
All loss function weights are initialized at 1, with an additional 5 sam-
pling points incorporated every 20,000 epochs using the RAR algorithm.
Based on Equation (24), the weights in AS-PINNs and RD-PINNs are
updated every 20,000 epochs. The computational experiments in this
study were conducted using an NVIDIA GeForce RTX 4070 Ti, an Intel
Core i5-13400F, and 32 GB of DDR5 RAM. DeepXDE (Lu et al., 2021b)
was utilized to implement AS-PINNs in this paper, and it can be easily
extended to higher-level GPUs.

AS-PINNs require setting up networks v̂{1}
0 , v̂{2}

0 , v̂{3}
0 , v̂{4}

0 and v̂{1}
1 ,

v̂{2}
1 , v̂{3}

1 , v̂{4}
1 to approximate u and du/dx in the subdomains Ω{1} = [0,

0.4
)
, Ω{2} = [0.4,0.9

)
, Ω{3} = [0.9,2

)
, Ω{4} = [2,3]. Here Ω{j}

0 = Ω{j}
1 , the

subscript is omitted. The loss function for AS-PINNs is
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L
AS
F 1

=
1

NF 1

∑n+1

j=1
HΩ{j}

∑

x∈T F 1

wF 1

⃒
⃒
⃒
⃒v̂

{j}
1 −

du
dx

⃒
⃒
⃒
⃒

2

L
AS
F 2

=
1

NF 2

∑n+1

j=1
HΩ{j}

∑

x∈T F 2

wF 2

⃒
⃒
⃒
⃒
⃒

dv̂{j}
1

dx
−

d2u
dx2

⃒
⃒
⃒
⃒
⃒

2

L
AS
F 3

=
1

NF 3

∑n+1

j=1
HΩ{j}

∑

x∈T F 3

wF 3

⃒
⃒
⃒
⃒
⃒

dv̂{j}
0

dx
− v̂{j}

1

⃒
⃒
⃒
⃒
⃒

2

(27)

Initially, to assess the impact of various residual activation functions
on discontinuity localization, a comparison of solution outcomes under
different residual activation functions was performed. The iterative
process of the transition points is illustrated in Fig. 4. Fig. 5 provides a
detailed illustration of the self-adaptive domain decomposition and the
adversarial process of subnetworks under H{2}(x), while Fig. 6 presents
the results obtained using various methods. Specific L2 relative errors of

Fig. 4. The convergence of interface location of AS-PINNs using different residual activation functions. Transition points are intentionally distributed at one end of
the computational domain.

M. Peng et al. Engineering Applications of Artiϧcial Intelligence 145 (2025) 110156

8

different methods and final positions of transition points are given in
Table 1. In the table, the optimal results are underlined, while the
second-best results are highlighted in bold. Although the residual acti-
vation function H{1}(x), resembling a rectangular window, effectively
activates residuals across the subdomain Ω{j}

i , the sharp transition at the
interface introduces a large gradient, complicating the optimization of
transition points during training. Moreover, regardless of the value of p
in Equation (18), the residuals of network v̂{j}

i cannot be strictly zero
outside the domain Ω{j}

i . Theoretically, the derivative of v̂{j}
i at the

discontinuity point approaches infinity, and even if the weight at this
point is relatively small, the extraneous information can still influence
the solution, causing failure. These factors lead to the failure of transi-
tion points in accurately capturing the location of discontinuities.

H{2}(x) and H{3}(x) effectively capture the discontinuities, which are
distributed throughout the entire domain, as shown in Fig. 4. To fully
demonstrate the ability of AS-PINNs to capture discontinuity points, the
transition points are deliberately initialized at one end of the domain.
Some transition points need to cross one or two discontinuity points to
reach the real discontinuity point location, forming the optimal network
framework. Uniformly distributed initializations make it easier for
transition points to capture discontinuities. Despite this, the transition
points quickly obtain most of the discontinuity locations after training
begins, combining this with further refinement through the RAR algo-
rithm ultimately achieves precise capture of the discontinuities. The self-
adaptive domain decomposition process of the four subnetworks is
shown in Fig. 5. When the residuals in the subdomains are comparable,
the subnetworks exhibit equal competitiveness at the interface. If one
subdomain has a significantly larger residual (marked by the red circle),
the corresponding subnetwork becomes more competitive, leading to a
shrinkage of its subdomain. The size of the arrows indicates the level of
competitiveness. Before 10,000 epochs, the residual value in the region
where NN4 is located is larger, giving NN4 a stronger competitiveness
during training. The interface position between NN4 and NN3 contin-
ually shifts to the right, eventually being located at x = 2. Similarly,

through the competition caused by the residual differences, the interface
positions between NN1 and NN2, and NN2 and NN3 are quickly local-
ized near x = 0.4 and x = 0.9, respectively, as shown in Fig. 5 (c).
Further refined sampling leads to the accurate localization of s{1} and
s{2}.

In Fig. 6(a–c), C0, C1 and C2 discontinuity all exhibit sharp gradients.
H{2}(x) and H{3}(x) both satisfy the condition of being strictly zero
outside the domain and at discontinuity, effectively suppressing the
impact of derivative singularities on the network. Additionally, within
the defined subdomain Ω{j}

i , the function values gradually rise as they
move away from discontinuities, allowing the neural network to first fit
smooth regions and then gradually approach discontinuities with sin-
gularity. This represents an optimal solution approach.

However, the accuracy of AS-PINNs with H{3}(x) is unsatisfactory.
Although H{3}(x) exhibits higher continuity, it results in overly smooth
transitions between subdomains, which prevents precise localization of
discontinuities. Despite minor deviations, incorrect domain decompo-
sition create singularities at discontinuities, which introduce a sub-
stantial number of low-information residuals into the loss function,
resulting in longer training times and reduced accuracy. Therefore,
subsequent experiments will utilize H{2}(x) as the residual activation
function.

RD-PINNs and XPINNs, which are used to solve discontinuous
problems, are compared with AS-PINNs. Although DR-PINNs perform
well on high-order differential equation problems, they do not employ a
spatial domain decomposition strategy, which prevents them from
avoiding the singularities in the solution, resulting in lower solution
accuracy. XPINNs can also solve this problem, obtaining high accuracy
for u and uʹ. However, it is important to note that this comparison is not
entirely fair because AS-PINNs require optimization of transition points
during training to achieve adaptive domain decomposition. In contrast,
XPINNs have predefined subdomain that do not need further refinement
during training. Despite this, AS-PINNs still achieve accuracy compa-
rable to XPINNs. For a fair comparison, transition points are fixed, as

Fig. 5. Self-Adaptive domain decomposition process at different epochs under H{2}(x). The size of the arrows indicates the level of competitiveness.

M. Peng et al. Engineering Applications of Artiϧcial Intelligence 145 (2025) 110156

9

indicated in Table 1. Even though AS-PINNs require more variables
output from the same network structure compared to XPINNs, the results
show higher accuracy, with L2 error in u and uʹ reaching 10− 6, signifi-
cantly outperforming XPINNs by an order of magnitude. It is believed
that the network interface conditions of AS-PINNs use hard constraints,
which not only reduce the complexity of the loss function but also
naturally enhance network accuracy.

To further clarify the interference of various order derivative fitting
tasks in discontinuity problems, set wF 2 = 0 in PINNs and RD-PINNs.
This means that only uʹ is input, simulating the scenario where the re-
sidual of the first-order derivative information dominates. With less
input information, v0 and v1 actually obtained better results. This in-
dicates that different loss function terms conflict with each other to some
extent. When using a network with a smooth activation function to fit a

discontinuous function, significant oscillations occur in the primary
variable v̂1 and its derivative dv̂1/dx.

Similar to interpolation methods, achieving high accuracy at dis-
continuities requires densely clustered interpolation nodes. Such
densely clustered nodes often induce oscillations in the interpolation
function. Despite these oscillations, high-order interpolation provides a
more accurate representation of rapid changes near discontinuities. For
integration operations, results are not significantly affected by local
errors. Consequently, due to the accurate interpolation of most values at
discontinuities, the impact of these oscillations on low-order variables is
minimal. As shown in Fig. 4 (f) and (i) at x = 2, v̂1 experiences signif-
icant oscillations, whereas v̂0 maintains relatively high accuracy.
However, steep gradients lead to substantial residuals in uʹ́ . To balance
the residuals of uʹ́ at x = 2, a regularizing effect is applied to the

Fig. 6. Comparison between AS-PINNs, PINNs, RD-PINNs, and XPINNs. (First column) Target function. (Second column) First derivative. (Third column) Sec-
ond derivative.

M. Peng et al. Engineering Applications of Artiϧcial Intelligence 145 (2025) 110156

10

derivative of v̂1. This results in the v̂1 and v̂0 exhibiting smooth char-
acteristics at the discontinuity location. Whether the final network
output shows oscillations or smoothing depends on the relative magni-
tude of corresponding loss term. The challenge of solving high-order
partial differential equations within the PINNs framework, in addition
to the instability of high-order derivatives, stems from the mutual in-
fluence and balance of derivatives of different orders.

To simplify the presentation, a neural network with three hidden
layers and 50 neurons per layer is denoted as 3 × 50. Experiments were
conducted using network structures 3 × 20, 3 × 80, 3 × 110, and 5 × 50
to investigate the impact of network configurations on the results. The
input to the model includes uʹ and uʹ́ . The relative errors are summarized
in Table 2. Within a certain range, fitting accuracy improves as the
number of network parameters increases. When using the 3 × 20
network structure, the positioning of s{1} exhibited deviations. Although
the accuracy of u and uʹ slightly improved, the accuracy of uʹ́ signifi-
cantly decreased. When the network width increased to 80, the accuracy
of all variables improved, indicating that the enhanced network
expressiveness contributed to the observed gains. However, further
increasing the network parameters did not result in additional accuracy
improvements, likely because excessive parameters impose a training
burden and lack sufficient training points to constrain the over-
parameterized network. It is worth noting that the examples not un-
dergo extensive hyperparameter tuning. The focus of this work is to
identify the challenges PINNs face when solving high-order differential
equations with discontinuities and to provide an effective solution. In

the subsequent examples, a 3 × 50 neural network will consistently be
used to output all variables.

4. Numerical examples

The Euler beam problem was chosen to validate AS-PINNs due to its
inherent complexity involving high-order differential equations. This
equation provides a rigorous benchmark for testing capabilities of AS-
PINNs, particularly in handling discontinuities such as abrupt changes
in material properties or external loads, which pose significant chal-
lenges for PINNs. In addition, the results of AS-PINNs solving the sixth-
order differential equation are provided in Appendix A.

4.1. Discontinuity caused by force

Fig. 7 illustrates an Euler-Bernoulli beam with discontinuities as
considered by RD-PINNs (Luong et al., 2023). The beam is fixed at the
left end and subjected to a vertical displacement constraint at a position
1/4 m from the right end. The length is L = 1 m, with a cross-sectional
width b = 12 mm, height h = 50 mm, and material elastic modulus EI =
8 × 104 MPa. The system has two discontinuous points, i.e., d1 = 1/3,
d2 = 1/4. The governing equation of the beam is

−
d2

dx2

(

EI(x)
d2w(x)

dx2

)

+ q(x)=0 (28)

Table 1
Results of different Methods for function fitting.

a Information of the target function incorporated within the loss function.
b Number of v̂{j}

0 and v̂{j}
1 , such as v̂{0}

0 , v̂{1}
0 , v̂{2}

0 , v̂{3}
0 and v̂{0}

1 , v̂{1}
1 , v̂{2}

1 , v̂{3}
1 denoted as “4 + 4”.

Table 2
Function fitting and self-adaptive domain decomposition results under networks of different sizes.

Method Residual activation function NN Structure L2 Relative Error Self-Adaptive Partition

u u’ u’’ s{1} s{2} s{3}

ASPINNs H{2} 3 × 20 2.12E-05 1.04E-04 4.47E-02 0.399 0.900 2.000
ASPINNs H{2} 3 × 50 6.84E-05 3.26E-04 1.41E-03 0.400 0.900 2.000
ASPINNs H{2} 3 × 80 2.46E-05 1.70E-04 7.40E-04 0.400 0.900 2.000
ASPINNs H{2} 3 × 110 4.37E-05 2.56E-04 2.48E-03 0.400 0.900 2.000
ASPINNs H{2} 5 × 50 2.61E-05 8.98E-05 1.47E-03 0.400 0.900 2.000
ASPINNs H{2} 5 × 80 1.57E-05 1.65E-04 1.88E-03 0.400 0.900 2.000

M. Peng et al. Engineering Applications of Artiϧcial Intelligence 145 (2025) 110156

11

The relationships among transverse displacement w, rotation φ,
curvature dφ/dx, bending moment M, shear force V, and spatially
distributed load q are given by

φ= −
dw
dx

(29)

M= EI
dφ
dx

(30)

V =
dM
dx

(31)

q= −
dV
dx

(32)

This problem exhibits unique characteristics: the function w and its
first derivative dw/dx display continuous and smooth features, while the
second derivative d2w/dx2, the third derivative d3w/dx3, and the forth
derivative d4w/dx4 exhibit discontinuities with varying characteristics.
When using a single neural network for solving this problem, it is
challenging to accurately capture the discontinuities in high-order de-
rivatives while adequately representing the continuity in lower-order
derivatives. For the sake of simplicity and clarity, let rotation φ be
denoted as w1, the curvature dφ/dx as dw1/dx, the bending moment M as

w2, the shear force V as w3, and the distributed load q as w4.
Assuming the positions and number of discontinuities in the system

are unknown. A fully connected neural network with 3 hidden layers
and 50 neurons per layer is used to output the required physical quan-
tities. The Adam optimizer is employed for optimization, and the
training is conducted for 100,000 epochs. The weights of all loss terms
are initially set to 1. The learning rate is set to 10− 3 for the first 10,000
epochs, and then reduced to 10− 4. 200 residual points are randomly
sampled in the domain Ω. Every 10,000 epochs, 20 sampling points are
added using the Residual-based Adaptive Refinement (RAR) method,
and the weights are updated based on Equation (25). After 40,000
epochs, the weights are no longer updated. The iterative process for the
transition point location and the loss function are shown in Fig. 8. The
process of self-adaptive domain decomposition, where subnetworks
compete through residuals, along with further details, is shown in Fig. 9.
Fig. 10 presents the results of AS-PINNs under different network archi-
tectures. To enhance the clarity of Fig. 10, only a subset of the results is
presented. Table 3 provides the corresponding L2 relative errors. In the
table, the optimal results are underlined, while the second-best results
are highlighted in bold.

A concentrated load causes discontinuity in high-order derivatives.
Therefore, to ensure the continuity, w and w1 can be represented by
subnetwork ŵ and ŵ1 without causing singularities. w2 and w3 are

Fig. 7. Euler–Bernoulli beam with discontinuity caused by force.

Fig. 8. (a–c) The convergence of interface location of AS-PINNs and (d) loss function.

M. Peng et al. Engineering Applications of Artiϧcial Intelligence 145 (2025) 110156

12

represented by multiple subnetworks ŵ{j}
2 and ŵ{j}

3 . Initialize n = 1, the
model is denoted as “n = 1/w1 = 1”. The structure of the network
output is “1 + 1+2 + 2”, indicating that the number of sub-NNs ŵ{j}

,

ŵ{j}
1 , ŵ{j}

2 , ŵ{j}
3 is 1, 1, 2 and 2. Setting the transition set S =

{
s{1}}, the

computational domain is divided into two regions Ω{1} =
[
0, s{1}) and

Ω{2} =
[
s{1},L

]
. Networks ŵ{j} and ŵ{1}

1 , are set in Ω to represent w and

w1. Networks ŵ{1}
2 , ŵ{2}

2 and ŵ{1}
3 , ŵ{2}

3 are set in Ω{1} and Ω{2} to
represent w2 and w3.

Discontinuities are distributed across physical quantities of different
orders. Assigning higher weights to the physical quantities where dis-
continuities occur can accelerate the self-adaptive domain decomposi-
tion process. The initial rapid weight updates enable AS-PINNs to swiftly
identify regions near discontinuities, as shown in Fig. 8. Once the
transition set S stabilized, weight updates are ceased to minimize
computational cost. Residual points sampled by RAR further improved
the resolution at discontinuities, enhancing overall result accuracy. HΩ{j}

is not utilized during RAR sampling, as its zero value at discontinuities
limited the sampling of residual points in these regions. Since this
solving method does not involve computing the derivative of q(x), the
discontinuity at d1 does not cause singularities, resulting in a relatively
weak discontinuity. As the training proceeds, the transition point s{1}

tends to stabilize near d2. With further refinement of the residual points,
s{1} is precisely determined to be at d2. The accuracy of all physical
quantities has reached 10− 3, proving that AS-PINNs have strong capa-
bilities in capturing discontinuities and adaptive partitioning when
solving differential equations.

Table 4 outlines the process of adjusting weights for the loss function
items of the “n = 1/w1 = 1” model. Table 3 presents the results ob-
tained without applying this method. Since the discontinuities in this
example are concentrated in a single physical quantity and are unique,
s{1} is accurately determined at d2 even without using adaptive weight
adjustment strategy. But the L2 relative error of each variable only
reached 10− 2 where only Q achieving 10− 3, suggesting that wF 4 is too

large. Inversely, in the model using the adaptive weight adjustment
strategy, wF 4 is significantly reduced while wF 1 remains maximal,
aligning with the relatively small magnitude of w1. Adjusting the
weights ensures that each task has a similar magnitude, effectively
avoiding the imbalance of loss function terms. This outcome demon-
strates the effectiveness of the adaptive weight adjustment strategy.

The method of using multiple subnetworks to represent variables
with discontinuities and using single network to represent variables
without discontinuities has proven successful. However, w and w1 are
not rigorous continuous functions and exhibit c3 and c2 discontinuities,
respectively. When using continuous networks ŵ and ŵ1 to represent
and convey gradient information, errors are inevitable, especially at the
intersections of single subnetwork and multiple subnetworks, i.e., ŵ1

and ŵ{j}
2 . The results shown in Fig. 10 (e) (f) indicate that errors are

concentrated around d2 in the “n = 1/w1 = 1” model. Consequently, the
function graph of dŵ1/dx exhibits smooth characteristics. Although w1

has c2 discontinuity, ŵ1 is a continuous function theoretically. Despite
the RAR method focusing on sampling at d2, it fails to eliminate inherent
defects, demonstrating the importance of framework selection to spe-
cific problems for accuracy and efficiency. Here, ŵ{j}

2 shows high pre-
cision instead of smoothing effects, as its output is influenced not only by
dŵ1/dx but also by ŵ3. The final precision output of ŵ{j}

2 depends on the
relative magnitude of different loss terms.

Two methods can be used to improve the gradient flattening and low
precision issues caused by a single neural network approximating high-
order discontinuous variable. Firstly, multiple neural networks ŵ{j}

1 can
be used to approximate ŵ1, denoted as “n = 1/w1∕=1”. The structure of
the network output is “1 + 2+2 + 2”. Due to the relatively high
smoothness of ŵ{j}

1 and the absence of significant discontinuities, the
positioning of s{j} does not depend on ŵ. Replacing HΩ{j} with GΩ{j} can
reduce computational costs. As shown in Fig. 10 (e), the flattening effect
of dŵ1/dx is alleviated, and the curve exhibits sharp gradient. From the
corresponding error curve Fig. 10 (f), it is observed that the high error at

Fig. 9. Self-Adaptive domain decomposition with discontinuity caused by force. The results shown correspond to n = 2, where s{1} is trainable, and s{2} is fixed.

M. Peng et al. Engineering Applications of Artiϧcial Intelligence 145 (2025) 110156

13

position d2 is eliminated. However, the L2 relative error does not
decrease. It is noteworthy that due to the convergence of multiple net-
works and a single network from w1 and w2 to w0 and w1, the concen-
tration of the error at d2 from w2 shifts to w, as shown in Fig. 10 (f) and
(b). Using multiple networks to approximate high-order discontinuous

physical fields can alleviate the local gradient flattening effect of dŵ1/dx
but does not significantly improve overall accuracy and may even
degrade it. This is related to optimizer and the distribution of the error.
This indicates that, when minimizing the number of networks while

Fig. 10. (First column) Results of different physical variations of the of the beam with discontinuity caused by force, and (Second column) point-wise errors. (a–b)
Displacement, (c–d) Slope, (e–f) Curvature, (g–h) Bending moment, (i–j) Shear force, (k–l) Distributed force.

M. Peng et al. Engineering Applications of Artiϧcial Intelligence 145 (2025) 110156

14

balancing accuracy and computational efficiency, using multiple net-
works to approximate the C0 or C1 discontinuous variables represents a
relatively optimal approach.

Another approach is to customize networks based on the character-
istics of each order of physical quantities. Specifically, for the physical
quantities exhibit high-order discontinuities (e.g., ŵ1 and ŵ2), activa-
tion functions with steep gradient characteristics should be used, such as
Elu. This structure is generally referred to as the “Parallel Fully-
Connected Network”, denoted as “PFNN”. Table 3 presents the results,
with the labels in the “NN” column indicating “1 + 1+2 + 2” and the
labels in the “NN” column indicating “PFNN”. While this network
framework does not show significant advantages when n = 1, it exhibits
relatively high accuracy in subsequent experiments. It is important to
note that the setup and configuration are not adjusted to optimize model
performance but to explain the limited accuracy from a mathematical
perspective and provide corresponding solutions.

When n = 1, s{1} is optimally positioned at d2. To locate other po-
tential discontinuities and improve search efficiency, s{2} and s{3} are
added. s{2} is fixed at 0.75, s{1} and s{3} are set at the left and right ends
to search for discontinuities. Based on previous conclusions, using a
single network to approximate w and w1, and using multiple networks to
approximate w2 and w3, similar training strategies are applied. The
structure of the network output is “1 + 1+4 + 4” and “FNN”. s{1} will be
positioned near d1, while s{3} will quickly be squeezed out of the
domain, consistent with the absence of discontinuities in the right end
domain. It is believed that the weights at the transition points are set to
zero. Introducing excessive transition points in regions without discon-
tinuities may render the original problem ill-posed, thereby increasing
its complexity and difficulty. To minimize the loss function, redundant
transition points are squeezed out of the domain. Here, the range of s{3}

is forced to be fixed at (d2,0.95m], denoted as “n = 3/w1 = 1”, providing
the corresponding results. The iterative process for the transition point
location are shown in Fig. 8 (b).

Based on n = 3, the performance of s{1} and s{3} confirms that there is

only one discontinuity within the interval [0,0.75). Considering that this
interval contains only one discontinuity, n = 2 is set, with transition
points s{1} and s{2}. For q(x), a method of gradient enhancement (Yu
et al., 2022) is used, i.e., for discontinuous C1, to reveal its peculiar
singularity, allowing the transition point to better capture the position of
the discontinuity d1. Although the method of gradient enhancement is
applied to find the discontinuity of C1, AS-PINNs do not need to adjust
the solving strategy based on the characteristics of the discontinuity.
When n = 1, AS-PINNs have already accomplished the solution well.
This is only to illustrate how to capture discontinuities through the
variation of n and complete the domain decomposition and framework
adjustment. Here, four sets of experiments are set, respectively denoted
as “n = 2/w1 = 1”, “n = 2/PFNN”, “n = 2/w ∕= 1”, and “n =

2/w ∕= 1/PFNN”, where “w ∕= 1” indicates using multiple networks to
approximate w. The numbers of the output physical quantities ŵ{j}, ŵ{j}

1 ,
ŵ{j}

2 and ŵ{j}
3 are respectively “1 + 1+3 + 3,” “1 + 1+3 + 3,” “3 + 3+3

+ 3,” “3 + 3+3 + 3; ” the adopted network structures are “FNN,” “PFNN,
” “FNN,” “PFNN.”

The iterative process for the transition point location of “n = 2/w1 =

1” are shown in Fig. 8 (c). Fig. 9 provides more information on how the
subnetworks compete based on the size of the residuals, thereby
completing the self-adaptive domain decomposition. In the early stages
of training, the subdomain of NN2 exhibits larger residuals, which al-
lows NN2 to prevail in the competition with NN1, causing the interface
between NN2 and NN1 to shift to the right. Through further sampling,
s{1} is accurately positioned at x = 0.33. Fig. 10 shows the point-wise
errors of some experiments, and Table 3 shows the L2 relative errors.
Theoretically, n = 2 matches the actual number of discontinuities in the
system, and AS-PINNs should have optimal performance. These three
sets of experiments demonstrated very high accuracy, especially “n =

2/PFNN” and “n = 2/w ∕= 1”, with L2 relative errors averaging 10− 4,
and the accuracy of some physical quantities reaching 10− 5. The PFNN
network structure did not achieve good results when n = 1, possibly

Fig. 10. (continued).

M. Peng et al. Engineering Applications of Artiϧcial Intelligence 145 (2025) 110156

15

because the single network could not adequately complete the approx-
imation of the c2 discontinuity at d1, causing the RAR algorithm to focus
its sampling here, ignoring the overall accuracy. When n = 2, the
drawback of using a single network to output the discontinuous function
is completely avoided. This releases a significant amount of training
effort in AS-PINNs, allowing them to train while considering global ac-
curacy. The experiment with “n = 2/w ∕= 1” approximation of the base
function in a single region, avoiding the use of a single network to fit the
high-order discontinuous function, while also achieving a significant
improvement in accuracy.

The loss function graphs indicate that the “n = 2/ w ∕= 1/ PFNN”
model and the “n = 2/PFNN” model have the smallest loss functions,
followed by the “n = 2/w ∕= 1” model. Under different settings, AS-
PINNs have demonstrated relatively high accuracy, surpassing the RD-
PINNs results in the literature. AS-PINNs have achieved multiple or-
ders of magnitude improvements, particularly for high-order physical
quantities. In practical applications, using multiple networks to
approximate the physical quantities with C0 and C1 discontinuities, and
using a single network to approximate high-order continuous physical

quantities within the computational framework, has already met the
needs of most scenarios. This fully illustrates the concept of AS-PINNs,
aiming to achieve a framework of highly efficient and affordable
computing overhead tailored to the characteristics of the problem.

In addition, the solving results of DR-PINNs from the literature
(Luong et al., 2023) are used for comparison. XPINNs are also set up and
applied to solve this case. The corresponding L2 relative errors are
presented in Table 2. According to the literature, DR-PINNs demonstrate
a significant advantage over PINNs when solving smooth high-order
problems; however, when the system contains discontinuities, singu-
larities in differentiation lead to a severe decrease in the accuracy of
high-order physical quantities. XPINNs achieve an accuracy of 10− 4 for
w3 but only show an accuracy of 10− 3 for other physical quantities.
AS-PINNs not only successfully complete the automatic adjustment of
the computational domain and the network framework, but also exhibit
superior accuracy compared to XPINNs. Nearly all physical quantities
achieve or approach an accuracy of 10− 5. Furthermore, after fixing the
transition points of AS-PINNs, the accuracy of certain physical quantities
improves further, fully demonstrating the competitiveness of AS-PINNs.

4.2. Discontinuity caused by force and material

Consider the beam depicted in Fig. 11 to evaluate the capability of
AS-PINNs in capturing discontinuities and performing adaptive domain
decomposition for multiple physical quantities of different orders
experiencing discontinuities. The cross section of the beam is the same
as the one in Fig. 10. But in the range of [0–0.5) m, the elastic modulus of
the material is EI1 = 8 × 104 MPa; in the range of [0.5–1) m, the elastic

Table 3
Results of different Methods for discontinuous beam problem caused by force.

a Number of outputs ŵ{j}
, ŵ{j}

1 , ŵ{j}
2 , ŵ{j}

3 .
b Network structure used, “FNN” is a fully connected network, “PFNN” is a parallel fully connected network with a special activation
function.
c Adaptive weights are not used.

Table 4
The iterative process of weights for loss function terms.

Epoch wF 1 wF 2 wF 3 wF 4

0 1 1 1 1
1w 1.00E+00 7.75E-01 8.04E-01 1.67E-01
2w 1.00E+00 5.88E-02 4.24E-02 9.02E-02
3w 1.00E+00 1.59E-01 2.15E-01 7.44E-01

M. Peng et al. Engineering Applications of Artiϧcial Intelligence 145 (2025) 110156

16

modulus of the material is EI2 = 4 × 104 MPa. The beam is subjected to a
partially distributed force q(x) as shown in Fig. 11. In this system, dis-
continuities occur at d1 = 0.25 m, d2 = 0.5 m, and d3 = 0.75 m, affecting
physical quantities of different orders. When using a single neural
network to solve this problem, accurately capturing discontinuities in
certain derivatives while maintaining continuity in others is
challenging.

The case of n variation has been previously discussed and is not

addressed here. Consider n = 3 with the addition of network ÊI
{j}

. For n
= 3, the set of transition point is defined as S =

{
s{1},s{2},s{3}}, forming

the subdomains Ω{1} = [0, s{1}), Ω{2} = [s{1}, s{2}), Ω{3} = [s{2}, s{3}),

Ω{4} = [s{3}, s{4}]. Set subnetworks ŵ{j}, ŵ{j}
1 , ŵ{j}

2 , ŵ{j}
3 , ÊI

{j}
to

approximate w, w1, w2, w3, EI within Ω{j}, where j = 1, 2, 3, 4. The
derivative operator can reveal the singularity, allowing the transition
points to better capture the location of the discontinuity. Here, for the
approximation of EI, the gradient enhancement method is used. The
discontinuities of higher-order physical quantities have a limited effect
on the original function through multiple integrations. The original
function often exhibits smooth characteristics and lacks sufficient fea-
tures to allow AS-PINNs to effectively perform localization and domain
decomposition. Therefore, the operator GΩ{j} is implemented for ŵ{j}

1 to
enhance the training efficiency.

This section sets up a model to discuss the effect of the RAR algo-
rithm. Within the domain Ω, 200 residual points are randomly sampled.
A fully connected neural network with 3 hidden layers and 50 nodes per
layer is used to output the required variables. The Adam optimizer is
used for optimization, with 140,000 iterations of training. All loss
function terms initially have a weight of 1. For the first 60,000 itera-
tions, the learning rate is set to 10− 3, and subsequently reduced to 10− 4.
Every 20,000 iterations, the RAR algorithm is used to add 20 residual
points, and Equation (24) is used to update the weight (wF 6 = 1). After
60,000 iterations, the RAR algorithm adds 20 residual points at every
subsequent 20,000 iterations, but the weights are no longer updated.
Similarly, when using RAR sampling, HΩ{j} is not set for residual
computation.

The results of AS-PINNs with RAR (W-RAR) and without RAR (O-
RAR) are shown in Fig. 12, Fig. 14, and Table 5. In the table, the optimal
results are underlined, while the second-best results are highlighted in
bold. More information on how the subnetworks complete the self-
adaptive domain decomposition can be found in Fig. 13.

Discontinuities caused by different factors can affect physical quan-
tities at different orders. In this case, the factors causing discontinuities
are not singular, resulting in the influence of the discontinuities being
distributed across physical quantities of different orders. Improper
weight settings or training point collection can cause AS-PINNs to cap-
ture only some of the discontinuity points, neglecting others, which

Fig. 11. Euler–Bernoulli beam with discontinuity caused by force and material.

Fig. 12. The convergence of interface location of AS-PINNs (a) with and (b) without RAR, and (c) the loss function.

M. Peng et al. Engineering Applications of Artiϧcial Intelligence 145 (2025) 110156

17

leads to failure in solving the problem. This illustrates that when dis-
continuities are caused by multiple factors, the difficulty of self-adaptive
domain decomposition in AS-PINNs increases. During the first 20,000
iterations, s{1} and s{2} were both assigned near d1, while s{3} was
assigned near d2. AS-PINNs failed to capture the discontinuity at d3.
Unlike the smooth movement of transition points in Fig. 8, the transition
points in Fig. 12 stagnated for a long time during the early stages of
training, with s{2} and s{3} failing to update further. This indicates that
the residuals provided by the current training points were insufficient to
offer enough solution information for subnetworks to update. After
20,000 iterations, new residual points were collected using the RAR
algorithm. With more solution information, s{3} successfully moved to
d3, and s{2} also further moved toward d2. In contrast, AS-PINNs without
the RAR algorithm lacked sufficient solution information to break the
current competition balance between the subnetworks. Despite long
training, s{2} and s{3} did not update further. This is also reflected in the
loss function curve in Fig. 12. Although there was a significant increase
in the loss function curve after applying the RAR algorithm, it quickly
decreased again and fell below the AS-PINNs without RAR. This further
demonstrates that adjusting the solution mode according to the infor-
mation from the solution is advantageous.

In Fig. 13, the subnetwork with a larger residual in the subdomain
will win the competition. Therefore, during the first 20,000 epochs, the
interface between NN4 and NN3 will move to the right. Although the
transition points are not accurately located at the positions of d1 and d2,
their residuals are small, which is related to the weights provided by the
residual activation function and the function image learned by the
network. For instance, at 200 epochs, the subnetworks have not yet
learned the accurate image of w4, so no significant residual is observed
at the d1 position. After further learning and sampling in subsequent
iterations, the residual anomalies at all discontinuity points will be

learned by the subnetworks and further optimized.
In Fig. 14, the image of AS-PINNs (W-RAR) shows a high degree of

consistency with the actual values, although different physical quanti-
ties at various orders exhibit different discontinuity features. Further-
more, all physical quantities directly output by the network, i.e., those
connected by hard constraints, did not show large residuals at the
interface positions.

Due to the lack of capability in solving discontinuous problems, DR-
PINNs and PINNs are not compared here, and the focus is on comparing
AS-PINNs with XPINNs, thus demonstrating the competitiveness of AS-
PINNs. The relative errors in the L2 norm for the solutions of AS-
PINNs and XPINNs are shown in Table 5. Although without using the
RAR algorithm, the solution accuracy of AS-PINNs only reaches 10− 1,
indicating failure in the solution, this does not imply that AS-PINNs lack
competitiveness. On the contrary, with the help of adaptive weights and
the RAR algorithm, AS-PINNs exhibit strong robustness, allowing flex-
ible adjustments of weights and the frequency of residual point adjust-
ments to avoid overfitting. The overall solution accuracy for solving
multi-factor induced discontinuities reaches 10− 4. In contrast, XPINNs
have w1 accuracy of only 10− 2 and w of 10− 1. This is because the known
condition in this problem is w4, and transitioning from w4 to w requires
multiple variables, resulting in cumulative errors. AS-PINNs not only
avoid this issue but also achieve further improvement in accuracy when
the same conditions as XPINNs are maintained, with predefined sub-
domains. The overall accuracy reaches 10− 5, and w4 reaches 10− 6.

It is important to clarify that the RAR algorithm presented in this
context does not aim to directly improve computational accuracy via
sampling in PINNs. Instead, it contributes supplementary solving in-
formation by promoting adversarial interactions and competition within
the network, which assists AS-PINNs in performing self-adaptive domain
decomposition.

Fig. 13. Self-Adaptive domain decomposition with discontinuities caused by force and material. The results shown are obtained using AS-PINNs with RAR.

M. Peng et al. Engineering Applications of Artiϧcial Intelligence 145 (2025) 110156

18

Fig. 14. (First column) Results of different physical variations of the beam with discontinuity caused by force and material, and (Second column) corresponding
errors. (a–b) Displacement. (c–d) Slope. (e–f) Curvature. (g–h) Bending moment. (i–j) Shear force. (k–l) Distributed force.

M. Peng et al. Engineering Applications of Artiϧcial Intelligence 145 (2025) 110156

19

5. Conclusion

Despite the significant success in solving differential equations using
neural networks, PINNs have shown poor performance in handling
discontinuities. This study demonstrates the singularities induced by
discontinuities and the interactions among different physical quantities
in high-order differential equations. By utilizing the differences in re-
siduals between subdomains, the residual activation function is pro-
posed to achieve adversarial interactions between subnetworks and the
automatic adjustment of the computational domain. To address the
challenge of ensuring the continuity condition of moving interface with
soft constraints, a hard constraint method for interface conditions is
proposed. AS-PINNs eliminate the need for cumbersome operations,
including the manual setup of interface conditions, the collection of
training points at interface locations, and the inefficient manual
decomposition of computational domains. Various PINNs methods were

compared in function approximation and numerical problems, high-
lighting the respective limitations of XPINNs and DR-PINNs within the
scope of high-order differential equations with discontinuities. AS-
PINNs achieve at least an order of magnitude improvement in accu-
racy compared to XPINNs and RD-PINNs, with a 2 to 3 orders of
magnitude improvement in the accuracy of certain derivatives. The
computational speed is improved by a factor of 9 in solving sixth-order
differential equations. This paper is expected to provide new insights for
expanding the computational framework of PINNs and developing new
application scenarios.

However, this paper also has several limitations. The numerical ex-
amples in this paper focus on Euler beams, and the adaptive domain
decomposition capability of AS-PINNs requires further validation
through more diverse test cases. Additionally, the domain decomposi-
tion capability of AS-PINNs needs to be extended to irregular compu-
tational domains. Future research could investigate the application of

Fig. 14. (continued).

Table 5
Results of different Methods for discontinuous beam problem caused by force and material.

NN a RAR L2 Relative Error Transition Points

w w1(φ) w2(M) w3(V) w4(Q) s{1} s{2} s{3}

4 + 4+4 + 4 Yes 6.08E-04 7.45E-04 3.92E-04 3.85E-04 1.57E-04 0.350 0.500 0.650
4 + 4+4 + 4 No 3.56E-01 3.58E-01 3.75E-02 3.23E-01 5.00E-1 0.358 0.363 0.504
4 + 4+4 + 4 Yes 2.66E-05 1.13E-04 1.24E-05 2.96E-05 8.21E-06 Fixed
XPINNs Yes 1.36E-02 2.29E-03 6.43E-04 8.38E-04 2.94E-04 Fixed

a Number of outputs ŵ{j}
, ŵ{j}

1 , ŵ{j}
2 , ŵ{j}

3 .

M. Peng et al. Engineering Applications of Artiϧcial Intelligence 145 (2025) 110156

20

AS-PINNs to additional scenarios, such as defect detection, topology
optimization, and high-dimensional problems. A comprehensive study
of the theoretical foundations of self-adaptive domain decomposition
strategies, along with the optimization of implementation approaches,
could further enhance the efficiency of AS-PINNs.

CRediT authorship contribution statement

Mingsheng Peng: Writing – original draft, Visualization, Software,
Methodology, Data curation. Hesheng Tang: Writing – review & edit-
ing, Supervision, Methodology, Investigation, Funding acquisition.
Yingwei Kou: Writing – review & editing, Validation, Methodology.

Data availability

The code is available at https://github.com/Ning343/AS-PINNs.git.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

This research was supported by National Natural Science Foundation
of China (52378184).

A. AS-PINNs for sixth-order differential equation

The study was extended to investigate the performance of AS-PINNs for a sixth-order PDE. Specifically, all variables in the benchmark problem
from Section 5.1 were elevated by two orders, transforming the original fourth-order differential equation into a sixth-order one

−
d2

dx2

(

EI(x)
d2

dx2

(
d2

dx2 y(x)

))

+ q(x)=0 (A.1)

and

h=
dy
dx

(A.2)

w=
dh
dx

(A.3)

Additional boundary conditions, denoted as y(0) = 0, h(0) = 0, were introduced, while the remaining settings were kept consistent with Section
5.1. The results are summarized in Table A1. In the table, the optimal results are underlined, while the second-best results are highlighted in bold. The
following conclusions were drawn: AS-PINNs maintained high accuracy while completing self-adaptive domain decomposition. XPINNs experienced a
significant accuracy decline, regardless of whether RAR was applied. Moreover, XPINNs required 1615 s for training, compared to AS-PINNs, which
only needed 564 s in standard settings and 179 s with fixed training points—approximately one-ninth of XPINNs’ training time.

These differences arise because XPINNs require additional loss terms for each interface condition, which increase from 7 to 11 when the PDE order
rises from 4 to 6. Higher-order interface conditions also necessitate more complex differentiation, exacerbating optimization difficulties and
computational burdens. The visualization results and the loss function are shown in FIGURE A1. It can be observed that the low accuracy of XPINNs is
primarily caused by the failure to satisfy the boundary and interface conditions. In contrast, in AS-PINNs, the boundary and interface conditions are
enforced through hard constraints, thus avoiding the cumbersome weight adjustments and optimization burden. Longer training or more weight
adjustments might further improve XPINNs’ accuracy, but this is sufficient to demonstrate the competitiveness of AS-PINNs.

Table A.1
Results of solving sixth-order differential equations using different methods.

NN RAR L2 Relative Error

y h w w1(φ) w2(M) w3(V) w4(Q)

1 + 1+1 + 1+3 + 3 a Yes 2.57E-03 4.64E-03 4.25E-03 4.91E-03 7.56E-04 2.02E-04 9.61E-05
1 + 1+1 + 1+3 + 3 b Yes 2.26E-03 2.92E-03 3.04E-03 2.48E-03 4.25E-04 2.42E-04 1.30E-04
XPINNs Yes 3.98E+01 3.27E+1 5.08E+00 8.08E-01 6.94E-01 4.18–01 2.13E-01
XPINNs No 6.14E-01 4.68E-01 2.62E-01 1.20E-01 4.03E-02 9.27E-01 6.58E-01
a AS-PINNs with trainable transition points.
b AS-PINNs with fixed transition points.

M. Peng et al. Engineering Applications of Artiϧcial Intelligence 145 (2025) 110156

21

https://github.com/Ning343/AS-PINNs.git

Fig. A.1. (a-g) Results of different physical variations of the sixth-order differential equations. (h) Loss function.

M. Peng et al. Engineering Applications of Artiϧcial Intelligence 145 (2025) 110156

22

Data availability

I have shared the link to my data

References

Alipanahi, B., Delong, A., Weirauch, M.T., Frey, B.J., 2015. Predicting the sequence
specificities of DNA-and RNA-binding proteins by deep learning. Nat. Biotechnol. 33,
831–838.

Antonio, F.-S., David, M.-G.J., Roberto, R.d.A., Alejandro, T.-F., Antonio, F.-R.J., 2024.
Gradient-annihilated PINNs for solving riemann problems: application to relativistic
hydrodynamics. Comput. Methods Appl. Mech. Eng. 424, 116906.

Bhowmick, S., Nagarajaiah, S., 2023. Physics-guided identification of Euler–Bernoulli
beam PDE model from full-field displacement response with SimultaNeous basis
function Approximation and Parameter Estimation (SNAPE). Eng. Struct. 289,
116231.

Bonkile, M.P., Awasthi, A., Lakshmi, C., Mukundan, V., Aswin, V., 2018. A systematic
literature review of Burgers’ equation with recent advances. Pramana 90, 1–21.

Cao, W., Zhang, W., 2024. An Analysis and Solution of Ill-Conditioning in Physics-
Informed Neural Networks arXiv preprint arXiv:2405.01957.

Chang, Z., Li, K., Zou, X., Xiang, X., 2022. High order deep neural network for solving
high frequency partial differential equations. Commun. Comput. Phys. 31, 370–397.

Cybenko, G., 1989. Approximation by superpositions of a sigmoidal function. Math.
Control, Signals, Syst. 2, 303–314.

Daubechies, I., 1992. Ten Lectures on Wavelets. Society for Industrial and Applied
Mathematics, Philadelphia.

Diao, Y., Yang, J., Zhang, Y., Zhang, D., Du, Y., 2023. Solving multi-material problems in
solid mechanics using physics-informed neural networks based on domain
decomposition technology. Comput. Methods Appl. Mech. Eng. 413, 116120.

Faroughi, S., Darvishi, A., Rezaei, S., 2023. On the order of derivation in the training of
physics-informed neural networks: case studies for non-uniform beam structures.
Acta Mech. 234, 5673–5695.

Hao, Z., Su, C., Liu, S., Berner, J., Ying, C., Su, H., Anandkumar, A., Song, J., Zhu, J.,
2024. Dpot: Auto-Regressive Denoising Operator Transformer for Large-Scale Pde
Pre-training arXiv preprint arXiv:2403.03542.

Hou, J., Li, Y., Ying, S., 2023. Enhancing PINNs for solving PDEs via adaptive collocation
point movement and adaptive loss weighting. Nonlinear Dynam. 111, 15233–15261.

Hu, W.-F., Lin, T.-S., Lai, M.-C., 2022. A discontinuity capturing shallow neural network
for elliptic interface problems. J. Comput. Phys. 469, 111576.

Hu, Z., Jagtap, A.D., Karniadakis, G.E., Kawaguchi, K., 2023. Augmented Physics-
Informed Neural Networks (APINNs): a gating network-based soft domain
decomposition methodology. Eng. Appl. Artif. Intell. 126, 107183.

Jagtap, A.D., Karniadakis, G.E., 2020. Extended physics-informed neural networks
(XPINNs): a generalized space-time domain decomposition based deep learning
framework for nonlinear partial differential equations. Commun. Comput. Phys. 28,
2002–2041.

Jeong, H., Batuwatta-Gamage, C., Bai, J., Xie, Y.M., Rathnayaka, C., Zhou, Y., Gu, Y.,
2023. A complete physics-informed neural network-based framework for structural
topology optimization. Comput. Methods Appl. Mech. Eng. 417, 116401.

Karniadakis, G.E., Kevrekidis, I.G., Lu, L., Perdikaris, P., Wang, S., Yang, L., 2021.
Physics-informed machine learning. Nature Reviews Physics 3, 422–440.

Kashefi, A., Guibas, L.J., Mukerji, T., 2023. Physics-informed PointNet: on How Many
Irregular Geometries Can it Solve an Inverse Problem Simultaneously? Application
to Linear Elasticity arXiv preprint arXiv:2303.13634.

Kendall, A., Gal, Y., Cipolla, R., 2018. Multi-task learning using uncertainty to weigh
losses for scene geometry and semantics. Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 7482–7491.

Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. Imagenet classification with deep
convolutional neural networks. Adv. Neural Inf. Process. Syst. 60, 84–90.

Lake, B.M., Salakhutdinov, R., Tenenbaum, J.B., 2015. Human-level concept learning
through probabilistic program induction. Science 350, 1332–1338.

Li, X., Bolandi, H., Salem, T., Lajnef, N., Boddeti, V.N., 2022. NeuralSI: structural
parameter identification in nonlinear dynamical systems. European Conference on
Computer Vision. Springer Nature Switzerland, Cham, pp. 332–348.

Liu, L., Liu, S., Xie, H., Xiong, F., Yu, T., Xiao, M., Liu, L., Yong, H., 2023. Discontinuity
computing using physics-informed neural networks. J. Sci. Comput. 98, 22.

Liu, Z., Cai, W., Xu, Z.-Q.J., 2020. Multi-ScaleDeepNeural network (MscaleDNN) for
solving Poisson-Boltzmann equation in complex domains. Commun. Comput. Phys.
28, 1970–2001.

Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E., 2021a. Learning nonlinear
operators via DeepONet based on the universal approximation theorem of operators.
Nat. Mach. Intell. 3, 218–229.

Lu, L., Meng, X., Mao, Z., Karniadakis, G.E., 2021b. DeepXDE: a deep learning library for
solving differential equations. SIAM Rev. 63, 208–228.

Lu, L., Pestourie, R., Yao, W., Wang, Z., Verdugo, F., Johnson, S.G., 2021c. Physics-
informed neural networks with hard constraints for inverse design. SIAM J. Sci.
Comput. 43, B1105–B1132.

Luong, K.A., Le-Duc, T., Lee, J., 2023. Deep reduced-order least-square method—a
parallel neural network structure for solving beam problems. Thin-Walled Struct.
191, 111044.

Luong, K.A., Le-Duc, T., Lee, S., Lee, J., 2024. A novel normalized reduced-order physics-
informed neural network for solving inverse problems. Eng. Comput. 1–20.

Mattey, R., Ghosh, S., 2022. A novel sequential method to train physics informed neural
networks for Allen Cahn and Cahn Hilliard equations. Comput. Methods Appl. Mech.
Eng. 390, 114474.

McClenny, L.D., Braga-Neto, U.M., 2023. Self-adaptive physics-informed neural
networks. J. Comput. Phys. 474, 111722.

Miao, Z., Chen, Y., 2023. VC-PINN: variable coefficient physics-informed neural network
for forward and inverse problems of PDEs with variable coefficient. Phys. Nonlinear
Phenom. 456, 133945.

Raissi, M., Perdikaris, P., Karniadakis, G.E., 2019. Physics-informed neural networks: a
deep learning framework for solving forward and inverse problems involving
nonlinear partial differential equations. J. Comput. Phys. 378, 686–707.

Saadat, M.H., Gjorgiev, B., Das, L., Sansavini, G., 2022. Neural Tangent Kernel Analysis
of PINN for Advection-Diffusion Equation arXiv preprint arXiv:2211.11716.

Sarma, A.K., Roy, S., Annavarapu, C., Roy, P., Jagannathan, S., 2024. Interface PINNs (I-
PINNs): a physics-informed neural networks framework for interface problems.
Comput. Methods Appl. Mech. Eng. 429, 117135.

Subramanian, S., Kirby, R.M., Mahoney, M.W., Gholami, A., 2023. Adaptive self-
supervision algorithms for physics-informed neural networks. ECAI 2023. IOS Press,
Amsterdam.

Tseng, Y.-H., Lin, T.-S., Hu, W.-F., Lai, M.-C., 2023. A cusp-capturing PINN for elliptic
interface problems. J. Comput. Phys. 491, 112359.

Vadeboncoeur, A., Akyildiz, Ö.D., Kazlauskaite, I., Girolami, M., Cirak, F., 2023. Fully
probabilistic deep models for forward and inverse problems in parametric PDEs.
J. Comput. Phys. 491.

Wang, H., Lu, L., Song, S., Huang, G., 2023. Learning Specialized Activation Functions
for Physics-Informed Neural Networks arXiv preprint arXiv:2308.04073.

Wang, S., Yu, X., Perdikaris, P., 2022a. When and why PINNs fail to train: a neural
tangent kernel perspective. J. Comput. Phys. 449, 110768.

Wang, Y., Sun, J., Li, W., Lu, Z., Liu, Y., 2022b. CENN: conservative energy method based
on neural networks with subdomains for solving variational problems involving
heterogeneous and complex geometries. Comput. Methods Appl. Mech. Eng. 400,
115491.

Wu, C., Zhu, M., Tan, Q., Kartha, Y., Lu, L., 2023. A comprehensive study of non-adaptive
and residual-based adaptive sampling for physics-informed neural networks.
Comput. Methods Appl. Mech. Eng. 403, 115671.

Yu, J., Lu, L., Meng, X., Karniadakis, G.E., 2022. Gradient-enhanced physics-informed
neural networks for forward and inverse PDE problems. Comput. Methods Appl.
Mech. Eng. 393, 114823.

Yu, Y., Cai, C., Liu, Y., 2021. Probabilistic vehicle weight estimation using physics-
constrained generative adversarial network. Comput. Aided Civ. Infrastruct. Eng. 36,
781–799.

M. Peng et al. Engineering Applications of Artiϧcial Intelligence 145 (2025) 110156

23

http://refhub.elsevier.com/S0952-1976(25)00156-3/sref1
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref1
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref1
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref2
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref2
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref2
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref3
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref3
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref3
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref3
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref4
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref4
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref5
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref5
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref6
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref6
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref7
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref7
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref8
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref8
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref9
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref9
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref9
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref10
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref10
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref10
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref11
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref11
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref11
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref12
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref12
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref13
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref13
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref14
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref14
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref14
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref15
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref15
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref15
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref15
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref16
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref16
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref16
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref17
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref17
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref18
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref18
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref18
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref19
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref19
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref19
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref20
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref20
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref21
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref21
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref22
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref22
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref22
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref23
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref23
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref24
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref24
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref24
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref25
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref25
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref25
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref26
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref26
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref27
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref27
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref27
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref28
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref28
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref28
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref29
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref29
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref30
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref30
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref30
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref31
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref31
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref32
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref32
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref32
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref33
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref33
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref33
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref34
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref34
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref35
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref35
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref35
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref36
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref36
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref36
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref37
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref37
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref38
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref38
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref38
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref39
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref39
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref40
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref40
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref41
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref41
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref41
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref41
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref42
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref42
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref42
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref43
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref43
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref43
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref44
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref44
http://refhub.elsevier.com/S0952-1976(25)00156-3/sref44

	Adversarial and self-adaptive domain decomposition physics-informed neural networks for high-order differential equations w ...
	1 Introduction
	2 Methodology
	2.1 PINNs and RD-PINNs
	2.2 AS-PINNs
	2.2.1 Modified network structure
	2.2.2 Self-adaptive domain decomposition method for sub-networks

	3 AS-PINNs for function approximation
	4 Numerical examples
	4.1 Discontinuity caused by force
	4.2 Discontinuity caused by force and material

	5 Conclusion
	CRediT authorship contribution statement
	Data availability
	Declaration of competing interest
	Acknowledgments
	A AS-PINNs for sixth-order differential equation
	Data availability
	References

