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A B S T R A C T

The technique of solving differential equations using physics-informed neural networks (PINNs) has received 
extensive attention and application. Analogous to the concept of adaptive mesh refinement in finite element 
methods, the PINNs framework should be tailored to the specific characteristics of the problem to further 
improve performance. However, the adaptive techniques in PINNs focus primarily on sampling and weighting, 
lacking the capability for adaptive domain decomposition. To address the limitations of PINNs in solving high- 
order problems with discontinuities, this paper proposes a novel type of adversarial and self-adaptive domain 
decomposition physics-informed neural networks (AS-PINNs). AS-PINNs leverage residual differences between 
subdomains to implement adversarial training among subnetworks, enabling the automatic and universal 
adjustment of subdomain interface positions and the capture of discontinuities with varying characteristics, 
representing a novel neural network approach. Compared to traditional domain decomposition methods, AS- 
PINNs eliminate the need for imposing tedious boundary and interface conditions through the loss function, 
particularly in high-order differential equations, thereby significantly reducing the complexity of the loss 
function and intrinsically improving accuracy. The results show that the self-adaptive adjustment of subdomain 
and the network structure makes AS-PINNs to be tailored to specific engineering problems, such as multi- 
material issues, high-order problems. As the order of the differential equations increases, the accuracy and 
speed advantages of AS-PINNs become more pronounced. For sixth-order differential equations, the solution 
speed of AS-PINNs is nine times faster compared to traditional domain decomposition PINNs. Code available at: 
https://github.com/Ning343/AS-PINNs.git.

1. Introduction

Deep learning have achieved significant breakthroughs in areas such 
as image recognition (Krizhevsky et al., 2012), cognitive science (Lake 
et al., 2015), genomics (Alipanahi et al., 2015), and scientific computing 
(Karniadakis et al., 2021). The integration of physical information 
broadens the application scenarios and interpretability of purely 
data-driven methods. Physics-Informed Neural Networks (PINNs) 
(Raissi et al., 2019) represent a mesh-free approach to solving differ-
ential equations, enhancing prediction accuracy and efficiency by 
incorporating physical equations into deep neural networks. Due to the 
mesh-free nature and the powerful nonlinear expressive ability of neural 
networks (Cybenko, 1989), PINNs show great potential in solving 
high-dimensional problems and complex boundary problems, and find 
extensive applications in forward problems (Faroughi et al., 2023; 

Vadeboncoeur et al., 2023; Wang et al., 2023; Wu et al., 2023), inverse 
problems (Bhowmick and Nagarajaiah, 2023; Li et al., 2022; Miao and 
Chen, 2023; Yu et al., 2021), operator learning (Hao et al., 2024; Kashefi 
et al., 2023; Lu et al., 2021a), and topology optimization (Jeong et al., 
2023; Lu et al., 2021c). Despite these significant successes, some 
well-known drawbacks undeniably limit the further development and 
application of PINNs, such as low accuracy (Mattey and Ghosh, 2022; 
Wang et al., 2022b), lack of convergence guarantees (Saadat et al., 
2022), and difficulty in hyperparameter tuning (Cao and Zhang, 2024; 
Wang et al., 2022a).

Due to the requirements of differentiation, PINNs typically use 
smooth and continuous activation functions. In engineering applica-
tions, the presence of heterogeneous materials, complex forces, and 
specific boundary and initial conditions often results in solutions that 
exhibit sharp discontinuities. Smooth activation functions hinder the 
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precise approximation of discontinuous functions. High-order differen-
tiation can expose singularities even in functions with weak disconti-
nuities, potentially causing solution failures. Furthermore, 
discontinuities in high-order differential equations can cause interfer-
ence between derivatives of different orders. This not only increases the 
computational burden but also makes it difficult to achieve the highest 
accuracy for all variables. After high-order differentiation or integration, 
significant error accumulation can severely limit the accuracy of the 
highest or lowest-order variables.

The network setup is the core of PINNs and should be adjusted ac-
cording to the characteristics of the problem at hand. In the context of 
solving high-order differential equations with discontinuities, it is 
beneficial to adapt the network’s configuration based on the current 
solution state and the information derived from it, in order to obtain 
more accurate results. A similar approach is employed in finite element 
methods, where the mesh configuration is adjusted according to the 
properties of the elastic body and external loading conditions. However, 
to date, neither the original nor the various improved versions of PINNs 
possess adaptive domain decomposition capabilities.

Existing research has not fully incorporated such adaptive strategies 
when addressing problems involving discontinuities and high-order 
equations. For problems involving steep gradients, increasing the 
number of residual points near the discontinuities (Hou et al., 2023; Lu 
et al., 2021b) enhances the attention of PINNs to discontinuities, thereby 
improving the accuracy of the solution. Modifying the network struc-
ture, as demonstrated by Chang et al. (2022) and Tseng et al. (2023), 
strengthens the network’s ability to represent nonlinear behaviors. 
Reducing the weight assigned to singular value locations and employing 
weak forms to constrain the discontinuous points, thereby avoiding 
derivations at these points, effectively alleviates such issues (Antonio 
et al., 2024; Liu et al., 2023). Additionally, Reduced-order PINNs 
(RD-PINNs), which transform high-order differential equations into 
systems of lower-order equations, circumvent the need for repeated 
differentiation within a single network, thereby reducing computational 
overhead (Luong et al., 2024).

Another commonly used approach is domain decomposition, where 
the computational domain is pre-decomposed based on the locations of 
discontinuities, and the problem is solved accordingly. However, these 
methods rely on manually decomposing the computational domain, and 
the domain cannot be further adjusted during training based on the 
solution information. The interface conditions between subnetworks 
must be enforced through additional sampling and loss functions, which 
increases the complexity and difficulty of the solving process. In high- 
order differential equations, when discontinuities arise in a particular 
order of derivative, e.g., the primary variable or the flux, the remaining 
orders of quantities that adhere to continuity conditions are also subject 
to decomposition. This scenario results in a substantial rise in the 
number of loss function terms. The complexity is further compounded 
when derivatives of different orders experience discontinuities at 
different locations. Jagtap and Karniadakis (2020), which possess 
powerful representation and parallelization capabilities. Diao et al. 
(2023) successfully solved multi-material problems in solid mechanics 
using a domain decomposition approach and explored the potential 
optimal network framework. Hu et al. (2022) proposed augmented 
network structures that replace multiple networks with increased di-
mensions, thereby decreasing the total number of networks required. 
Sarma et al. (2024) proposed using the same parameters with different 
activation functions in different subnetworks, significantly reducing the 
number of parameters required for training. Despite the significant 
success of these efforts, the interface conditions rely on inefficient 
manual handling and additional residual points,

Research on self-adaptive PINNs primarily focuses on adaptive 
sampling (Hou et al., 2023; Wu et al., 2023; Yu et al., 2022), adaptive 
activation functions (Wang et al., 2023), and adaptive weights 
(McClenny and Braga-Neto, 2023; Subramanian et al., 2023), while 
lacking techniques for adaptive domain decomposition. The primary 

approach involves constructing functions based on residual information, 
such as adaptive sampling depending on the magnitude of residuals or 
using NKT theory (Wang et al., 2022a) for weight updating in the loss 
function. Another approach involves embedding specific trainable pa-
rameters within the loss function. PINNs update these parameters based 
on gradient descent to implement adaptive methods automatically, such 
as updating the weights of residual points, activation functions, and loss 
function terms (Kendall et al., 2018). The most relevant existing 
research focuses on adaptively adjusting the weighting coefficients for 
the summation of subnetworks, but these subnetworks still solve the 
problem over the entire domain, failing to address the singularities 
caused by discontinuities (Hu et al., 2023). Furthermore, some discon-
tinuities only emerge over time (Bonkile et al., 2018), and the locations 
of parameter discontinuities are often unclear when solving inverse 
problems. Methods using prior knowledge for domain decomposition 
may become ineffective. Therefore, it is necessary to develop techniques 
for automatic localization of discontinuities.

The Adversarial and Self-Adaptive Domain Decomposition Physics- 
Informed Neural Networks (AS-PINNs) proposed in this paper adjust 
the network configuration based on the solution state and information, 
thereby solving high-order differential equations with discontinuities. 
The specific contributions of this paper are summarized as follows. 

a) The mutual influence of variables of different orders in high-order 
differential equations with discontinuities is revealed. Specifically, 
the singularity caused by the discontinuity and its impact on PINNs is 
emphasized, with this impact affecting different orders of variables 
through different loss function terms. Moreover, the influence of this 
singularity on higher-order or lower-order variables differs.

b) A completely new PINNs computational framework is proposed. 
Unlike classical domain decomposition approaches that rely heavily 
on manual selection of decomposition schemes, AS-PINNs automat-
ically capture discontinuity positions and adaptively adjust the 
domain decomposition scheme through the competition of sub-
networks. The core innovation lies in the characteristic of neural 
networks to minimize the loss function. During training, each sub-
network tends to minimize its own loss function, resulting in 
adversarial competition at the interfaces. This competitive process 
drives the interfaces to dynamically adapt, ensuring that each sub-
network achieves the best possible local solution. As a result, the 
overall loss function is minimized in a coordinated manner, enabling 
automatic optimization of the domain decomposition scheme and 
achieving a balance between the subnetworks. In comparison, 
traditional domain decomposition methods require predefined or 
fixed interfaces, which lack flexibility when dealing with complex 
problems involving discontinuities.

c) Traditional PINNs relying on residual points or penalty-based loss 
functions face challenges in enforcing interface constraints, espe-
cially due to the mobility of interfaces in adaptive domain decom-
position. To address this, the interface condition hard constraint 
method is proposed, which ensures that continuity conditions across 
subnetwork interfaces are consistently satisfied throughout the 
training process. This approach significantly reduces the complexity 
of setup and alleviates training difficulties. Compared to traditional 
domain decomposition methods, AS-PINNs achieve a ninefold speed 
improvement in solving sixth-order differential equations.

Through these advancements, AS-PINNs not only capture steep 
gradients and discontinuities with varying characteristics but also 
dynamically adjust sub-domains within a unified framework. This 
adaptive capability establishes AS-PINNs as a novel computational 
method that overcomes the limitations of existing domain decomposi-
tion and reduced-order approaches in solving complex high-order dif-
ferential equations with discontinuities.

The remainder of this paper is organized as follows. In Section 2, 
after introducing the algorithm of PINNs, the extension to AS-PINNs is 
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presented. Section 3 systematically compares the performance of PINNs, 
AS-PINNs, RD-PINNs, and XPINNs for discontinuous function fitting. 
Section 4 demonstrates the effectiveness of AS-PINNs in capturing dis-
continuities and performing self-adaptive domain decomposition for 
high-order problems. Finally, the paper concludes in Section 5.

2. Methodology

2.1. PINNs and RD-PINNs

To maintain generality, consider the following m-th order differen-
tial equation: 

a0λ0(x)
dku(x)

dxk +… + arλr(x)
dk− ru(x)

dxk− r + … + akλk(x)u(x) − q(x) = 0 (1) 

where r, k⊂N, r < k. ar⊂R and is a constant. λr(x) are the system pa-
rameters, and q(x) is the source term, with x ∈ [0,L]. λr(x) represents the 
system parameter, and q(x) denotes the source term, such as external 
loads. In practical engineering problems, both system parameters and 
source terms often exhibit spatial variation characteristics. Therefore, 
λr(x) and q(x) are considered spatially varying parameters. The equation 

is denoted as F
(

x; u, ..., dku(x) /dxk; λ
)

and is subject to the boundary 

condition 

B C (x; û;λ)= 0 (2) 

where λ = [λ0, λ2,⋯, λk]. û(t, x; θ) is the output of the neural networks 
(NNs), θ is the set of parameters for the networks. Throughout this 
paper, variables with a hat symbol represent the output of the neural 
network. Residual points are collected inside the computational domain 
(T F ) and on boundaries (T B C ). The loss functions of PINNs are 
defined 

L (θ;T )=wF L F (θ;T F ) + wB C L B C (θ;T B C ) (3) 

where wF and wB C are the weight coefficients, and 

L F (θ;T F )=
1

|T F |

∑

x∈T F

⃒
⃒
⃒F
(

x; û,⋯, dk û(x)
/

dxk;λ
)⃒
⃒
⃒
2

(4) 

L B C (θ;T B C )=
1

|T B C |

∑

x∈T B C

|B C (x; û;λ)|2 (5) 

Using optimization algorithms such as Adam and L-BFGS, the 
parameter set θ* that minimizes L (θ;T ) is found. The reduced-order 
form of RD-PINNs for this problem is (Luong et al., 2023) 
⎧
⎨

⎩

dvi

dx
− vi+1 = 0 (i = 0,1, 2, ...., k − 1)

F (x; v0,⋯, vk; λ) = 0
(6) 

where 

F (x; v0,⋯, vk;λ)= a0λ0(x)vk +…+ arλr(x)vk− r +…+ akλk(x)v0 − q(x)
(7) 

v0 is equal to u, and vi is the i-th derivative of u. The idea of RD-PINNs 
involves using distinct networks v̂0(x; θ), v̂1(x; θ), …, v̂k(x; θ) to 
approximate v0, v1, …, vk respectively. Since each derivative function is 
approximated by the corresponding network, all boundary conditions 
can be implemented through hard constraints on specific networks, such 
as v̂i(x; θ) = v̂i(x; θ)⋅x⋅(x − L), ensuring v̂i satisfies x and x-L equal to 
zero. Thus, the loss function of RD-PINNs includes only L F i , with the 
form 

L (θ;T )=
∑k+1

i=1
wF i L F i

(
θ;T F i

)
(8) 

where wF i is the weight of L F i , and 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

L F i =
1

NF i

∑

x∈T F i

wF i

⃒
⃒
⃒
⃒
dv̂i− 1

dx
− v̂i

⃒
⃒
⃒
⃒

2

(i = 1, 2, ...., k)

L F k+1 =
1

NF k+1

∑

x∈T F k+1

wF k+1 |F (x; v̂0,⋯, v̂k; λ)|2
(9) 

The primary advantage of RD-PINNs is their ability to unify the 
characteristics of the optimization task, which avoids the appearance of 
boundary loss functions.

2.2. AS-PINNs

2.2.1. Modified network structure
Inspired by mesh partitioning in finite elements, which adjusts based 

on the shape of the elastomer and the load application, an optimal so-
lution strategy is to adjust the network settings of PINNs according to the 
characteristics of the problem. The principle of AS-PINN is illustrated in 
Fig. 1. In PINNs, the “discontinuity condition” specifically applies to u. 
Instead, each order of the derivative in AS-PINNs has its own distinct 
discontinuity characteristics, such as C0 discontinuity, C1 discontinuity, 
and so on. Functions with C0 continuity but discontinuities in high-order 
derivatives, are considered weak discontinuities, meaning the function 
itself is continuous, but its derivatives exhibit discontinuities. On the 
other hand, functions with C0 discontinuity are considered strong dis-
continuities, where the function itself experiences a jump, and its left 
and right limits are not equal.

Fig. 1 (a) illustrates the problem this paper aims to address, i.e., the 
primary variable or certain derivatives are smooth and continuous, 
while the remaining derivatives exhibit discontinuities with different 
characteristics. The solving mode using a single network encounters 
significant difficulty.

Fig. 1 (b) demonstrates the adversarial and self-adaptive domain 
decomposition principle of AS-PINNs. Specifically, for vi that may have 
discontinuities, define a set of n trainable parameters S{1}

i to capture the 
positions of discontinuities, where S{1}

i = {s{1}
i , …, s{j− 1}

i , s{j}
i , …, s{n}

i }, 
n ∈ N, satisfying s{j− 1}

i <s{j}
i . s{j}

i is denoted as the transition point. Since 
the number discontinuity points are unknown, n is initialized based on 
problem characteristics. The computational domain is divided into n + 1 
regions, [0, s{1}

i ), …, [s{j− 1}
i , s{j}

i ), …, [s{n}
i , L], forming the non- 

overlapping subdomains Ω{j}
i , where Ωi = ∪n+1

j Ω{j}
i . Define the net-

works v̂{1}
i , …, v̂{j}

i , …, v̂{n+1}
i for approximation of vi in subdomains 

Ω{1}
i , …, Ω{j}

i , …, Ω{n+1}
i , forming 

v̂i(x; θ) =
∑j

j=1
v̂{j}

i (x; θ)⋅GΩ{j}
i
(x) (10) 

where the operator GΩ{j}
i
(x) is defined as 

GΩ{j}
i
(x) =

⎧
⎨

⎩

0 x ∕∈ Ω{j}
i

1 x ∈ Ω{j}
i

(11) 

Once the parameter set S{1}
i is stable after a certain number of iter-

ations, add s{n+1}
i , forming the second iteration of the trainable param-

eter set S{2}
i = {s{1}

i , …, s{j− 1}
i , s{j}

i , …, s{n}
i , s{n+1}

i }. The network 
framework also gets updated. When S{2}

i becomes stable, compare s{n+1}
i 

with each parameter in S{1}
i . If either 

s{n+1}
i ≅ s{j}

i s{j}
i ∈ S{1}

i (12) 

or 
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s{n+1}
i ∕∈ Ωi (13) 

is satisfied, s{n+1}
i is considered invalid, indicating that the domain 

decomposition by S{1}
i represents the optimal scheme. Otherwise, the 

newly added s{n+1}
i is regarded as a valid transition point and a new 

transition point. s{n+2}
i is added to search for potential discontinuities 

and update the domain decomposition scheme and network framework. 
Repeating these steps facilitates the automatic determination of the final 
optimal domain decomposition scheme and network framework.

Fig. 1 (c) illustrates the solution flowchart under the reduced-order 
framework. Different subnetwork frameworks approximate the pri-
mary variable and its various derivative functions: complex derivatives 
with discontinuities are approximated using multiple subnetworks in 
each subdomain, while smooth derivatives are approximated using a 
single subnetwork. The solution mode under the reduced-order frame-
work unifies the loss function form and ensures the network fully con-
siders the difficulty of fitting tasks for each derivative order, maximizing 
the use of solution information to adjust domain decomposition scheme. 
Using L AS to denote the loss function of AS-PINNs, L AS

F i 
represents the 

loss function term related to the network v̂i. Different neural networks 

are combined through the residuals of L AS
F i 

to form the final loss func-
tion. Combining physical information and data to construct the loss 
function, the gradient descent algorithm updates network parameters. 
To provide structural clarity, Fig. 1 illustrates a series of subnetworks. In 
practice, it is possible to use a single larger neural network with shared 
inputs to output multiple variables. A single variable output can be 
regarded as a subnetwork. This approach not only reduces network 
complexity but also achieves competitive results. Similar strategies have 
been adopted in existing studies (Diao et al., 2023; Lu et al., 2021a).

Since the solution involves only the first-order derivative function of 
the network, if vi exhibits C1 continuity, a single subnetwork can be used 
for approximation without singularity arising from differential opera-
tions. Considering the case where only vi exhibits C1 discontinuous while 
vi+1 exhibits C0 discontinuous, the loss function for AS-PINN is as follows 

L
AS
(θ;T ) =

∑k+1

i=1
wF i L

AS
F i

(
θ;T F i ; S

{j}
i

)
(14) 

where 

Fig. 1. The schematic of AS-PINNs. (a) The reduced-order form of the function; (b) Self-adaptive domain decomposition achieved through adversarial competition 
among subnetworks; RAR stands for Residual-based Adaptive Sampling. (c) The subnetworks formed after self-adaptive domain decomposition combine to create the 
final network framework used for loss function computation.
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Fig. 2. Residual activation function in spatial domain. (First column) the initial domain decomposition scheme. (Second column) the domain decomposition scheme 
after training completion.
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L
AS
F 1

=
1

NF 1

∑

x∈T F 1

wF 1

⃒
⃒
⃒
⃒
dn0 v̂0

dxn0
− v̂1

⃒
⃒
⃒
⃒

2

⋮

L
AS
F i

=
1

NF i

∑

x∈T F i

wF i

⃒
⃒
⃒
⃒
⃒

dni− 1 v̂i− 1

dxni− 1
−
∑n+1

j=1
v̂{j}

i ⋅GΩ{j}
i

⃒
⃒
⃒
⃒
⃒

2

L
AS
F i+1

=
1

NF i+1

∑

x∈T F i+1

wF i+1

⃒
⃒
⃒
⃒
⃒

∑n+1

j=1

dni v̂{j}
i

dxni
⋅GΩ{j}

i
− v̂i+1

⃒
⃒
⃒
⃒
⃒

2

⋮

L
AS
F k

=
1

NF k

∑

x∈T F k

wF k

⃒
⃒
⃒
⃒
dnk− 1 v̂k− 1

dxnk− 1
− v̂k

⃒
⃒
⃒
⃒

2

L
AS
F k+1

=
1

NF k+1

∑

x∈T F k+1

wF k+1 |F

⎛

⎝x; v̂0,⋯, v̂{j}
i ,⋯, v̂k;λ

⃒
⃒
⃒2

(15) 

only L AS
F i 

and L AS
F i+1 

are changed compared to Equation (9).

2.2.2. Self-adaptive domain decomposition method for sub-networks
The operator GΩ{j}

i 
in equation (10) is a Boolean function that acti-

vates the network and cannot update interface locations through 
gradient descent of the loss function. Inspired by window functions and 
compactly supported wavelet functions in wavelet transform 
(Daubechies, 1992; Liu et al., 2020), the network activation operator 
GΩ{j}

i 
is converted into the corresponding residual activation operator 

HΩ{j}
i

. L AS
F i 

and L AS
F i+1 

are modified as 

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

L
AS
F i

=
1

NF i

∑n+1

j=1
HΩ{j}

i
⋅
∑

x∈T F i

wF i

⃒
⃒
⃒
⃒
dni− 1 v̂i− 1

dxni− 1
− v̂{j}

i

⃒
⃒
⃒
⃒

2

L
AS
F i+1

=
1

NF i

∑n+1

j=1
HΩ{j}

i+1
⋅
∑

x∈T F i

wF i+1

⃒
⃒
⃒
⃒
⃒

dni v̂{j}
i

dxni
− v̂i+1

⃒
⃒
⃒
⃒
⃒

2
(16) 

HΩ{j}
i 

is defined as 

HΩ{j}
i
=

{
0 x ∕∈ Ωi
h(x) x ∈ Ωi

(17) 

To enable the update of Si through backpropagation, HΩ{j}
i 

cannot be 

defined as an indicator function but must satisfy continuity. Taking n =

2, L = 1 as an example, three possible regularized forms of HΩ{j}
i 

are 

shown in Fig. 2. s{1}
i = 0.25, s{2}

i = 0.75,In the left column of Fig. 2, the 
domain decomposition scheme is initialized with boundaries s{1}

i = 0.25 
and s{2}

i = 0.75. After training, as shown in the right column, the sub-
domain boundaries s{1}

i and s{2}
i are successfully adjusted and localized 

to the positions of the discontinuities at s{1}
i = 0.2 and s{2}

i = 0.6. AS- 
PINNs adopt trainable and freely movable window functions, allowing 
the method to locate discontinuities and achieve self-adaptive domain 
decomposition.

Denote s{0}
i = − s{1}

i and s{n+1}
i = 2L − s{n}

i . H{1}
Ω{j}

i
(x) is defined as 

H
{1}
Ω{j}

i
(x)= 1 − Sigmoid

(
p
(

x − s{j− 1}
i

))
− Sigmoid

(
p
(
− x+ s{j}

i

))
(18) 

By controlling the size of p, the steepness of the function can be adjusted. 
When p is sufficiently large, the function value outside the defined re-
gion is considered to be zero. H{2}

Ω{j}
i
(x) is defined as 

H
{2}
Ω{j}

i
(x)=

4
(

s{j}
i − s{j− 1}

i

)2 ⋅ Relu
(

x − s{j− 1}
i

)
⋅Relu

(
− x+ s{j}

i

)
(19) 

Unlike H
{1}
Ω{j}

i
(x), even if p is very small, the function value of H

{2}
Ω{j}

i
(x)

outside the defined region is strictly zero. H{3}
Ω{j}

i
(x) is constructed 

H
{2}
Ω{j}

i
(x) = p

[

Relu
(

x − s{j− 1}
i

)2
− 3Relu

(

x −
2
3
s{j− 1}
i −

1
3
s{j}
i

)2

+3Relu
(

x −
1
3
s{j− 1}
i −

2
3
s{j}
i

)2

− Relu
(

x − s{j}
i

)2
] (20) 

H
{3}
Ω{j}

i
(x) remains continuous in its derivatives, except where it strictly 

satisfies zero outside the defined domain.
The residual activation function has a weight of zero at the transition 

point, with the weight gradually increasing as it moves away from the 
transition point. As training progresses, each subnetwork minimizes its 
loss function within its respective subdomain in a manner similar to an 
adversarial approach, leading to an improved domain decomposition 
scheme that effectively captures discontinuities and enables self- 
adaptive decomposition.

To better explain the principle of self-adaptive domain decomposi-
tion in AS-PINNs, detailed and general illustration was provided in 
Fig. 3. The blue line represents the residual activation function used to 
activate NN1, and the green line represents the residual activation 
function used to activate NN2. The gray line depicts the spatial distri-
bution of the residuals (loss function). For each individual subnetwork, 
the network aims to minimize the loss function within its respective 
computational domain. As a result, the residual activation function for 
NN1 tends to shift left, while the residual activation function for NN2 
shifts right. This leads to a competitive interaction at the interface po-
sitions. When the residuals in the regions of NN1 and NN2 become 
comparable, the competition between the two subnetworks becomes 
balanced, and the transition point stabilizes. This is shown in Fig. 3 (a), 
where the sizes of the blue and green arrows are equal, indicating no 
dominant “competitiveness” between the two subnetworks. However, 
when the residual in the region of NN2 is noticeably larger than that of 
NN1, the “competitiveness” of NN2 will exceed that of NN1, and the 
interface position will shift towards the right. This is illustrated in Fig. 3
(b), where the green arrow is larger than the blue arrow, signifying the 
dominance of NN2.

The accuracy of transition point localization largely relies on the 
information from residual points. The domain decomposition scheme is 
dynamically adjusted based on the loss functions of the residual points. 
The magnitude of the residuals at training points reflects the difficulty of 
the solution at that location and provides critical information about the 
current state of the solution. Initially, residual points are distributed 
with a coarse resolution, which may not accurately localize disconti-
nuities due to insufficient density in the regions where singularities 
exist, as shown in Fig. 3 (b). The red initialization training points fail to 
effectively capture the anomalous values of the loss function near x =
0.8. This limits the precision of transition point localization at the early 
stages of training. To address this, AS-PINNs adopt Residual-based 
Adaptive Sampling (RAR) method. Instead of globally increasing the 
density of training points, the algorithm automatically concentrates 
more residual points in the vicinity of discontinuities, as indicated by the 
blue scattered points. This localized refinement provides additional 
critical information for accurately capturing the discontinuity at a finer 
resolution while maintaining computational efficiency. The transition 
points are considered stabilized when the changes in their positions 
become negligible, indicating convergence of the solution. Transition 
points are considered accurately localized when their positions converge 
to the actual locations of discontinuities.
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Due to the continuous movement of subnetwork interfaces, enforcing 
continuity conditions through the loss function and residual points be-
comes challenging. To address this, a hard constraint method is 
employed for interface conditions.

Given that vi satisfies the C0 continuity condition, vi(0) = 0 and 
vi(L) = 0. Using the idea of Lagrangian interpolation, construct the 
trainable interpolation function set C = {c1, …, cj, …, cn}. Denote the 
output of the network v̂j

i(x; θ) as N {j}
i (x; θ). Let 

v̂{j}
i (x; θ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N
{j}
i (x; θ)⋅x⋅

(
x − sj

)
+ vi(0)⋅

(
x − sj

)

(
− sj

)

+ cj⋅
x
sj
, j = 1

N
{j}
i (x; θ)⋅

(
x − sj− 1

)
⋅
(
x − sj

)
+ cj− 1⋅

(
x − sj

)

(
sj− 1 − sj

)

+ cj⋅
(
x − sj− 1

)

(
sj − sj− 1

), j = 2, ..., n

N
{j}
i (x; θ)⋅

(
x − sj− 1

)
⋅(x − L) + cj− 1⋅

(x − L)
(
sj− 1 − L

)

+ vi(L)⋅
(
x − sj− 1

)

(
L − sj− 1

), j = n + 1

(21) 

Through the setting in equation (21), despite the continuous move-
ment of the network interface, C0 continuity conditions of the network 
will always be satisfied. When solving high-dimensional differential 
equations, it is only necessary to replace the parameter set C = {c1, …, cj, 

…, cn} with the corresponding network set, i.e., let C j = N
{Cj}
i (x2,x3,

...; θ), where x2, x3,… are the independent variables along the 
discontinuity. 

Algorithm 1. The AS-PINN for solving high-order differential equa-
tions with discontinuities

Initialize n, the potential lower bound for the number of discontinuity points
Set m = 1
While True:
Step 1: Set parameters and configure the neural network

1.1 Construct the set of trainable transition points S{m}

i = {s{1}
i , …, s{j− 1}

i , s{j}
i , …, 

s{n}
i }

1.2 Construct residual activate function
1.3 Construct neural networks with parameters θ{m}

1.4 Randomly sample training data within the domain
1.5 Define the loss function

Step 2: Train the neural network

(continued on next column)

(continued )

2.1 Perform weight updates with a higher learning rate and faster frequency. 
Rapidly approach a rough resolution space
2.2 Pause weight updates and collect training points at a slower frequency. Use 
smaller learning rates to refine breakpoints in fine resolution space
2.3 Save network parameters θ{m} and the set S{m}

i
Step 3: Check termination condition

If m! = 1
If s{n}

i ≅ s{j}
i , s{j}

i ∈ S{m− 1}
i or s{n}

i ∕∈ Ωi

n = n - 1
m = m - 1

end
Reload S{m}

i and network parameters θ{m}

Break
end

n = n + 1
m = m + 1

end

Using interface condition hard constrain method between sub-
networks and hard BCs constraint method under the reduced-order 
model, the loss function of AS-PINNs will include only L AS

F i 
, which is 

the fitting residual of the network to the gradient information or the 
target function. The fitting residuals can be expressed using the L2 error 
ε(v, v̂), a relative measure, defined as 

ε(v, v̂)= ‖v − v̂‖
‖v‖

(22) 

and 

‖v‖=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅∫

Ω

v2dx

√
√
√
√ (23) 

The absolute error in the loss function of PINNs, due to variations in 
magnitude, often results in loss function terms being on different scales. 
Therefore, the absolute error can be replaced by the L2 error, or the 
weight of the loss function can be adjusted using the L2 error, thereby 
achieving a balance among different loss terms. Specifically, if the L2 

errors of current loss function terms are 
{
L{1}

2 , ...L{i}
2 , ...

}
, the weights can 

be updated according to 

wF i
ʹ= L{i}

2
/

min
{
L{1}

2 , ...L{i}
2 , ...

}
(24) 

wF i
ʹ= L{i}

2
/

max
{
L{1}

2 , ...L{i}
2 , ...

}
(25) 

Weight updates will make AS-PINNs focus on tasks with relatively 
low training accuracy, ensuring all tasks converge with similar accuracy. 
Additionally, discontinuities may be distributed across different orders 

Fig. 3. The subnetworks aim to minimize their respective computational domains to reduce their individual loss functions, thereby creating competition at the 
interface. (First column) The competition between the two subnetworks is balanced as there is no significant difference in the residuals of their respective regions. 
(Second column) The right subnetwork exhibits greater competitiveness compared to the left one, as the left region has a larger residual. The red scatter points 
represent the initially sampled training points, while the blue scatter points are the adaptively sampled training points. The size of the arrows indicates the level of 
competitiveness.
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of derivatives, and improper weights wF i may prevent AS-PINNs from 
capturing discontinuities of certain derivatives which are not strong (e. 
g., C0 continuity but a C1 discontinuity). Dynamic adjustment of weights 
can further enhance the ability of AS-PINNs to capture discontinuities 
with various characteristics. The AS-PINN for solving high-order dif-
ferential equations with discontinuities is summarized in Algorithm 1.

3. AS-PINNs for function approximation

Problems exposed by PINNs when fitting discontinuous functions 
reflect the inefficiency or failure in solving differential equations with 
discontinuous characteristics. To illustrate the impact of discontinuities 
on function fitting, the original PINNs (denoted as PINNs), RD-PINNs, 
XPINNs, and AS-PINNs are used to complete the following discontin-
uous function fitting task. Assuming the domain is Ω = [0, L], and the 
primary variable is 

u =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

4x, x ∈ [0,0.4]

− x2 + 4.8x − 0.16, x ∈ (0.4,0.9]

3x + 0.65, x ∈ (0.9,2]

2x + 2.65, x ∈ (2, 3]

(26) 

u has discontinuities at d1 = 0.4, d2 = 0.9, d3 = 2. Considering 
noticeable discontinuities, the primary variable u has C1 discontinuities, 
the first derivative uʹ has both C0 and C1 discontinuities, and the second 
derivative uʹ́  has C0 discontinuities. Given that uʹ and uʹ́ , as well as u(0), 
are known, different methods require varying numbers of output vari-
ables. A single network is configured to output multiple variables. In 
different computational methods, 100 residual points are randomly 
sampled within the computational domain, employing 3 hidden layers 
with 50 neurons per layer in fully connected neural networks to output 
the required variables. Training is performed for 160,000 epochs. The 

Adam optimizer is employed for optimization, starting with a learning 
rate of 10− 3 for the first 20,000 iterations, which is then reduced to 10− 4. 
All loss function weights are initialized at 1, with an additional 5 sam-
pling points incorporated every 20,000 epochs using the RAR algorithm. 
Based on Equation (24), the weights in AS-PINNs and RD-PINNs are 
updated every 20,000 epochs. The computational experiments in this 
study were conducted using an NVIDIA GeForce RTX 4070 Ti, an Intel 
Core i5-13400F, and 32 GB of DDR5 RAM. DeepXDE (Lu et al., 2021b) 
was utilized to implement AS-PINNs in this paper, and it can be easily 
extended to higher-level GPUs.

AS-PINNs require setting up networks v̂{1}
0 , v̂{2}

0 , v̂{3}
0 , v̂{4}

0 and v̂{1}
1 , 

v̂{2}
1 , v̂{3}

1 , v̂{4}
1 to approximate u and du/dx in the subdomains Ω{1} = [0,

0.4
)
, Ω{2} = [0.4,0.9

)
, Ω{3} = [0.9,2

)
, Ω{4} = [2,3]. Here Ω{j}

0 = Ω{j}
1 , the 

subscript is omitted. The loss function for AS-PINNs is 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L
AS
F 1

=
1

NF 1

∑n+1

j=1
HΩ{j}

∑

x∈T F 1

wF 1

⃒
⃒
⃒
⃒v̂

{j}
1 −

du
dx

⃒
⃒
⃒
⃒

2

L
AS
F 2

=
1

NF 2

∑n+1

j=1
HΩ{j}

∑

x∈T F 2

wF 2

⃒
⃒
⃒
⃒
⃒

dv̂{j}
1

dx
−

d2u
dx2

⃒
⃒
⃒
⃒
⃒

2

L
AS
F 3

=
1

NF 3

∑n+1

j=1
HΩ{j}

∑

x∈T F 3

wF 3

⃒
⃒
⃒
⃒
⃒

dv̂{j}
0

dx
− v̂{j}

1

⃒
⃒
⃒
⃒
⃒

2

(27) 

Initially, to assess the impact of various residual activation functions 
on discontinuity localization, a comparison of solution outcomes under 
different residual activation functions was performed. The iterative 
process of the transition points is illustrated in Fig. 4. Fig. 5 provides a 
detailed illustration of the self-adaptive domain decomposition and the 
adversarial process of subnetworks under H{2}(x), while Fig. 6 presents 
the results obtained using various methods. Specific L2 relative errors of 

Fig. 4. The convergence of interface location of AS-PINNs using different residual activation functions. Transition points are intentionally distributed at one end of 
the computational domain.
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different methods and final positions of transition points are given in 
Table 1. In the table, the optimal results are underlined, while the 
second-best results are highlighted in bold. Although the residual acti-
vation function H{1}(x), resembling a rectangular window, effectively 
activates residuals across the subdomain Ω{j}

i , the sharp transition at the 
interface introduces a large gradient, complicating the optimization of 
transition points during training. Moreover, regardless of the value of p 
in Equation (18), the residuals of network v̂{j}

i cannot be strictly zero 
outside the domain Ω{j}

i . Theoretically, the derivative of v̂{j}
i at the 

discontinuity point approaches infinity, and even if the weight at this 
point is relatively small, the extraneous information can still influence 
the solution, causing failure. These factors lead to the failure of transi-
tion points in accurately capturing the location of discontinuities.

H{2}(x) and H{3}(x) effectively capture the discontinuities, which are 
distributed throughout the entire domain, as shown in Fig. 4. To fully 
demonstrate the ability of AS-PINNs to capture discontinuity points, the 
transition points are deliberately initialized at one end of the domain. 
Some transition points need to cross one or two discontinuity points to 
reach the real discontinuity point location, forming the optimal network 
framework. Uniformly distributed initializations make it easier for 
transition points to capture discontinuities. Despite this, the transition 
points quickly obtain most of the discontinuity locations after training 
begins, combining this with further refinement through the RAR algo-
rithm ultimately achieves precise capture of the discontinuities. The self- 
adaptive domain decomposition process of the four subnetworks is 
shown in Fig. 5. When the residuals in the subdomains are comparable, 
the subnetworks exhibit equal competitiveness at the interface. If one 
subdomain has a significantly larger residual (marked by the red circle), 
the corresponding subnetwork becomes more competitive, leading to a 
shrinkage of its subdomain. The size of the arrows indicates the level of 
competitiveness. Before 10,000 epochs, the residual value in the region 
where NN4 is located is larger, giving NN4 a stronger competitiveness 
during training. The interface position between NN4 and NN3 contin-
ually shifts to the right, eventually being located at x = 2. Similarly, 

through the competition caused by the residual differences, the interface 
positions between NN1 and NN2, and NN2 and NN3 are quickly local-
ized near x = 0.4 and x = 0.9, respectively, as shown in Fig. 5 (c). 
Further refined sampling leads to the accurate localization of s{1} and 
s{2}.

In Fig. 6(a–c), C0, C1 and C2 discontinuity all exhibit sharp gradients. 
H{2}(x) and H{3}(x) both satisfy the condition of being strictly zero 
outside the domain and at discontinuity, effectively suppressing the 
impact of derivative singularities on the network. Additionally, within 
the defined subdomain Ω{j}

i , the function values gradually rise as they 
move away from discontinuities, allowing the neural network to first fit 
smooth regions and then gradually approach discontinuities with sin-
gularity. This represents an optimal solution approach.

However, the accuracy of AS-PINNs with H{3}(x) is unsatisfactory. 
Although H{3}(x) exhibits higher continuity, it results in overly smooth 
transitions between subdomains, which prevents precise localization of 
discontinuities. Despite minor deviations, incorrect domain decompo-
sition create singularities at discontinuities, which introduce a sub-
stantial number of low-information residuals into the loss function, 
resulting in longer training times and reduced accuracy. Therefore, 
subsequent experiments will utilize H{2}(x) as the residual activation 
function.

RD-PINNs and XPINNs, which are used to solve discontinuous 
problems, are compared with AS-PINNs. Although DR-PINNs perform 
well on high-order differential equation problems, they do not employ a 
spatial domain decomposition strategy, which prevents them from 
avoiding the singularities in the solution, resulting in lower solution 
accuracy. XPINNs can also solve this problem, obtaining high accuracy 
for u and uʹ. However, it is important to note that this comparison is not 
entirely fair because AS-PINNs require optimization of transition points 
during training to achieve adaptive domain decomposition. In contrast, 
XPINNs have predefined subdomain that do not need further refinement 
during training. Despite this, AS-PINNs still achieve accuracy compa-
rable to XPINNs. For a fair comparison, transition points are fixed, as 

Fig. 5. Self-Adaptive domain decomposition process at different epochs under H{2}(x). The size of the arrows indicates the level of competitiveness.
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indicated in Table 1. Even though AS-PINNs require more variables 
output from the same network structure compared to XPINNs, the results 
show higher accuracy, with L2 error in u and uʹ reaching 10− 6, signifi-
cantly outperforming XPINNs by an order of magnitude. It is believed 
that the network interface conditions of AS-PINNs use hard constraints, 
which not only reduce the complexity of the loss function but also 
naturally enhance network accuracy.

To further clarify the interference of various order derivative fitting 
tasks in discontinuity problems, set wF 2 = 0 in PINNs and RD-PINNs. 
This means that only uʹ is input, simulating the scenario where the re-
sidual of the first-order derivative information dominates. With less 
input information, v0 and v1 actually obtained better results. This in-
dicates that different loss function terms conflict with each other to some 
extent. When using a network with a smooth activation function to fit a 

discontinuous function, significant oscillations occur in the primary 
variable v̂1 and its derivative dv̂1/dx.

Similar to interpolation methods, achieving high accuracy at dis-
continuities requires densely clustered interpolation nodes. Such 
densely clustered nodes often induce oscillations in the interpolation 
function. Despite these oscillations, high-order interpolation provides a 
more accurate representation of rapid changes near discontinuities. For 
integration operations, results are not significantly affected by local 
errors. Consequently, due to the accurate interpolation of most values at 
discontinuities, the impact of these oscillations on low-order variables is 
minimal. As shown in Fig. 4 (f) and (i) at x = 2, v̂1 experiences signif-
icant oscillations, whereas v̂0 maintains relatively high accuracy. 
However, steep gradients lead to substantial residuals in uʹ́ . To balance 
the residuals of uʹ́  at x = 2, a regularizing effect is applied to the 

Fig. 6. Comparison between AS-PINNs, PINNs, RD-PINNs, and XPINNs. (First column) Target function. (Second column) First derivative. (Third column) Sec-
ond derivative.
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derivative of v̂1. This results in the v̂1 and v̂0 exhibiting smooth char-
acteristics at the discontinuity location. Whether the final network 
output shows oscillations or smoothing depends on the relative magni-
tude of corresponding loss term. The challenge of solving high-order 
partial differential equations within the PINNs framework, in addition 
to the instability of high-order derivatives, stems from the mutual in-
fluence and balance of derivatives of different orders.

To simplify the presentation, a neural network with three hidden 
layers and 50 neurons per layer is denoted as 3 × 50. Experiments were 
conducted using network structures 3 × 20, 3 × 80, 3 × 110, and 5 × 50 
to investigate the impact of network configurations on the results. The 
input to the model includes uʹ and uʹ́ . The relative errors are summarized 
in Table 2. Within a certain range, fitting accuracy improves as the 
number of network parameters increases. When using the 3 × 20 
network structure, the positioning of s{1} exhibited deviations. Although 
the accuracy of u and uʹ slightly improved, the accuracy of uʹ́  signifi-
cantly decreased. When the network width increased to 80, the accuracy 
of all variables improved, indicating that the enhanced network 
expressiveness contributed to the observed gains. However, further 
increasing the network parameters did not result in additional accuracy 
improvements, likely because excessive parameters impose a training 
burden and lack sufficient training points to constrain the over- 
parameterized network. It is worth noting that the examples not un-
dergo extensive hyperparameter tuning. The focus of this work is to 
identify the challenges PINNs face when solving high-order differential 
equations with discontinuities and to provide an effective solution. In 

the subsequent examples, a 3 × 50 neural network will consistently be 
used to output all variables.

4. Numerical examples

The Euler beam problem was chosen to validate AS-PINNs due to its 
inherent complexity involving high-order differential equations. This 
equation provides a rigorous benchmark for testing capabilities of AS- 
PINNs, particularly in handling discontinuities such as abrupt changes 
in material properties or external loads, which pose significant chal-
lenges for PINNs. In addition, the results of AS-PINNs solving the sixth- 
order differential equation are provided in Appendix A.

4.1. Discontinuity caused by force

Fig. 7 illustrates an Euler-Bernoulli beam with discontinuities as 
considered by RD-PINNs (Luong et al., 2023). The beam is fixed at the 
left end and subjected to a vertical displacement constraint at a position 
1/4 m from the right end. The length is L = 1 m, with a cross-sectional 
width b = 12 mm, height h = 50 mm, and material elastic modulus EI =
8 × 104 MPa. The system has two discontinuous points, i.e., d1 = 1/3,
d2 = 1/4. The governing equation of the beam is 

−
d2

dx2

(

EI(x)
d2w(x)

dx2

)

+ q(x)=0 (28) 

Table 1 
Results of different Methods for function fitting.

a Information of the target function incorporated within the loss function.
b Number of v̂{j}

0 and v̂{j}
1 , such as v̂{0}

0 , v̂{1}
0 , v̂{2}

0 , v̂{3}
0 and v̂{0}

1 , v̂{1}
1 , v̂{2}

1 , v̂{3}
1 denoted as “4 + 4”.

Table 2 
Function fitting and self-adaptive domain decomposition results under networks of different sizes.

Method Residual activation function NN Structure L2 Relative Error Self-Adaptive Partition

u u’ u’’ s{1} s{2} s{3}

ASPINNs H{2} 3 × 20 2.12E-05 1.04E-04 4.47E-02 0.399 0.900 2.000
ASPINNs H{2} 3 × 50 6.84E-05 3.26E-04 1.41E-03 0.400 0.900 2.000
ASPINNs H{2} 3 × 80 2.46E-05 1.70E-04 7.40E-04 0.400 0.900 2.000
ASPINNs H{2} 3 × 110 4.37E-05 2.56E-04 2.48E-03 0.400 0.900 2.000
ASPINNs H{2} 5 × 50 2.61E-05 8.98E-05 1.47E-03 0.400 0.900 2.000
ASPINNs H{2} 5 × 80 1.57E-05 1.65E-04 1.88E-03 0.400 0.900 2.000
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The relationships among transverse displacement w, rotation φ, 
curvature dφ/dx, bending moment M, shear force V, and spatially 
distributed load q are given by 

φ= −
dw
dx

(29) 

M= EI
dφ
dx

(30) 

V =
dM
dx

(31) 

q= −
dV
dx

(32) 

This problem exhibits unique characteristics: the function w and its 
first derivative dw/dx display continuous and smooth features, while the 
second derivative d2w/dx2, the third derivative d3w/dx3, and the forth 
derivative d4w/dx4 exhibit discontinuities with varying characteristics. 
When using a single neural network for solving this problem, it is 
challenging to accurately capture the discontinuities in high-order de-
rivatives while adequately representing the continuity in lower-order 
derivatives. For the sake of simplicity and clarity, let rotation φ be 
denoted as w1, the curvature dφ/dx as dw1/dx, the bending moment M as 

w2, the shear force V as w3, and the distributed load q as w4.
Assuming the positions and number of discontinuities in the system 

are unknown. A fully connected neural network with 3 hidden layers 
and 50 neurons per layer is used to output the required physical quan-
tities. The Adam optimizer is employed for optimization, and the 
training is conducted for 100,000 epochs. The weights of all loss terms 
are initially set to 1. The learning rate is set to 10− 3 for the first 10,000 
epochs, and then reduced to 10− 4. 200 residual points are randomly 
sampled in the domain Ω. Every 10,000 epochs, 20 sampling points are 
added using the Residual-based Adaptive Refinement (RAR) method, 
and the weights are updated based on Equation (25). After 40,000 
epochs, the weights are no longer updated. The iterative process for the 
transition point location and the loss function are shown in Fig. 8. The 
process of self-adaptive domain decomposition, where subnetworks 
compete through residuals, along with further details, is shown in Fig. 9. 
Fig. 10 presents the results of AS-PINNs under different network archi-
tectures. To enhance the clarity of Fig. 10, only a subset of the results is 
presented. Table 3 provides the corresponding L2 relative errors. In the 
table, the optimal results are underlined, while the second-best results 
are highlighted in bold.

A concentrated load causes discontinuity in high-order derivatives. 
Therefore, to ensure the continuity, w and w1 can be represented by 
subnetwork ŵ and ŵ1 without causing singularities. w2 and w3 are 

Fig. 7. Euler–Bernoulli beam with discontinuity caused by force.

Fig. 8. (a–c) The convergence of interface location of AS-PINNs and (d) loss function.
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represented by multiple subnetworks ŵ{j}
2 and ŵ{j}

3 . Initialize n = 1, the 
model is denoted as “n = 1/w1 = 1”. The structure of the network 
output is “1 + 1+2 + 2”, indicating that the number of sub-NNs ŵ{j}

,

ŵ{j}
1 , ŵ{j}

2 , ŵ{j}
3 is 1, 1, 2 and 2. Setting the transition set S =

{
s{1}}, the 

computational domain is divided into two regions Ω{1} =
[
0, s{1}) and 

Ω{2} =
[
s{1},L

]
. Networks ŵ{j} and ŵ{1}

1 , are set in Ω to represent w and 

w1. Networks ŵ{1}
2 , ŵ{2}

2 and ŵ{1}
3 , ŵ{2}

3 are set in Ω{1} and Ω{2} to 
represent w2 and w3.

Discontinuities are distributed across physical quantities of different 
orders. Assigning higher weights to the physical quantities where dis-
continuities occur can accelerate the self-adaptive domain decomposi-
tion process. The initial rapid weight updates enable AS-PINNs to swiftly 
identify regions near discontinuities, as shown in Fig. 8. Once the 
transition set S stabilized, weight updates are ceased to minimize 
computational cost. Residual points sampled by RAR further improved 
the resolution at discontinuities, enhancing overall result accuracy. HΩ{j}

is not utilized during RAR sampling, as its zero value at discontinuities 
limited the sampling of residual points in these regions. Since this 
solving method does not involve computing the derivative of q(x), the 
discontinuity at d1 does not cause singularities, resulting in a relatively 
weak discontinuity. As the training proceeds, the transition point s{1}

tends to stabilize near d2. With further refinement of the residual points, 
s{1} is precisely determined to be at d2. The accuracy of all physical 
quantities has reached 10− 3, proving that AS-PINNs have strong capa-
bilities in capturing discontinuities and adaptive partitioning when 
solving differential equations.

Table 4 outlines the process of adjusting weights for the loss function 
items of the “n = 1/w1 = 1” model. Table 3 presents the results ob-
tained without applying this method. Since the discontinuities in this 
example are concentrated in a single physical quantity and are unique, 
s{1} is accurately determined at d2 even without using adaptive weight 
adjustment strategy. But the L2 relative error of each variable only 
reached 10− 2 where only Q achieving 10− 3, suggesting that wF 4 is too 

large. Inversely, in the model using the adaptive weight adjustment 
strategy, wF 4 is significantly reduced while wF 1 remains maximal, 
aligning with the relatively small magnitude of w1. Adjusting the 
weights ensures that each task has a similar magnitude, effectively 
avoiding the imbalance of loss function terms. This outcome demon-
strates the effectiveness of the adaptive weight adjustment strategy.

The method of using multiple subnetworks to represent variables 
with discontinuities and using single network to represent variables 
without discontinuities has proven successful. However, w and w1 are 
not rigorous continuous functions and exhibit c3 and c2 discontinuities, 
respectively. When using continuous networks ŵ and ŵ1 to represent 
and convey gradient information, errors are inevitable, especially at the 
intersections of single subnetwork and multiple subnetworks, i.e., ŵ1 

and ŵ{j}
2 . The results shown in Fig. 10 (e) (f) indicate that errors are 

concentrated around d2 in the “n = 1/w1 = 1” model. Consequently, the 
function graph of dŵ1/dx exhibits smooth characteristics. Although w1 

has c2 discontinuity, ŵ1 is a continuous function theoretically. Despite 
the RAR method focusing on sampling at d2, it fails to eliminate inherent 
defects, demonstrating the importance of framework selection to spe-
cific problems for accuracy and efficiency. Here, ŵ{j}

2 shows high pre-
cision instead of smoothing effects, as its output is influenced not only by 
dŵ1/dx but also by ŵ3. The final precision output of ŵ{j}

2 depends on the 
relative magnitude of different loss terms.

Two methods can be used to improve the gradient flattening and low 
precision issues caused by a single neural network approximating high- 
order discontinuous variable. Firstly, multiple neural networks ŵ{j}

1 can 
be used to approximate ŵ1, denoted as “n = 1/w1∕=1”. The structure of 
the network output is “1 + 2+2 + 2”. Due to the relatively high 
smoothness of ŵ{j}

1 and the absence of significant discontinuities, the 
positioning of s{j} does not depend on ŵ. Replacing HΩ{j} with GΩ{j} can 
reduce computational costs. As shown in Fig. 10 (e), the flattening effect 
of dŵ1/dx is alleviated, and the curve exhibits sharp gradient. From the 
corresponding error curve Fig. 10 (f), it is observed that the high error at 

Fig. 9. Self-Adaptive domain decomposition with discontinuity caused by force. The results shown correspond to n = 2, where s{1} is trainable, and s{2} is fixed.
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position d2 is eliminated. However, the L2 relative error does not 
decrease. It is noteworthy that due to the convergence of multiple net-
works and a single network from w1 and w2 to w0 and w1, the concen-
tration of the error at d2 from w2 shifts to w, as shown in Fig. 10 (f) and 
(b). Using multiple networks to approximate high-order discontinuous 

physical fields can alleviate the local gradient flattening effect of dŵ1/dx 
but does not significantly improve overall accuracy and may even 
degrade it. This is related to optimizer and the distribution of the error. 
This indicates that, when minimizing the number of networks while 

Fig. 10. (First column) Results of different physical variations of the of the beam with discontinuity caused by force, and (Second column) point-wise errors. (a–b) 
Displacement, (c–d) Slope, (e–f) Curvature, (g–h) Bending moment, (i–j) Shear force, (k–l) Distributed force.
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balancing accuracy and computational efficiency, using multiple net-
works to approximate the C0 or C1 discontinuous variables represents a 
relatively optimal approach.

Another approach is to customize networks based on the character-
istics of each order of physical quantities. Specifically, for the physical 
quantities exhibit high-order discontinuities (e.g., ŵ1 and ŵ2), activa-
tion functions with steep gradient characteristics should be used, such as 
Elu. This structure is generally referred to as the “Parallel Fully- 
Connected Network”, denoted as “PFNN”. Table 3 presents the results, 
with the labels in the “NN” column indicating “1 + 1+2 + 2” and the 
labels in the “NN” column indicating “PFNN”. While this network 
framework does not show significant advantages when n = 1, it exhibits 
relatively high accuracy in subsequent experiments. It is important to 
note that the setup and configuration are not adjusted to optimize model 
performance but to explain the limited accuracy from a mathematical 
perspective and provide corresponding solutions.

When n = 1, s{1} is optimally positioned at d2. To locate other po-
tential discontinuities and improve search efficiency, s{2} and s{3} are 
added. s{2} is fixed at 0.75, s{1} and s{3} are set at the left and right ends 
to search for discontinuities. Based on previous conclusions, using a 
single network to approximate w and w1, and using multiple networks to 
approximate w2 and w3, similar training strategies are applied. The 
structure of the network output is “1 + 1+4 + 4” and “FNN”. s{1} will be 
positioned near d1, while s{3} will quickly be squeezed out of the 
domain, consistent with the absence of discontinuities in the right end 
domain. It is believed that the weights at the transition points are set to 
zero. Introducing excessive transition points in regions without discon-
tinuities may render the original problem ill-posed, thereby increasing 
its complexity and difficulty. To minimize the loss function, redundant 
transition points are squeezed out of the domain. Here, the range of s{3}

is forced to be fixed at (d2,0.95m], denoted as “n = 3/w1 = 1”, providing 
the corresponding results. The iterative process for the transition point 
location are shown in Fig. 8 (b).

Based on n = 3, the performance of s{1} and s{3} confirms that there is 

only one discontinuity within the interval [0,0.75). Considering that this 
interval contains only one discontinuity, n = 2 is set, with transition 
points s{1} and s{2}. For q(x), a method of gradient enhancement (Yu 
et al., 2022) is used, i.e., for discontinuous C1, to reveal its peculiar 
singularity, allowing the transition point to better capture the position of 
the discontinuity d1. Although the method of gradient enhancement is 
applied to find the discontinuity of C1, AS-PINNs do not need to adjust 
the solving strategy based on the characteristics of the discontinuity. 
When n = 1, AS-PINNs have already accomplished the solution well. 
This is only to illustrate how to capture discontinuities through the 
variation of n and complete the domain decomposition and framework 
adjustment. Here, four sets of experiments are set, respectively denoted 
as “n = 2/w1 = 1”, “n = 2/PFNN”, “n = 2/w ∕= 1”, and “n =

2/w ∕= 1/PFNN”, where “w ∕= 1” indicates using multiple networks to 
approximate w. The numbers of the output physical quantities ŵ{j}, ŵ{j}

1 , 
ŵ{j}

2 and ŵ{j}
3 are respectively “1 + 1+3 + 3,” “1 + 1+3 + 3,” “3 + 3+3 

+ 3,” “3 + 3+3 + 3; ” the adopted network structures are “FNN,” “PFNN, 
” “FNN,” “PFNN.”

The iterative process for the transition point location of “n = 2/w1 =

1” are shown in Fig. 8 (c). Fig. 9 provides more information on how the 
subnetworks compete based on the size of the residuals, thereby 
completing the self-adaptive domain decomposition. In the early stages 
of training, the subdomain of NN2 exhibits larger residuals, which al-
lows NN2 to prevail in the competition with NN1, causing the interface 
between NN2 and NN1 to shift to the right. Through further sampling, 
s{1} is accurately positioned at x = 0.33. Fig. 10 shows the point-wise 
errors of some experiments, and Table 3 shows the L2 relative errors. 
Theoretically, n = 2 matches the actual number of discontinuities in the 
system, and AS-PINNs should have optimal performance. These three 
sets of experiments demonstrated very high accuracy, especially “n =

2/PFNN” and “n = 2/w ∕= 1”, with L2 relative errors averaging 10− 4, 
and the accuracy of some physical quantities reaching 10− 5. The PFNN 
network structure did not achieve good results when n = 1, possibly 

Fig. 10. (continued).
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because the single network could not adequately complete the approx-
imation of the c2 discontinuity at d1, causing the RAR algorithm to focus 
its sampling here, ignoring the overall accuracy. When n = 2, the 
drawback of using a single network to output the discontinuous function 
is completely avoided. This releases a significant amount of training 
effort in AS-PINNs, allowing them to train while considering global ac-
curacy. The experiment with “n = 2/w ∕= 1” approximation of the base 
function in a single region, avoiding the use of a single network to fit the 
high-order discontinuous function, while also achieving a significant 
improvement in accuracy.

The loss function graphs indicate that the “n = 2/ w ∕= 1/ PFNN” 
model and the “n = 2/PFNN” model have the smallest loss functions, 
followed by the “n = 2/w ∕= 1” model. Under different settings, AS- 
PINNs have demonstrated relatively high accuracy, surpassing the RD- 
PINNs results in the literature. AS-PINNs have achieved multiple or-
ders of magnitude improvements, particularly for high-order physical 
quantities. In practical applications, using multiple networks to 
approximate the physical quantities with C0 and C1 discontinuities, and 
using a single network to approximate high-order continuous physical 

quantities within the computational framework, has already met the 
needs of most scenarios. This fully illustrates the concept of AS-PINNs, 
aiming to achieve a framework of highly efficient and affordable 
computing overhead tailored to the characteristics of the problem.

In addition, the solving results of DR-PINNs from the literature 
(Luong et al., 2023) are used for comparison. XPINNs are also set up and 
applied to solve this case. The corresponding L2 relative errors are 
presented in Table 2. According to the literature, DR-PINNs demonstrate 
a significant advantage over PINNs when solving smooth high-order 
problems; however, when the system contains discontinuities, singu-
larities in differentiation lead to a severe decrease in the accuracy of 
high-order physical quantities. XPINNs achieve an accuracy of 10− 4 for 
w3 but only show an accuracy of 10− 3 for other physical quantities. 
AS-PINNs not only successfully complete the automatic adjustment of 
the computational domain and the network framework, but also exhibit 
superior accuracy compared to XPINNs. Nearly all physical quantities 
achieve or approach an accuracy of 10− 5. Furthermore, after fixing the 
transition points of AS-PINNs, the accuracy of certain physical quantities 
improves further, fully demonstrating the competitiveness of AS-PINNs.

4.2. Discontinuity caused by force and material

Consider the beam depicted in Fig. 11 to evaluate the capability of 
AS-PINNs in capturing discontinuities and performing adaptive domain 
decomposition for multiple physical quantities of different orders 
experiencing discontinuities. The cross section of the beam is the same 
as the one in Fig. 10. But in the range of [0–0.5) m, the elastic modulus of 
the material is EI1 = 8 × 104 MPa; in the range of [0.5–1) m, the elastic 

Table 3 
Results of different Methods for discontinuous beam problem caused by force.

a Number of outputs ŵ{j}
, ŵ{j}

1 , ŵ{j}
2 , ŵ{j}

3 .
b Network structure used, “FNN” is a fully connected network, “PFNN” is a parallel fully connected network with a special activation 
function.
c Adaptive weights are not used.

Table 4 
The iterative process of weights for loss function terms.

Epoch wF 1 wF 2 wF 3 wF 4

0 1 1 1 1
1w 1.00E+00 7.75E-01 8.04E-01 1.67E-01
2w 1.00E+00 5.88E-02 4.24E-02 9.02E-02
3w 1.00E+00 1.59E-01 2.15E-01 7.44E-01
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modulus of the material is EI2 = 4 × 104 MPa. The beam is subjected to a 
partially distributed force q(x) as shown in Fig. 11. In this system, dis-
continuities occur at d1 = 0.25 m, d2 = 0.5 m, and d3 = 0.75 m, affecting 
physical quantities of different orders. When using a single neural 
network to solve this problem, accurately capturing discontinuities in 
certain derivatives while maintaining continuity in others is 
challenging.

The case of n variation has been previously discussed and is not 

addressed here. Consider n = 3 with the addition of network ÊI
{j}

. For n 
= 3, the set of transition point is defined as S =

{
s{1},s{2},s{3}}, forming 

the subdomains Ω{1} = [0, s{1}), Ω{2} = [s{1}, s{2}), Ω{3} = [s{2}, s{3}), 

Ω{4} = [s{3}, s{4}]. Set subnetworks ŵ{j}, ŵ{j}
1 , ŵ{j}

2 , ŵ{j}
3 , ÊI

{j}
to 

approximate w, w1, w2, w3, EI within Ω{j}, where j = 1, 2, 3, 4. The 
derivative operator can reveal the singularity, allowing the transition 
points to better capture the location of the discontinuity. Here, for the 
approximation of EI, the gradient enhancement method is used. The 
discontinuities of higher-order physical quantities have a limited effect 
on the original function through multiple integrations. The original 
function often exhibits smooth characteristics and lacks sufficient fea-
tures to allow AS-PINNs to effectively perform localization and domain 
decomposition. Therefore, the operator GΩ{j} is implemented for ŵ{j}

1 to 
enhance the training efficiency.

This section sets up a model to discuss the effect of the RAR algo-
rithm. Within the domain Ω, 200 residual points are randomly sampled. 
A fully connected neural network with 3 hidden layers and 50 nodes per 
layer is used to output the required variables. The Adam optimizer is 
used for optimization, with 140,000 iterations of training. All loss 
function terms initially have a weight of 1. For the first 60,000 itera-
tions, the learning rate is set to 10− 3, and subsequently reduced to 10− 4. 
Every 20,000 iterations, the RAR algorithm is used to add 20 residual 
points, and Equation (24) is used to update the weight (wF 6 = 1). After 
60,000 iterations, the RAR algorithm adds 20 residual points at every 
subsequent 20,000 iterations, but the weights are no longer updated. 
Similarly, when using RAR sampling, HΩ{j} is not set for residual 
computation.

The results of AS-PINNs with RAR (W-RAR) and without RAR (O- 
RAR) are shown in Fig. 12, Fig. 14, and Table 5. In the table, the optimal 
results are underlined, while the second-best results are highlighted in 
bold. More information on how the subnetworks complete the self- 
adaptive domain decomposition can be found in Fig. 13.

Discontinuities caused by different factors can affect physical quan-
tities at different orders. In this case, the factors causing discontinuities 
are not singular, resulting in the influence of the discontinuities being 
distributed across physical quantities of different orders. Improper 
weight settings or training point collection can cause AS-PINNs to cap-
ture only some of the discontinuity points, neglecting others, which 

Fig. 11. Euler–Bernoulli beam with discontinuity caused by force and material.

Fig. 12. The convergence of interface location of AS-PINNs (a) with and (b) without RAR, and (c) the loss function.
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leads to failure in solving the problem. This illustrates that when dis-
continuities are caused by multiple factors, the difficulty of self-adaptive 
domain decomposition in AS-PINNs increases. During the first 20,000 
iterations, s{1} and s{2} were both assigned near d1, while s{3} was 
assigned near d2. AS-PINNs failed to capture the discontinuity at d3. 
Unlike the smooth movement of transition points in Fig. 8, the transition 
points in Fig. 12 stagnated for a long time during the early stages of 
training, with s{2} and s{3} failing to update further. This indicates that 
the residuals provided by the current training points were insufficient to 
offer enough solution information for subnetworks to update. After 
20,000 iterations, new residual points were collected using the RAR 
algorithm. With more solution information, s{3} successfully moved to 
d3, and s{2} also further moved toward d2. In contrast, AS-PINNs without 
the RAR algorithm lacked sufficient solution information to break the 
current competition balance between the subnetworks. Despite long 
training, s{2} and s{3} did not update further. This is also reflected in the 
loss function curve in Fig. 12. Although there was a significant increase 
in the loss function curve after applying the RAR algorithm, it quickly 
decreased again and fell below the AS-PINNs without RAR. This further 
demonstrates that adjusting the solution mode according to the infor-
mation from the solution is advantageous.

In Fig. 13, the subnetwork with a larger residual in the subdomain 
will win the competition. Therefore, during the first 20,000 epochs, the 
interface between NN4 and NN3 will move to the right. Although the 
transition points are not accurately located at the positions of d1 and d2, 
their residuals are small, which is related to the weights provided by the 
residual activation function and the function image learned by the 
network. For instance, at 200 epochs, the subnetworks have not yet 
learned the accurate image of w4, so no significant residual is observed 
at the d1 position. After further learning and sampling in subsequent 
iterations, the residual anomalies at all discontinuity points will be 

learned by the subnetworks and further optimized.
In Fig. 14, the image of AS-PINNs (W-RAR) shows a high degree of 

consistency with the actual values, although different physical quanti-
ties at various orders exhibit different discontinuity features. Further-
more, all physical quantities directly output by the network, i.e., those 
connected by hard constraints, did not show large residuals at the 
interface positions.

Due to the lack of capability in solving discontinuous problems, DR- 
PINNs and PINNs are not compared here, and the focus is on comparing 
AS-PINNs with XPINNs, thus demonstrating the competitiveness of AS- 
PINNs. The relative errors in the L2 norm for the solutions of AS- 
PINNs and XPINNs are shown in Table 5. Although without using the 
RAR algorithm, the solution accuracy of AS-PINNs only reaches 10− 1, 
indicating failure in the solution, this does not imply that AS-PINNs lack 
competitiveness. On the contrary, with the help of adaptive weights and 
the RAR algorithm, AS-PINNs exhibit strong robustness, allowing flex-
ible adjustments of weights and the frequency of residual point adjust-
ments to avoid overfitting. The overall solution accuracy for solving 
multi-factor induced discontinuities reaches 10− 4. In contrast, XPINNs 
have w1 accuracy of only 10− 2 and w of 10− 1. This is because the known 
condition in this problem is w4, and transitioning from w4 to w requires 
multiple variables, resulting in cumulative errors. AS-PINNs not only 
avoid this issue but also achieve further improvement in accuracy when 
the same conditions as XPINNs are maintained, with predefined sub-
domains. The overall accuracy reaches 10− 5, and w4 reaches 10− 6.

It is important to clarify that the RAR algorithm presented in this 
context does not aim to directly improve computational accuracy via 
sampling in PINNs. Instead, it contributes supplementary solving in-
formation by promoting adversarial interactions and competition within 
the network, which assists AS-PINNs in performing self-adaptive domain 
decomposition.

Fig. 13. Self-Adaptive domain decomposition with discontinuities caused by force and material. The results shown are obtained using AS-PINNs with RAR.
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Fig. 14. (First column) Results of different physical variations of the beam with discontinuity caused by force and material, and (Second column) corresponding 
errors. (a–b) Displacement. (c–d) Slope. (e–f) Curvature. (g–h) Bending moment. (i–j) Shear force. (k–l) Distributed force.
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5. Conclusion

Despite the significant success in solving differential equations using 
neural networks, PINNs have shown poor performance in handling 
discontinuities. This study demonstrates the singularities induced by 
discontinuities and the interactions among different physical quantities 
in high-order differential equations. By utilizing the differences in re-
siduals between subdomains, the residual activation function is pro-
posed to achieve adversarial interactions between subnetworks and the 
automatic adjustment of the computational domain. To address the 
challenge of ensuring the continuity condition of moving interface with 
soft constraints, a hard constraint method for interface conditions is 
proposed. AS-PINNs eliminate the need for cumbersome operations, 
including the manual setup of interface conditions, the collection of 
training points at interface locations, and the inefficient manual 
decomposition of computational domains. Various PINNs methods were 

compared in function approximation and numerical problems, high-
lighting the respective limitations of XPINNs and DR-PINNs within the 
scope of high-order differential equations with discontinuities. AS- 
PINNs achieve at least an order of magnitude improvement in accu-
racy compared to XPINNs and RD-PINNs, with a 2 to 3 orders of 
magnitude improvement in the accuracy of certain derivatives. The 
computational speed is improved by a factor of 9 in solving sixth-order 
differential equations. This paper is expected to provide new insights for 
expanding the computational framework of PINNs and developing new 
application scenarios.

However, this paper also has several limitations. The numerical ex-
amples in this paper focus on Euler beams, and the adaptive domain 
decomposition capability of AS-PINNs requires further validation 
through more diverse test cases. Additionally, the domain decomposi-
tion capability of AS-PINNs needs to be extended to irregular compu-
tational domains. Future research could investigate the application of 

Fig. 14. (continued).

Table 5 
Results of different Methods for discontinuous beam problem caused by force and material.

NN a RAR L2 Relative Error Transition Points

w w1(φ) w2(M) w3(V) w4(Q) s{1} s{2} s{3}

4 + 4+4 + 4 Yes 6.08E-04 7.45E-04 3.92E-04 3.85E-04 1.57E-04 0.350 0.500 0.650
4 + 4+4 + 4 No 3.56E-01 3.58E-01 3.75E-02 3.23E-01 5.00E-1 0.358 0.363 0.504
4 + 4+4 + 4 Yes 2.66E-05 1.13E-04 1.24E-05 2.96E-05 8.21E-06 Fixed
XPINNs Yes 1.36E-02 2.29E-03 6.43E-04 8.38E-04 2.94E-04 Fixed

a Number of outputs ŵ{j}
, ŵ{j}

1 , ŵ{j}
2 , ŵ{j}

3 .
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AS-PINNs to additional scenarios, such as defect detection, topology 
optimization, and high-dimensional problems. A comprehensive study 
of the theoretical foundations of self-adaptive domain decomposition 
strategies, along with the optimization of implementation approaches, 
could further enhance the efficiency of AS-PINNs.
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A. AS-PINNs for sixth-order differential equation

The study was extended to investigate the performance of AS-PINNs for a sixth-order PDE. Specifically, all variables in the benchmark problem 
from Section 5.1 were elevated by two orders, transforming the original fourth-order differential equation into a sixth-order one 

−
d2

dx2

(

EI(x)
d2

dx2

(
d2

dx2 y(x)

))

+ q(x)=0 (A.1) 

and 

h=
dy
dx

(A.2) 

w=
dh
dx

(A.3) 

Additional boundary conditions, denoted as y(0) = 0, h(0) = 0, were introduced, while the remaining settings were kept consistent with Section 
5.1. The results are summarized in Table A1. In the table, the optimal results are underlined, while the second-best results are highlighted in bold. The 
following conclusions were drawn: AS-PINNs maintained high accuracy while completing self-adaptive domain decomposition. XPINNs experienced a 
significant accuracy decline, regardless of whether RAR was applied. Moreover, XPINNs required 1615 s for training, compared to AS-PINNs, which 
only needed 564 s in standard settings and 179 s with fixed training points—approximately one-ninth of XPINNs’ training time.

These differences arise because XPINNs require additional loss terms for each interface condition, which increase from 7 to 11 when the PDE order 
rises from 4 to 6. Higher-order interface conditions also necessitate more complex differentiation, exacerbating optimization difficulties and 
computational burdens. The visualization results and the loss function are shown in FIGURE A1. It can be observed that the low accuracy of XPINNs is 
primarily caused by the failure to satisfy the boundary and interface conditions. In contrast, in AS-PINNs, the boundary and interface conditions are 
enforced through hard constraints, thus avoiding the cumbersome weight adjustments and optimization burden. Longer training or more weight 
adjustments might further improve XPINNs’ accuracy, but this is sufficient to demonstrate the competitiveness of AS-PINNs.

Table A.1 
Results of solving sixth-order differential equations using different methods.

NN RAR L2 Relative Error

y h w w1(φ) w2(M) w3(V) w4(Q)

1 + 1+1 + 1+3 + 3 a Yes 2.57E-03 4.64E-03 4.25E-03 4.91E-03 7.56E-04 2.02E-04 9.61E-05
1 + 1+1 + 1+3 + 3 b Yes 2.26E-03 2.92E-03 3.04E-03 2.48E-03 4.25E-04 2.42E-04 1.30E-04
XPINNs Yes 3.98E+01 3.27E+1 5.08E+00 8.08E-01 6.94E-01 4.18–01 2.13E-01
XPINNs No 6.14E-01 4.68E-01 2.62E-01 1.20E-01 4.03E-02 9.27E-01 6.58E-01
a AS-PINNs with trainable transition points.
b AS-PINNs with fixed transition points.
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Fig. A.1. (a-g) Results of different physical variations of the sixth-order differential equations. (h) Loss function.
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