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A B S T R A C T

In the field of civil and ocean engineering, due to the limitations of sensor placement and the complexity of large- 
scale structures, obtaining continuous and comprehensive monitoring data is often highly challenging. To 
address this issue, this paper proposes a deep modal model for reconstructing the vortex-induced vibration (VIV) 
response of a flexible cylinder using sparse sensing data. A pre-trained model is first used to extract the modal 
characteristics of the flexible cylinder; a long short-term memory (LSTM) model is then employed to represent 
the modal weight functions. The pre-trained modal model is transferred as implicit physical laws into the LSTM 
model to reconstruct the global displacement of the flexible cylinder. The effectiveness of the proposed deep 
modal model is validated through a numerical case study involving a top-tensioned riser. On this basis, 
displacement fields of a smooth cylinder and cylinders with 3 or 4 control rods are reconstructed using sparse 
sensor data from seven locations in the experiment. The proposed deep modal model can be applied to recon
struct structural displacement fields, identify structural damage, and optimize sensor placement, offering sig
nificant benefits for structural health monitoring.

1. Introduction

In the field of modern civil and ocean engineering, as the scale and 
complexity of structures increase, real-time monitoring and assessment 
of structural conditions have become particularly important (Li et al., 
2016; Wang et al., 2018). Structural health monitoring (SHM) technol
ogy offers an effective means for early detection of potential structural 
damage and disaster prevention (Wang et al., 2024). With the rapid 
development of sensor technology, various types of monitoring devices 
have been proposed and applied across different engineering fields 
(Jiang et al., 2024; Li et al., 2024; Xue et al., 2024). However, due to the 
large size and complex shapes of structures in real engineering projects, 
sensor placement is often constrained by factors such as physical space, 
installation difficulty, and cost, making it challenging to achieve dense 
sensor deployment across the entire structure (Sun and Büyüköztürk, 
2015). This limitation often results in incomplete data, hindering 
comprehensive and accurate assessments of the structural condition, 
and thereby increasing the difficulty of predicting structural damage and 
fatigue. This is especially true for large-scale marine structures such as 
flexible risers and platforms, where obtaining comprehensive vibration 
data becomes more complex and challenging (Du et al., 2024). 

Therefore, how to utilize sparse sensor data to achieve full-field 
displacement reconstruction, while ensuring monitoring accuracy, has 
become a critical research direction in the current field of structural 
health monitoring.

The vortex-induced vibration (VIV) caused by vortex shedding is one 
of the most typical fluid-structure interaction (FSI) phenomena in the 
field of fluid mechanics (Zhang et al., 2024). VIV not only poses a threat 
to the stability of structures but also accelerates their fatigue damage, 
potentially leading to catastrophic accidents. Over the past 100 years, 
scholars from both academia and industry have conducted extensive 
research on the response characteristics of VIV in pipelines, aiming to 
explore its underlying mechanisms and to find effective control strate
gies (Zhu et al., 2024; Liu et al., 2024; Duranay et al., 2023). Esmaeili 
and Rabiee (2021) investigated the effectiveness of using an active 
control system, specifically a time delay estimation based intelligent 
proportional-integral-derivative (TDE-iPID) controller, to reduce 
flow-induced vibrations around a sprung cylinder. Xu et al. (2020)
experimentally investigated the response characteristics of side-by-side 
flexible cylinders with and without helical strakes in a towed tank. 
Martini et al. (2021) presented numerical simulations of flow around an 
elastically-mounted circular cylinder with one degree of freedom 
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(1-DOF), showing that a 2D approach is effective for the lower branch, 
while significant discrepancies arise in the upper branch. These spatio
temporal data resources, derived from experiments, monitoring, or 
simulations, contain vast amounts of hidden information and physical 
knowledge. Valuable insights can be extracted from this data to assist 
humans and systems in making more effective decisions and conducting 
state analysis (Amato et al., 2020).

In fact, dataset is the concrete manifestation of natural physical laws 
and the discretized form of function mappings for various physical 
variables. The basic idea of traditional data-driven deep learning (DL) is 
to use algorithms to analyze data, learn features from the data, and 
understand these features, then make decisions or predictions about 
real-world events (Liu et al., 2023). Due to their powerful nonlinear 
fitting capabilities, DL models can provide efficient and precise predic
tion results under sufficient discrete data conditions, and have been 
widely applied across various fields (Kamilaris and Prenafeta-Boldú, 
2018; Lake and Baroni, 2023). An approach, proposed by Sekar et al. 
(2019), combined deep convolutional neural networks (CNN) and deep 
multilayer perceptrons (MLP) to quickly predict the incompressible 
laminar steady flow field based on airfoil geometry, Reynolds number, 
and angle of attack. Fukami et al. (2019) developed CNN and hybrid 
downsampled skip-connection/multi-scale (DSC/MS) models to perform 
super-resolution analysis, successfully reconstructing high-resolution 
laminar and turbulent flow fields from low-resolution data with 
remarkable accuracy, demonstrating potential for revealing 
subgrid-scale physics in complex turbulent flows. Brener et al. (2024)
developed a data-driven machine learning turbulence model using the 
Reynolds force vector (RFV) as the target for ML techniques, demon
strating lower error propagation and enhanced accuracy in 
Reynolds-averaged Navier–Stokes (RANS) simulations compared to 
other approaches. However, how to integrate physical laws with the 
data distribution space to reduce the dependency of DL models on data, 
and further improve prediction accuracy and generalization ability, re
mains a challenge in current research (Raissi et al., 2019; Weber et al., 
2023).

To date, experimental research remains one of the most effective 
methods for understanding the problem of VIV, offering reliable data 
and intuitive observations. Experimental studies are generally divided 
into two forms: in-situ tests and model experiments (Zhang et al., 2020; 
Mukundan et al., 2009). Jiang et al. (2021) conducted an experimental 
study on the VIV of two side-by-side risers in uniform flow, analyzing the 
effects of varying structural and hydrodynamic parameters, such as flow 
velocity and spacing ratio, on the dynamic feedback between a smooth 
riser and a riser equipped with triple helical strakes. Zhu et al. (2021)
experimentally investigated the VIV of a catenary flexible riser in 
log-law sheared flows, using nonintrusive imaging to capture in-plane 
and out-of-plane responses, and found asynchronous mode transitions 
and spatial variation in dominant frequencies along the span. Gao et al. 
(2015) conducted an experimental investigation on a flexible riser with 
and without various helical strake configurations to analyze the VIV 
response performance under uniform and linearly sheared flows, 
focusing on displacement responses and fatigue damage. However, 
whether dealing with full-scale structures or scaled models, experiments 
are often constrained by costs and monitoring technologies, resulting in 
data that is discrete and sparse. This poses significant challenges for the 
application of traditional data-driven DL models (Karniadakis et al., 
2021): 1) a lack of sufficient training samples to maintain the model’s 
generalization ability and high performance; 2) data-driven DL only fits 
the data space without incorporating physical relevance. Moreover, 
since VIV responses involve complex FSI processes and the system’s 
dynamic characteristics are highly nonlinear, traditional DL models 
have certain limitations in capturing and predicting the full-field vi
bration behavior of structures.

Based on this, this paper proposes a deep modal model that combines 
modal analysis with a long short-term memory (LSTM) network to 
achieve high-precision reconstruction of the global VIV response of 
flexible cylindrical structures using sparsely placed sensor data. First, 
the method uses a data-driven DL model to extract different order modal 
features of the structure; the pre-trained modal features are then 
transferred to the LSTM model. Based on the sparse sensor data, the 

Fig. 1. The schematic of deep modal model. (a) VIV of the flexible riser; (b) Learning of different modal features of the flexible riser; (c) Learning of the 
modal weights.
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LSTM model is used to learn the time-varying characteristics of the 
weight functions of different order modes. On this basis, the global 
displacement field of the structure is reconstructed. The structure and 
main contents of this paper are as follows: In Section 2, the fundamental 
structure and principle of the deep modal model are provided. In Section 
3, the reliability of the deep modal model is validated by using a 

numerical case study of the top-tensioned riser. In Section 4, the deep 
modal model is applied to reconstruct the displacement fields of a 
smooth cylinder and cylinders with 3 or 4 control rods by using sparse 
sensor data from 7 locations in the experiment. Finally, the primary 
conclusions of this paper are presented in Section 5.

2. The schematic of deep modal model

For the flexible cylinder system, its vibration response can be char
acterized as the superposition of modal shapes of different orders ϕi(x)
(i = 1, 2, 3, …), that is (Lie and Kaasen, 2006; Trim et al., 2005): 

y(x, t)=
∑N

i=1
ei(t)ϕi(x) (1) 

Where ϕi(x) represents different orders mode-shapes, and ei(t) repre
sents the modal weight, N represents the number of modes, y(x, t) is the 
displacement response. The mode shapes are inherent characteristics of 
the structure, depending solely on the properties of the structural system 
and are independent of external excitations. Typically, the mode shapes 
of a structure can be obtained through analytical methods, finite 
element methods (FEM), or experiments.

Based on this, a deep modal model for the reconstruction of the 
displacement field of the flexible riser is developed, as shown in Fig. 1. 
The construction of this model mainly involves two steps. 

(1) Characterization of normalized modal shapes based on deep learning. 
First, the modal shapes are obtained based on analytical methods 
or FEM, combined with the inherent properties of the riser. A 

Fig. 2. Hydrodynamic model of the top-tensioned riser. (a) VIV of the flexible riser; (b) Force diagram of the riser.

Table 1 
The parameters used in the numerical case study.

No. Parameters Value

1 Length of riser 9.63 m
2 Outer diameter of riser 20 mm
3 Inner diameter of riser 19.1 mm
4 Mass of riser 0.586 kg/m
5 Bending stiffness EI 135.4 Nm2

6 Top-end tension Ftop 817 N
7 External flow velocity Uex 0.42 m/s

Table 2 
The independency study of the spatial steps.

No. Space step (Δτ = 0.001) ηrms,ξ=0.2 Dominant frequency

1 10 0.517194 3.214
2 50 0.521813 3.285
3 100 0.521357 3.285
4 200 0.535819 3.285
5 400 0.539133 3.285
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deep learning model is then used to establish the mapping rela
tionship between the spatial coordinates x and the modal shapes 
of different orders ϕ̂i(x) (i = 1, 2, 3, …). The full connected neural 
network (FCNN) model is used in this paper.

(2) Learning of modal weights. The deep learning model (such as DNN, 
LSTM, etc.) is used to establish the mapping relationship between 
time t and the corresponding modal weights of different orders 
êi(t) (i = 1, 2, 3, …). The LSTM model is used in this paper. The 
trained DL model ϕ̂ i(x) (i = 1, 2, 3, …) with modal features is 
transferred to the LSTM model êi(t) (i = 1, 2, 3, …) architecture, 
where the parameters are set to a non-trainable state (frozen). 
The modal weights are multiplied by the corresponding modal 
shapes and summed to output the displacement response of the 
riser ŷ(x) =

∑N
i=1 êi(t)ϕ̂i(x). The entire model is trained using 

spatially sparse observational data. Based on this, the displace
ment response of the structure at all positions can be obtained 
using vibration response data collected by spatially sparsely 
distributed sensors.

Compared with traditional modal analysis methods, the deep modal 
model utilizes a sub-network to extract physical features from discrete 
mode shapes that cannot be expressed by functions. Combined with FEM 
and experiments, it is applicable to various complex boundaries and 
structures. Furthermore, the embedding and transfer of modal features 
can effectively enhance the interpretability, generalization, and effi
ciency of traditional deep learning models. Through the transfer of 
modal characteristics, the deep modal model can be generally applied to 
similar structures and serves as a reliable tool for analyzing structural 
vibration.

3. Model validation based on numerical results

To validate the effectiveness of the constructed deep modal model, 
this section presents a numerical case study of a top-tensioned riser. 
Using the vibration response time history data from spatially sparse 
locations, the displacement at all positions along the top-tensioned riser 
is reconstructed.

3.1. The numerical model and modal analysis

3.1.1. The numerical model
The cross-sectional force analysis is conducted on the top-tensioned 

riser, as show in Fig. 2. By considering the added mass term, the force 
exerted on the circular cross-section in the y-direction (cross-flow di
rection, CF) can be expressed as (Gao et al., 2018): 

Fex = FCL cos ϕ − FCD sin ϕ − ma
d2y
dt2

=
1
2

ρexDex

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

U2
ex +

(
dy
dt

)2
√

(

CLUex − CD
dy
dt

)

− ma
d2y
dt2

(2) 

Where ϕ is the angle between the instantaneous incoming flow velocity 
V and the external flow velocity Uex, FCL and FCD are the lift force and 
drag force acting on the riser, CL and CD are the lift coefficient and drag 
coefficient, Fex is the resultant force in the y-axis, y is the displacement of 
the riser in the y-axis, t is time, ma is the added mass per unit length, and 
ρex is the density of the external fluid. According to the geometric 
relationship, sin ϕ =

dy/dt̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
U2

ex+(dy/dt)2
√ , cos ϕ = Uex̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

U2
ex+(dy/dt)2

√ . For the drag co

efficient CD in the subcritical region (300 ≤ Re ≤ 3× 105), its value is 
taken as 1.2 (Blevins, 1977).

According to the Morison equation, the added mass ma of a cylin
drical structure can be expressed as: 

ma =
1
4
CaπρexDex (3) 

Where Dex is the diameter of the cylinder, and Ca is the added mass 
coefficient, which is taken as 1.0 for circular structures.

Building on this, the lift coefficient is modeled using an acceleration- 
coupled van der Pol wake oscillator (Facchinetti et al., 2004), which can 
be expressed as: 

CL =
1
2
CL0q (4a) 

Fig. 3. The computational results compared with CFD results and experimental results (x/L = 0.22). (a) CFD results (Wang and Xiao, 2016; Huang et al., 2011); (b) 
Experimental results (Lehn, 2003).
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d2q
dt2 + εwωs

(
q2 − 1

) dq
dt

+ω2
s q=

Sw

Dex

d2y
dt2 (4b) 

Where CL0 is the lift coefficient when the cylinder is stationary, and in 
the subcritical region, its value is taken as 0.3. q is the dimensionless 
vortex-induced lift coefficient. εw and Sw are empirical parameters, 
taken as 0.3 and 1.2, respectively (Facchinetti et al., 2004). The circular 

frequency of vortex shedding ωs can be expressed as: 

ωs =2πSt
Uex

Dex
(5) 

When vortex-induced vibration occurs in the cylinder, the Strouhal 
number St is approximately 0.17 (Chaplin et al., 2005).

Therefore, the force exerted on a specific cross-section of the top- 

Fig. 4. Finite element model and corresponding mode shapes. (a) Finite element model; (b)–(k) The first 10 mode shapes.
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tensioned riser can be expressed as: 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Fex =
1
2

ρexDex

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

U2
ex +

(
dy
dt

)2
√

[
1
2
CL0Uexq − CD

dy
dt

]

−
1
4
CaπρexD2

ex
d2y
dt2

d2q
dt2 + εwωs

(
q2 − 1

) dq
dt

+ ω2
s q =

Sw

Dex

d2y
dt2

(6) 

The top-tensioned riser can be regarded as the Euler-Bernoulli beam, 
and its equation under external loading can be expressed as (as shown in 
Fig. 2): 

ms
∂2y
∂t2 + c

∂y
∂t

−
∂

∂x

[

FT
∂y
∂x

]

+EI
∂4y
∂t4 = Fex (7) 

Where ms is the mass per unit length of the riser, c is the damping co
efficient, EI is the bending stiffness, and FT is the effective tension within 
the riser, which can be expressed as: 

FT = Ftop + (Aexρexg − msg)(L − x) (8) 

Where Ftop is the top tension, Aex is the cross-sectional area of the riser, g 
is the gravitational acceleration, taken as 9.8 m/s2, and L is the total 

length of the riser. The damping coefficient includes the structural 
damping coefficient cs and the fluid damping coefficient cf: 

c= cs + cf = cs + γρexΩf D2
ex (9) 

To achieve the maximum vibration of the structure, cs = 0, where Ωf 

represents the vortex shedding frequency, and γ is the viscous force 
coefficient, which can be obtained from the following equation: 

Ωf = ωs = 2πStUex
/
Dex (10) 

γ =CD/(4πSt) (11) 

Therefore, after the non-dimensionalization process, the vibration 
equation for the VIV of a flexible cylinder can be expressed as:  

Where η =
y

Dex
, ξ = x

L, τ =
̅̅̅̅̅̅̅

EI
msL4

√
t, βex =

πρexD2
ex

4ms
, c* = cL2

̅̅̅̅̅̅̅
msEI

√ , νex = Uex

̅̅̅̅̅̅̅̅
msL4

EID2
ex

√
, 

γ =
(Aexρex − ms)gL3

EI , F*
top =

[Ftop − (Aexρex − ms)gL(1− ξ)]L2

EI .
The analyzed top-tensioned riser has a length of 9.63 m, an outer 

diameter of 20 mm, an inner diameter of 19.1 mm, a mass of 0.586 kg/ 
m, a bending stiffness EI = 135.4 Nm2, a top-end tension of 817 N, and 
an external flow velocity of Uex = 0.42 m/s (as show in Table 1) (Lehn, 
2003). The spatial domain is discretized using the finite difference 

Table 3 
The parameters used in the numerical case study.

Mode FEM (Hz) Theoretical Value (Hz) Error

1 0.2575 0.2573 0.078%
2 1.0299 1.0291 0.078%
3 2.3172 2.3155 0.073%
4 4.1194 4.1165 0.070%
5 6.4364 6.4320 0.068%
6 9.2681 9.2621 0.065%
7 12.615 12.606 0.071%
8 16.475 16.466 0.055%
9 20.851 20.840 0.053%
10 25.741 25.728 0.051%

Fig. 5. The training dataset of the numerical case. (a) Modal shape training data set; (b) Riser vibration response training data set.

Table 4 
Configuration of platform for model training.

Configuration Performance indicators

System Windows 11 64-bit
CPU Intel® Core™ i9-14900K 3.20 GHz
GPU NVIDIA GeForce RTX 4090 24G
RAM 64 G
CUDA 11.2
Python 3.8.19
Tensorflow 2.12.0

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1 + Caβex)
∂2η
∂τ2 + c*∂η

∂τ + γ
∂η
∂ξ

− F*
top

∂2η
∂ξ2 +

∂4η
∂ξ4 =

βex

π

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ν2
ex +

(
∂η
∂τ

)2
√

[

CL0νexq − 2CD
∂η
∂τ

]

∂2q
∂τ2 + εw(2πStνex)

(
q2 − 1

) ∂q
∂τ + (2πStνex)

2q = Sw
∂2η
∂τ2

(12) 
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method (FDM), and the time domain is solved using the 4th-order 
Runge-Kutta method (4-RK).

To ensure the accuracy of the computational results, the MATLAB 
ode45 function is employed for time-domain solutions (i.e., adaptive 
time-stepping solutions), with the relative and absolute error tolerances 
set to 1E-6 and 1E-9, respectively. The solution is obtained at fixed time 
steps Δτ = 0.001. Simultaneously, the independency study of the spatial 
steps is conducted. The displacement RMS values and dominant fre
quencies at x/L = 0.2 during t = 6− 20 s are used as evaluation criteria, 
with the computational results presented in Table 2. Consequently, the 
riser is discretized into 201 points along the spatial domain (including 
the two end nodes). This process yields the time history response of the 
top-tensioned riser under uniform flow conditions. The computational 
results are compared with computational fluid dynamics (CFD) results 
(Wang and Xiao, 2016; Huang et al., 2011) and experimental results 
(Lehn, 2003) (x/L = 0.22), as shown in Fig. 3.

The calculation results presented in this paper, as shown in Fig. 3, 
exhibit some discrepancies compared to experimental measurements 
and CFD calculations. Specifically, the experimental and CFD methods 
indicate that the vibration displacement at the upper part of the riser is 
smaller, while the displacement at the lower part is larger. However, the 
displacement response calculated using the theoretical model in this 

paper is symmetric. This is due to the use of an acceleration-coupled van 
der Pol wake oscillator model to simulate vortex-induced forces, which 
is an approximate computational model. The added mass coefficient and 
drag coefficient are treated as constants, with values of Ca = 1.0 and CD 
= 1.2. However, in the experimental and CFD methods, both the added 
mass and drag coefficients vary depending on the amplitude and fre
quency of the vibration of the riser. The same phenomenon was also 
observed in the study by Xie et al. (2019).

3.1.2. Modal analysis based on FEM
The first 10 mode shapes of the flexible cylindrical structure are 

analyzed based on the finite element method (FEM). A flexible cylinder 
model is established using two-dimensional beam elements, as shown in 
Fig. 4 (a), with the cylinder parameters listed in Table 1. The cylinder 
structure is discretized into 200 elements along its length. To ensure 
computational accuracy, the first 10 frequencies obtained from the FEM 
are compared with theoretical values, as presented in Table 3, with the 
maximum relative error being only 0.078%. The theoretical frequencies 

Fig. 6. Loss functions during pre-training process.

Fig. 7. Loss functions during the training process. (a) The traditional DL model; (b) The deep modal model.

Fig. 8. Prediction results of normalized mode shapes by FCNN.

Table 5 
The hyperparameters specific to the model training.

Model Architecture Model architecture Activation function Optimizer Learning rate Initializer

Traditional DL LSTM 4*256 Tanh/Sigmoid Adamax 0.001 Glorot uniform
Deep modal model FCNN 4*256 Sin Adamax 0.0001 Glorot uniform

LSTM 4*256 Tanh/Sigmoid 0.005
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of the hinged flexible cylindrical structure can be calculated by f =

i2π
2

̅̅̅̅̅̅̅̅
EI

msL4

√
. Fig. 4(b)–(k) illustrates the first 10 mode shapes of the flexible 

cylinder.

3.2. Training of model

The deep modal model proposed in Section 2 and traditional DL 
model are then utilized to reconstruct the entire displacement time 
history on the riser. In the pre-training of the deep modal model, the 
features of the first 10 mode shapes of the top tension riser are extracted. 

The fully connected neural network (FCNN) is used to represent the 
mode shapes, with the input being the coordinate x and the output being 
the normalized mode shapes of the first 10 modes. The training dataset 
consists of the first 10 mode shapes described in Section 3.1.2 (as shown 
in Fig. 5(a)). To simulate the scenario of limited sensor placement in 
actual engineering, response time history data from 19 nodes (5–10 s) 
selected from the 201 numerical discrete solutions is used as the training 
dataset (as shown in Fig. 5(b)). The computing platform and environ
ment configuration utilized for all model training in this study are 
summarized in Table 4. The hyperparameters specific to the models 

Fig. 9. The numerical solution of the top-tensioned riser. (a) Displacement field; (b) The displacement-time history at different positions.

Fig. 10. Reconstruction results of the riser’s displacement field based on the traditional DL model. (a) Displacement field; (b) Reconstruction error; (c) Displacement- 
time history at different positions.
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training are presented in Table 5. The loss functions of the pre-training 
process and the main network training process are illustrated in Figs. 6 
and 7. In particular, at the end of main network model training, the 
learning rate of the model is adjusted to ensure that the loss function 
value of the two models is less than 1E-4.

3.3. Reconstruction result

Fig. 8 shows the prediction results of the first 10 normalized mode 
shapes obtained by the FCNN. It can be seen that the predictions are 
highly consistent with the mode shapes obtained using the FDM method. 

Fig. 11. Reconstruction results of the riser displacement field based on the deep modal model. (a) Displacement field; (b) Reconstruction error (c) Time history of 
displacement at different positions.

Fig. 12. The arrangement of strain gauge and different working conditions in the experiment.
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In order to compare the accuracy of the traditional DL model and deep 
modal model, Fig. 9(a) shows the numerical solutions at 201 locations 
along the top-tensioned riser, solved using FDM and the 4-RK method. 
Fig. 9(b) presents the displacement time history curves at five randomly 
selected locations (x/L = 0.075, 0.125, 0.275, 0.375, 0.825) outside of 
the training set. Figs. 10 and 11 respectively display the reconstructed 
displacement results of the riser based on 19 sparse sensor displacement- 
time history data, using the traditional DL model and the deep modal 
model, along with the absolute error values. The formula for calculating 
the absolute error is as follows: 

Error=
⃒
⃒
⃒ŷpre − ytrue

⃒
⃒
⃒ (13) 

where ŷpre represents the model’s predicted value, and ytrue denotes the 
numerical result.

Comparing the results of Figs. 9 and 10, it can be observed that the 

traditional DL model essentially fits the discrete data space, and its 
fitting accuracy largely depends on the spatial distribution density of the 
labeled data. Therefore, although the traditional DL model captures the 
overall characteristics of the riser’s displacement field, the error in re
gions with significant local variation is larger due to the sparsity of the 
labeled data. In this case, the displacement-time history data from 19 
discrete locations are evenly distributed along the riser, but there is no 
labeled data at either end. As shown in Fig. 10(b), the error is relatively 
large at the locations near the two ends of the riser and in the middle, 
where there is no labeled data constraint. Notably, the error at the 
middle of the riser (x/L = 0.5) is relatively large. This is because the 
riser’s vibration is primarily dominated by the second mode, with a 
wave node near the middle, making the vibration pattern more complex.

Due to the correlation between the vibration responses at different 
spatial locations of the riser, it is difficult for traditional DL models to 
capture this feature when the spatial locations are sparsely distributed. 

Fig. 13. Training dataset for the smooth flexible cylinder (U = 1.00 m/s). (a) CF direction; (b) IL direction.

Table 6 
The hyperparameters specific to the model training.

Case Type Model architecture Activation function Optimizer Learning rate Initializer

CF, Smooth FCNN 4*256 Sin Adamax 1E-4 Glorot uniform
LSTM 128 + 4*256 + 128 Tanh/Sigmoid 1E-3 (30000)

+5E-4 (40000)
+1E-4 (10000)

IL, Smooth FCNN 4*256 Sin Adamax 1E-4 Glorot uniform
LSTM 128 + 4*256 + 128 Tanh/Sigmoid 1E-3 (30000)

+5E-4 (40000)
+1E-4 (10000)

Fig. 14. Loss function for the smooth flexible cylinder (U = 1.00 m/s). (a) CF direction; (b) IL direction.
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However, for the deep modal model, the embedding of the riser’s modes 
establishes spatial physical constraints between different spatial points, 
making the model’s predictions more consistent with the actual results 
(see Fig. 11). The output of the model consists of the ten modal weights 
of the riser. As the model is trained, the deep modal model successfully 
captures the characteristics of the second mode. As shown in Fig. 11(a) 
and (b), the predictions of the deep modal model are highly consistent 
with the numerical solutions. The maximum error value is less than 
0.027.

4. Reconstruction of experimental data based on deep modal 
model

In this section, the deep modal method is applied to reconstruct 
experimental data (sparse sensor data). These experimental conditions 
include a smooth flexible cylinder, the flexible cylinders with 3 or 4 
control rods. The detailed experimental procedures can be found in Lu 
et al. (2019, 2020). In this study, the selected experimental conditions 
had a flow velocity of 1 m/s (the maximum flow velocity during the 
experiment, characterized by complex flow patterns). During the 
experiment, strain responses in the in-line (IL) and cross-flow (CF) 

Fig. 15. Reconstructed displacement results for the smooth flexible cylinder (U = 1.00 m/s). (a–c) CF direction; (d–f) IL direction.

Fig. 16. Frequency spectrum of reconstructed displacement response for the smooth flexible cylinder (U = 1.00 m/s). (a–c) CF direction; (d–f) IL direction.
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directions are measured by 7 sets of strain gauges attached to the cyl
inder model. The distribution of the strain gauges is shown in Fig. 12. By 
utilizing the relationship between strain and displacement, the dis
placements in the IL and CF directions at the measurement points on the 
cylinder model are obtained. Due to the availability of discrete data from 
only 7 positions, the DL model is used during pre-training to extract 
features of the first 7 modes of the flexible cylindrical structure. To 
verify the model’s effectiveness, displacement reconstruction for 161 
position points on the flexible cylinder is performed based on traditional 
modal analysis methods (Lie and Kaasen, 2006; Trim et al., 2005), and 
the results are compared with the predictions from the deep modal 
model. In this section, the mode shape training dataset is generated 

using analytical methods. For a flexible cylindrical structure with hinged 
supports at both ends, its i-th mode shape can be expressed as (Lie and 
Kaasen, 2006; Trim et al., 2005): 

ϕi(x)= sin(iπx / L) (14) 

The process of extracting mode shape features using the FCNN model 
is consistent with that described in Section 3.2. The training loss func
tion and mode shape prediction results are provided in Appendix A. 
Since the experimental data used in this section all pertain to the same 
flexible cylindrical model, the same pre-trained FCNN mode represen
tation model is used for transfer learning in subsequent sections.

Fig. 17. Training dataset for the flexible cylinder with 3 control rods (U = 1.00 m/s). (a) CF direction, Attack angle 0◦; (b) IL direction, Attack angle 0◦; (c) CF 
direction, Attack angle 20◦; (d) IL direction, Attack angle 20◦.

Table 7 
The hyperparameters specific to the model training.

Case Type Model architecture Activation function Optimizer Learning rate Initializer

CF, 0◦ FCNN 4*256 Sin Adamax 1E-4 Glorot uniform
LSTM 128 + 4*256 + 128 Tanh/Sigmoid 5E-3 (30000)

+5E-4 (40000)
+1E-4 (10000)

IL, 0◦ FCNN 4*256 Sin Adamax 1E-4 Glorot uniform
LSTM 128 + 4*256 + 128 Tanh/Sigmoid 5E-3 (30000)

+5E-4 (40000)
+1E-4 (10000)

CF, 20◦ FCNN 4*256 Sin Adamax 1E-4 Glorot uniform
LSTM 128 + 4*256 + 128 Tanh/Sigmoid 5E-3 (30000)

+5E-4 (40000)
+1E-4 (10000)

IL, 20◦ FCNN 256 Sin Adamax 1E-4 Glorot uniform
LSTM 128 + 4*256 + 128 Tanh/Sigmoid 5E-3 (30000)

+5E-4 (40000)
+1E-4 (10000)
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4.1. The smooth flexible cylinder

Fig. 13 shows the displacement responses in the CF and IL directions 
at 7 positions on the smooth flexible cylinder model under a uniform 
flow velocity of U = 1 m/s, with a randomly selected time duration of 3 
s. Due to the complexity of the vibration modes during the experiment, 
the corresponding modal weight functions are also more intricate. 
Therefore, the more complex LSTM model is employed. During the 
training process, different learning rates are used to train the model (as 
shown in Table 6), and the variation of the model’s loss function is 
shown in Fig. 14, with the loss function values all decreasing below 1E-4. 
The training platform and environment for all models are shown in 
Table 4.

Figs. 15 and 16 present the reconstructed displacement response and 
corresponding frequency spectrum for a smooth flexible cylinder sub
jected to a uniform flow velocity of U = 1.00 m/s. The results illustrate 
the comparison between the true displacement data, the predicted data 
from the deep modal model, and the associated error for both the CF and 
IL directions. From Fig. 15(a) and (d), it is evident that the displacement 
along the length of the flexible cylinder in both the CF and IL directions 
varies significantly, with distinct regions of high and low displacement, 
indicating that higher-order modes significantly influence the vibration. 
On the other hand, the prediction results of the deep mode model are 
highly consistent with those of the modal analysis method, both in terms 
of displacement response and the corresponding frequency spectrum (as 
shown in Figs. 15 and 16). In the CF direction, as the dominant vibra
tional mode transitions from the third to the fourth order, significant 
changes in the modal weight functions occur, leading to increased pre
diction errors. Nonetheless, the deep modal model effectively captures 
the modal competition behavior during the vibration process of the 
flexible cylinder. These results demonstrate that the proposed deep 
modal model can effectively reconstruct the displacement field of the 

smooth flexible cylinder during experiments.

4.2. The flexible cylinder with 3 or 4 control rods

Furthermore, to validate the generalization of the proposed deep 
modal model, it is applied to more complex working conditions. Fig. 17
shows the displacement responses in both the CF and IL directions at 7 
positions on the flexible cylinder model with 3 control rods (the attack 
angles are 0◦ and 20◦ respectively, as shown in Fig. 12), under a uniform 
flow velocity of U = 1 m/s, over a randomly selected time duration of 3 
s. The hyperparameter settings for model training are shown in Table 7. 
Models are also trained using different learning rates. The loss function 
descent process for the four models is illustrated in Fig. 18. The loss 
function value of all models reaches below 1E-4 within the preset 
training epochs.

Figs. 19 and 20 illustrate the VIV response and corresponding fre
quency spectrum of the flexible cylinder with 3 control rods arranged at 
angles of attack of 0◦ and 20◦ (including results obtained from modal 
analysis method and the deep modal model). From Figs. 19 and 20, it 
can be observed that the deep modal model consistently demonstrates 
excellent predictive capabilities. The vibration response of the entire 
flexible cylinder, as reconstructed by the model, shows a regular vari
ation over time. The reconstruction results (the displacement response 
and corresponding frequency spectrum are included) of the deep modal 
model are highly consistent with those of the modal analysis method.

Fig. 21 presents the displacement responses in both the CF and IL 
directions at 7 different positions on the flexible cylinder model, 
equipped with 4 control rods, with attack angles of 0◦ and 45◦ (as shown 
in Fig. 12), respectively, under a uniform flow velocity of U = 1 m/s, 
over a randomly selected time interval of 3 s. The hyperparameter set
tings used for model training are outlined in Table 8. Models are trained 
with various learning rates, and the loss function descent process for all 

Fig. 18. Loss function for the flexible cylinder with 3 control rods (U = 1.00 m/s). (a) CF direction, Attack angle 0◦; (b) IL direction, Attack angle 0◦; (c) CF direction, 
Attack angle 20◦; (d) IL direction, Attack angle 20◦.
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Fig. 19. Reconstructed displacement results for the flexible cylinder with 3 control rods (U = 1.00 m/s). (a–c) CF direction, Attack angle 0◦; (d–f) IL direction, Attack 
angle 0◦; (g–i) CF direction, Attack angle 20◦; (j–l) IL direction, Attack angle 20◦.
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Fig. 20. Frequency spectrum of reconstructed displacement response for the flexible cylinder with 3 control rods (U = 1.00 m/s). (a–c) CF direction, Attack angle 0◦; 
(d–f) IL direction, Attack angle 0◦; (g–i) CF direction, Attack angle 20◦; (j–l) IL direction, Attack angle 20◦.
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four models is depicted in Fig. 22. Notably, the loss function values for 
all models fell below 1E-4 within the predefined number of training 
epochs.

Figs. 23 and 24 shows the VIV response and corresponding frequency 
spectrum of the flexible cylinder with 4 control rods arranged at attack 
angles of 0◦ and 45◦, comparing results from the modal analysis method 
and the deep modal model. As with the 3-control rod configuration, the 
deep modal model’s predictions align closely with those from the modal 
analysis method. This demonstrates the deep modal model’s ability to 
accurately capture the dynamic behavior of the flexible cylinder and 
effectively reconstruct vibration patterns influenced by various control 
rod configurations and attack angles.

Based on the above analysis, it can be concluded that the proposed 

deep modal model is not only applicable to riser displacement recon
struction in various scenarios but also demonstrates high precision and 
generalization capability. This highlights the model’s robustness and 
accuracy in simulating complex vortex-induced vibrations.

5. Conclusions

In this paper, the deep modal model combines modal analysis with a 
long short-term memory (LSTM) network to achieve high-precision 
reconstruction of the global VIV response of flexible cylindrical struc
tures using data from sparsely placed sensors. The applicability of deep 
modal model to flexible cylinder is verified based on a numerical case 
study. Subsequently, the responses of a smooth cylinder, as well as 

Fig. 21. Training dataset for the flexible cylinder with 4 control rods (U = 1.00 m/s). (a) CF direction, Attack angle 0◦; (b) IL direction, Attack angle 0◦; (c) CF 
direction, Attack angle 45◦; (d) IL direction, Attack angle 45◦.

Table 8 
The hyperparameters specific to the model training.

Case Type Model architecture Activation function Optimizer Learning rate Initializer

CF, 0◦ FCNN 4*256 Sin Adamax 1E-4 Glorot uniform
LSTM 128 + 4*256 + 128 Tanh/Sigmoid 5E-3 (30000)

+5E-4 (40000)
+1E-4 (10000)

IL, 0◦ FCNN 4*256 Sin Adamax 1E-4 Glorot uniform
LSTM 128 + 4*256 + 128 Tanh/Sigmoid 5E-3 (30000)

+5E-4 (40000)
+1E-4 (10000)

CF, 45◦ FCNN 4*256 Sin Adamax 1E-4 Glorot uniform
LSTM 128 + 4*256 + 128 Tanh/Sigmoid 5E-3 (30000)

+5E-4 (40000)
+1E-4 (10000)

IL, 45◦ FCNN 256 Sin Adamax 1E-4 Glorot uniform
LSTM 128 + 4*256 + 128 Tanh/Sigmoid 5E-3 (30000)

+5E-4 (40000)
+1E-4 (10000)
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cylinders with 3 or 4 control rods, are reconstructed using sparse sensor 
data from 7 locations in the experiment. The main conclusions are ob
tained as follows. 

(1) A deep modal model is introduced for the reconstruction of VIV 
responses in flexible cylindrical structures using sparse sensor 
data. This method utilizes DL models to represent the modal 
shapes and modal weight functions of the displacement of a 
flexible cylinder. The pre-trained modal model enabled the 
transfer of implicit physical laws into the LSTM network, further 
enhancing the accuracy and robustness of the reconstruction 
process. Finally, sparse labeled data is used to extract the time- 
varying characteristics of modal weights at different orders. 
Under the physical constraints of the structural modes, the global 
displacement field of the flexible cylinder is reconstructed.

(2) The effectiveness of the proposed deep modal model is demon
strated through a numerical case study involving a top-tensioned 
riser. The vortex-induced vibration dynamics of the top-tensioned 
riser are modeled based on an acceleration-coupled van der Pol 
wake oscillator model and solved using the finite difference 
method and the 4-RK method. The displacement-time history of 
the entire riser is reconstructed based on the displacement-time 
history at 19 selected node positions. The results indicate that 
the constructed deep modal model performs well in the numerical 
case, with its reconstructed displacement field showing greater 
reliability compared to results from traditional DL models.

(3) The deep modal model is applied to experimental cases, where 
the global displacement field of a smooth flexible cylinder, as well 
as flexible cylinders with 3 and 4 control rods, is reconstructed 
based on 7 sparsely arranged sensor data. By transferring the pre- 
trained modal features into the LSTM model, the reconstruction 
of displacement is performed under the dual constraints of modal 

physics and sparse data. The results show that the displacement 
reconstruction (included the displacement response and corre
sponding frequency spectrum) of the proposed deep modal model 
is highly consistent with traditional modal analysis methods. The 
deep modal model accurately captures the dynamic behavior of 
the flexible cylinders and effectively reconstructs the vibration 
modes influenced by various control rod configurations and 
attack angles. Its robustness and accuracy in simulating complex 
vortex-induced vibration problems make it a powerful tool for 
monitoring large-scale civil and ocean structures.

The proposed deep modal model can be combined with more 
advanced deep learning models (such as transformer models or graph 
neural networks) to improve its predictive capability in handling more 
complex vibration modes and nonlinear behaviors. Additionally, the 
integration of multimodal data (such as strain, acceleration, and pres
sure) into the model can enhance its prediction accuracy and robustness 
in complex vibration problems, allowing for better capture of various 
dynamic behaviors in structures. One limitation of this study is that the 
model’s generalizability remains restricted, as it has primarily been 
validated on flexible cylindrical structures with vortex-induced vibra
tions. Further testing is needed on more complex fluid-structure inter
action problems or different structural types. Moreover, the introduction 
of the LSTM network increases computational complexity, which may 
present challenges for real-time applications in large-scale structures.
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