
Damage detection of civil structures based on hybrid optimization 
algorithm and combined correlation function of heterogeneous responses

Guangcai Zhang a, Chunfeng Wan a,* , Zhiyuan Yang a, Liyu Xie b , Songtao Xue b,c,**

a Key Laboratory of concrete and prestressed concrete structure of Ministry of Education, Southeast University, Nanjing, China
b Department of Disaster Mitigation for Structures, Tongji University, Shanghai 200092, China
c Department of Architecture, Tohoku Institute of Technology, Sendai, Japan

A R T I C L E  I N F O

Keywords:
Broyden-Fletcher-Goldfarb-Shanno
Combined correlation function
Damage detection
Heterogeneous responses
Hybrid optimization algorithm
Output-only method

A B S T R A C T

Accurate and robust damage detection of civil structures subjected to ambient excitations is crucial for ensuring 
safety and maintaining structural integrity. Heuristic algorithms and traditional reference point-defined corre-
lation function methods have been employed in recent years. However, most single-method optimization stra-
tegies suffer from drawbacks such as slow convergence for global search optimizers and strong reliance on the 
initial guess for local search optimizers. Additionally, selecting the optimal reference point a priori is difficult, 
and identification accuracy would be severely compromised if the selected reference point exhibits poor response 
sensitivity to damage. To overcome these limitations, this paper proposes a novel output-only damage detection 
method for civil structures based on the hybrid optimization algorithm and combined correlation function of 
heterogeneous responses. The hybrid optimization algorithm integrates the local search operator of the Broyden- 
Fletcher-Goldfarb-Shanno (BFGS) algorithm into the global search optimizer of the hybrid Jaya and differential 
evolution algorithm (HJDEA), leveraging their comprehensive exploration and good convergence capacities. A 
new objective function is formulated based on the combined correlation function among acceleration and strain, 
eliminating the need for a reference point. To demonstrate the effectiveness of the proposed method, numerical 
studies on the Guangzhou new TV tower and a complex three-dimensional space truss structure are conducted. 
Furthermore, the effect of noise level, sampling frequency, sampling duration, and number of data points are 
investigated. The results show that the proposed method based on HJDEA-BFGS algorithm and combined cor-
relation function with heterogeneous responses can achieve less than 0.4% mean error for varying damage 
scenarios and maintains robustness under noise levels up to 20%, demonstrating its reliability for real-world 
applications.

1. Introduction

During the long-term service life, continuous health monitoring and 
damage assessment on the existing civil structures are remarkably 
important to evaluate health status and predict the failure of the struc-
tures [1]. Over the past few decades, there has been a significant in-
crease in attention towards structural damage identification, such as 
digital image correlation [2], vision-based method [3], particularly 
focusing on vibration-based damage identification approaches [4–7]. 
The core principle of these methods is that structural damage would 
result in changes to its physical properties, such as mass, damping, and 

stiffness. These changes lead to detectable variations in the structure’s 
dynamic characteristics. By analyzing these dynamic responses, it is 
feasible to inversely evaluate structural damages.

The vibration-based damage identification approaches can be 
broadly categorized into two types: frequency domain methods and time 
domain methods. In frequency domain methods, the structural health 
state is assessed by minimizing the discrepancies in damage-sensitive 
features between the real structure and its finite element model 
(FEM). However, lower order modes are often insensitive to small 
damages, while higher order modes are challenging to accurately cap-
ture from the real structure due to limitations in external excitation and 
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the adverse effects of environmental variations and measurement noise. 
These challenges limit the applicability of frequency domain methods 
[8]. Instead, time domain methods generally identify structural damages 
directly using measured structural vibration signals. Some classical time 
domain methods, such as the iterative least square method [9], the dy-
namic response sensitivity-based method [10], the extend Kalman filter 
method [11], the particle filter method [12], have been proposed and 
validated to be successful in structural damage identification. Basically, 
these classical methods have solid background of mathematical theories, 
while a good initial guess of the unknown parameters and proper 
function gradient are required. Furthermore, inherent point-to-point 
search mechanism makes these methods easier to fall into the local 
optimum.

In contrast, computational intelligence approaches [13], e.g., ma-
chine learning methods [14], especially for heuristic algorithms [15,16], 
can not only avoid the abovementioned limitations, but also nicely solve 
complicated optimization problems with multi-modality, nonlinearity, 
discontinuity. In recent years, various non-classical methods, parallel 
genetic algorithms (GA) [17], tree seeds algorithm [18], grey wolf 
optimization algorithm [19], improved grasshopper optimization algo-
rithm [20], improved reptile search algorithm [21], etc., have been 
proposed and adopted due to their advantages of simplicity, flexibility 
and robustness. Therefore, it can be found from these researches that 
heuristic algorithms show promising performance in structural damage 
identification, while they still face some challenges, such as

(a) For heuristic algorithms, trial-and-error procedures are typically 
implemented to tune appropriate algorithm-specific parameters before 
tackling various optimization problems. This approach inevitably wastes 
significant computational resources. Additionally, considerable evalua-
tions of the objective function are still required even after the neigh-
borhood of the best solution is approached.

(b) Some recent progress has been made in the inverse problem of 
force reconstruction, such as regularization approaches [22–24], but 
structural damage and unknown loads may exist simultaneously. The 
unavailability of external excitation acting on civil structures, such as 
wind load, traffic load, or wave load, makes structural damage identi-
fication challenging. Developing more output-only methods to identify 
structural damages under ambient excitations using heterogeneous re-
sponses, including strains and accelerations, is appealing because it 
aligns more closely with the actual operational state of infrastructure.

To address the first challenge, several efforts have been made. Rao 
introduced a novel population-based stochastic optimization algorithm, 
named Jaya algorithm, to tackle complex optimization problems [25]. 
The fundamental principle of Jaya algorithm is that offspring move to-
wards success by approaching the best solution and avoid failure by 
moving away from the worst solution. The key advantage of Jaya al-
gorithm is that it does not require any algorithm-specific parameters, 
which significantly enhances its applicability, efficiency, and robustness 
[26]. However, as an emerging swarm intelligence algorithm, Jaya al-
gorithm may exhibit an unfavorable convergence rate due to a heavy 
reliance on local search and tend to fall into local optima because of 
excessive neglect of global search [27]. To improve Jaya algorithm, 
Belhadj et al. [28] proposed an enhanced version by introducing three 
modifications into the original Jaya scheme. Ding et al. [29] integrated 
k-means clustering, Hooke–Jeeves pattern search, and a linear popula-
tion reduction strategy into Jaya algorithm. They concluded that 
incorporating a suitable local search operator to update the best-so-far 
solution is one of the most effective and efficient approaches, which 
was also employed in some previous studies [30,31]. The Nelder–Mead 
simplex method was utilized as a local search operator to improve the 
performance of artificial bee colony algorithm [32]. The Broyden- 
Fletcher-Goldfarb-Shanno (BFGS) algorithm [33] is a gradient-based 
quasi-Newton method that guides the best-so-far solution to promising 
regions of the search space. Therefore, in this study, we propose a new 
hybrid optimization algorithm, the hybrid Jaya and differential evolu-
tion algorithm-BFGS (HJDEA-BFGS), by integrating the local search 

operator of BFGS into the global search optimizer of the HJDEA algo-
rithm to improve convergence speed and identification accuracy. The 
global search optimizer HJDEA includes a mutation pool composed of 
Jaya mutation and DE/rand/2 strategies, along with two key modifi-
cations. The first modification involves generating a more uniform 
initial population using the Hammersley sequence rather than a random 
manner. The second modification refines the best solution through Lévy 
flight search to help escape local optima. The HJDEA provides a good 
initial point quickly refined by the BFGS algorithm.

To address the second challenge, some output-only damage identi-
fication methods under unknown stationary ambient excitations have 
been developed and applied [34–36]. An auto/cross-correlation func-
tion of acceleration response-based identification method was proposed 
to identify damages in a laboratory four-story steel frame model [37]. 
Correlation functions were extended to damage identification of the 
ASCE benchmark frame structure using four different evolutionary al-
gorithms [38]. Acceleration responses can effectively monitor the health 
state at a global level, but the nature of structural damage is predomi-
nantly a local phenomenon. Consequently, low levels of damage may not 
be sufficiently reflected in global acceleration responses. In contrast, 
strain responses are more sensitive to minor damages than acceleration 
measurements, as strain gauges can capture detailed local information 
about small or minor damages more effectively. To this end, Zhang et al. 
[39] presented correlation functions of strain responses and proved their 
effectiveness in damage detection of the steel grid benchmark structure. 
Li et al. [40] utilized cross-correlation function amplitude vector of the 
dynamic strain for structural damage detection. Although strain re-
sponses have shown promising performance in detecting damages, 
considerable strain gauges are normally required. This requirement 
limits the practical application of strain response-based methods, as they 
can only collect point-to-point local information near the sensors.

Some damage identification methods based on data fusion have been 
attempted, considering the complementary characteristics of heteroge-
neous responses. For example, strain and acceleration responses have 
been applied to estimate parameters of foundation systems [41] and 
detect bolt loosening in steel frames [42]. Considering the merits of 
correlation function-based damage identification methods and data 
fusion, the correlation function among hybrid acceleration and strain 
responses was proposed [43]. It is noted that a reference point for cor-
relation functions is necessarily required in the aforementioned 
methods. Reference point plays a vital role in the accuracy and reli-
ability of damage identification results. If the selected reference point 
exhibits poor sensitivity to damage, the identification accuracy can be 
severely compromised [44]. Moreover, determining the optimal refer-
ence point a priori in real-world applications is difficult, especially for 
large-scale and complex structures, since multiple potential damages 
may exist and the variability in response sensitivity across the structure 
is high. To address these challenges, a reference point-free method based 
on the combined correlation function of heterogeneous responses is 
proposed, which can avoid misidentification of damage caused by 
inappropriate selection of the reference point.

The basic idea of this paper is to develop an output-only damage 
detection method for civil structures subjected to unknown ambient 
excitations based on the hybrid optimization algorithm and the com-
bined correlation function of heterogeneous responses. To enhance 
convergence speed and optimization performance, an efficient HJDEA- 
BFGS algorithm is proposed by integrating the local search operator of 
BFGS into the global search optimizer of HJDEA. This integration ach-
ieves a balanced approach between exploration (global search capa-
bility) and exploitation (local search capability). The high convergence 
rate and accuracy are attained with the assistance of BFGS, using the 
identified solution from HJDEA as the initial point. Additionally, a 
combined correlation function is introduced to formulate the objective 
function, eliminating the requirement for the reference point. The 
optimization capability of the proposed HJDEA-BFGS is validated using 
mathematical benchmark functions. Numerical studies on the 
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Guangzhou New TV tower and a 39-bar three-dimensional space truss 
structure under ambient excitations are conducted. Identified results 
show that unlike prior methods reliant on predefined reference points or 
idealized conditions, the proposed method achieves a noise tolerance of 
20 % and identification accuracy of less than 0.4 % mean error in the 
numerical studies on the Guangzhou new TV tower and a complex three- 
dimensional space truss structure, as validated against GA, GBABC, 
Jaya, HJDEA.

2. Identification algorithms

2.1. Hybrid Jaya and differential evolution algorithm

In this section, the hybrid Jaya and differential evolution algorithm 
(HJDEA) is proposed and elaborated. Mutation pool composed of Jaya 
and DE, and then two key modifications are introduced.

2.1.1. Mutation pool based on Jaya and DE
Jaya algorithm comprises four main steps: initialization, individual 

updating, greedy selection, and result output.
Initially, individuals are randomly generated in the predefined upper 

and lower search limits 

Xi,j = Li,j + rand(0,1) ×
(
Ui,j − Li,j

)
, i = 1,2, ...,NP; j = 1, 2, ...,Dim

(1) 

where Xi,j means the j-th variables of the i-th candidate solution; rand(0, 
1) stands for the random number taken from the range of [0, 1]; Ui,j and 
Li,j are the upper and lower search space limits; NP and Dim represent the 
population size and the number of unknown parameters, respectively.

The core idea of Jaya algorithm is that offsprings would move to-
wards the best solution meanwhile avoid the worst solution. The 
offspring Xʹ

i,j,G can be updated as follows 

Xʹ
i,j,G = Xi,j,G + rand1 ×

(
Xbest,j,G −

⃒
⃒Xi,j,G

⃒
⃒
)
− rand2 ×

(
Xworst,j,G −

⃒
⃒Xi,j,G

⃒
⃒
)

(2) 

where Xi,j,G represents the j-th variable of the i-th individual at the G- 
iteration; rand1 and rand2 stand for two random numbers within the 
range of [0, 1]; Xbest,j,G and Xworst,j,G mean the values of the j-th variable of 
the best and worst solution, respectively.

Then, greedy selection mechanism is implemented to select better 
solution using 

Xi,G+1 =

{
Xʹ

i,G Obj(Xʹ
i,G) ≤ Obj(Xi,G)

Xi,G otherwise
(3) 

where Xi,G and Xí,G are the i-th individual at the G-iteration and its 
updated value; Obj represents the value of objective function. It can be 
found from Eq. (3) that the solution with better objective function value 
will survive to next generation. Finally, the best solution and optimal 
value are output.

It is noted that Jaya algorithm update individuals with Xbest and 
Xworst . Although it can speed up the convergence rate and improve the 
local search capability, the population diversity and global search 
capability may decrease with the iterations. To this end, DE/rand/2 
mutation operation of DE algorithm is introduced as 

Vi,G+1 = Xr1,G + rand1 ×
(
Xr2,G − Xr3,G

)
+ rand2 ×

(
Xr4,G − Xr5,G

)
(4) 

where Vi,G+1 stands for the mutated individual; Xr1,G, Xr2,G, Xr3,G, Xr4,G 
and Xr5,G are randomly selected individuals from the population, 
r1 ∕= r2 ∕= r3 ∕= r4 ∕= r5 ∕= i.

Accordingly, the mutation pool, composed of the Jaya mutation and 
DE/rand/2 mutation operations, is proposed as follows 

Mutation pool=
{

Jaya mutation, if rand < 0.5
DE/rand/2 mutation operation of DE, otherwise

(5) 

In the proposed mutation pool, powerful exploitation capability of Jaya 
mutation and exploration capability of DE/rand/2 mutation are effec-
tively integrated by implementing them in a random manner. The 
strengths of both methods are combined.

2.1.2. Two modifications into HJDEA
Modification 1: Population initialization using Hammersley 

sequence.
Most of heuristic algorithms randomly generate the initial popula-

tion within the predefined search space limits. Although this approach is 
simple and easy to implement, it often results in significant instability. 
The Hammersley sequence, a widely used low-discrepancy sequence, 
can generate more uniformly distributed samples in high-dimensional 
spaces compared to pseudo-random numbers, such as random distri-
bution sequences and Latin hypercube sequences. Herein, population of 
HJDEA is initialized using Hammersley sequence. Other three methods, 
i.e., Logistics mapping, Tent mapping and Random sequence are 
compared. Fig. 1 presents the statistical results of one-dimensional dis-
tributions of 100 sample points within the [0, 1] interval generated by 
these initialization methods. It can be observed that the sample points 
generated by the Logistics mapping and Tent mapping are either too 
sparse or too concentrated in local regions. In contrast, the Hammersley 
sequence produces uniformly distributed sample points across all search 
ranges. Therefore, initializing the population with the Hammersley 
sequence ensures that the initial population uniformly covers the entire 
search space, thereby increasing population diversity and enhancing the 
optimization process.

Initial population is generated with Hammersley sequence instead of 
Eq. (1) within the search domain as follows 

Xi,j = Li,j +ψ(i, j) ×
(
Ui,j − Li,j

)
, i = 1, 2, ...,NP; j = 1, 2, ...,Dim (6) 

where ψ(i, j) stand for a sample generated by Hammersley sequence.
Modification 2: Refining the best solution by Lévy flight search.
As shown in Eq. (2), the search direction is related to the best-so-far 

solution Xbest and it guides other individuals to move toward its position, 
which plays a crucial role in the whole optimization process. However, 
when solving complex multi-peak optimization problems, the best-so-far 

Fig. 1. Statistical results of 100 sample points generated by four methods.
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solution may be trapped into local optima, leading to premature 
convergence as it attracts other individuals to the same area. To address 
this issue, Lévy flight search is introduced by performing a random walk 
around the best-so-far solution to expand the search area and escape 
from local minima. Lévy flights are characterized by a combination of 
many small steps with occasional long jumps, a feature that distin-
guishes them from other random walks.

The second modification is refining the best-so-far solution by per-
forming a random walk around it as follows 

X∗
best = Xbest + step × rand(0,1) (7) 

where X∗
best is the updated best-so-far solution; rand(0,1) is the random 

number within [0, 1];step × rand(0,1) represents the random search 

around Xbest based on Lévy flight. step size is 

step = 0.1
η

|v|1/λ (Xr − Xbest) (8) 

where Xr is a randomly selected individual except Xbest ; λ is a parameter 
that controls the tail index of the distribution taken from [0, 2]; η and ν 
are normally distributed random variables, expressed as 

η ∼ N
(
0, σ2

u
)
, v ∼ N

(
0, σ2

v
)

(9) 

where ση and σv can be calculated by 

Fig. 2. The pseudo-code of BFGS algorithm.

Fig. 3. The pseudo-code of HJDEA.
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ση =

{
Γ(1 + λ) × sin(πλ/2)

Γ
[
(1 + λ)/2] × λ × 2(λ− 1)/2

}1/λ

, σv = 1 (10) 

where Γ represents the Gamma function.

2.2. HJDEA-BFGS algorithm

2.2.1. Introduction of BFGS algorithm
The Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm is a pop-

ular gradient-based quasi-Newton method, widely used in solving un-
constrained local optimization problems, and its iteration equation is 
expressed as 

θk+1 = θk +Δθk = θk + βkdk (11) 

dk = − Yk∇ν(θk) (12) 

where θk is the solution at the k-th iteration; βk means the step length; dk 
represents the search direction; Yk stands for the Hessian inverse 
approximation; ∇ν(θk) is the gradient of objective function.

The gradient change Δyk is calculated by 

Δyk = ∇ν(θk+1) − ∇ν(θk) (13) 

The Hessian approximation in BFGS is derived by 

Yk+1 =

(

In −
ΔθkΔyT

k

ΔθT
k Δyk

)

Yk

(

In −
ΔθkΔyT

k

ΔθT
k Δyk

)T

+
ΔθkΔθT

k

ΔθT
k Δyk

(14) 

More detailed introduction about BFGS algorithm can be found in 
Ref. [45].

2.2.2. Implementation of HJDEA-BFGS algorithm
As a matter of fact, heuristic algorithms have the merits of efficient 

derivation-free mechanism, loose initial conditions, ease of imple-
mentation. However, they may still encounter issues such as slow 
convergence speed or premature convergence. To enhance the perfor-
mance of HJDEA algorithm, as suggested in Ref. [29], introducing a 
suitable local search operator to update the best-so-far solution is one of 
the most effective and efficient approaches. A significant disadvantage 
of the BFGS method is its strong reliance on the initial guess. In multi-
modal objective functions, a poor initial guess may cause the search 
process to become stuck in a local minimum. To overcome this draw-
back, utilizing a high-quality solution identified by a global optimizer, 
such as the HJDEA algorithm, as the initial guess can be beneficial. 
Therefore, this study proposes a new hybrid optimization algorithm, 
HJDEA-BFGS, by integrating the local search operator of BFGS into the 
global search optimizer of HJDEA to accelerate the convergence rate to 
the optimal solution. The proposed HJDEA-BFGS scheme initially ex-
plores the most promising search space of unknown parameters with 
HJDEA, providing a good initial point that is then quickly refined by the 
BFGS algorithm.

The pseudo-code of BFGS is presented in Fig. 2. The detailed pseudo- 
code of HJDEA algorithm is presented in Fig. 3. The process of HJDEA- 
BFGS is illustrated in Fig. 4. After every Nw iterations of the HJDEA al-
gorithm, the current best solution identified is further refined using the 
BFGS method as the initial value. Once the BFGS method reaches its 
maximum iterations Mw, the updated solution is compared with its 
initial value, and the better one is transferred back to the HJDEA algo-
rithm as the best-so-far solution. As illustrated in Fig. 4, the flowchart of 
the proposed HJDEA-BFGS algorithm demonstrates a clear structure and 
simple operation.

Fig. 4. The flowchart of the proposed HJDEA-BFGS algorithm.
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3. Combined correlation function-based damage identification

3.1. Structural damage modeling

The dynamic equation of motion for a multiple degrees of freedom 
(Dofs) structural system can be expressed as [8]

Mü(t)+Cu̇(t)+Ku(t) = Bf(t) (15) 

where u(t), u̇(t) and ü(t) represent the structural responses of displace-
ment, velocity and acceleration vectors, respectively; M, C, K mean the 
mass, damping and stiffness matrices; B denotes the mapping vector 
with the value of 1 corresponding to the force location; f(t) is the 
external ambient excitation. Herein, Rayleigh damping model is 
utilized.

A series of elemental damage vectors α = (α1, α2, ...,αi, ...αne) are 
introduced to describe local damage model as follows [46]

Kd =
∑ne

i=1
(1 − αi)Ke

i , 0 ≤ αi ≤ 1 (16) 

where Kd and Ke
i stand for the stiffness matrix of damaged structure and 

the i-th elemental stiffness matrix in healthy state, respectively; ne de-
notes the total number of elements. αi = 1 indicates the i-th element is 
totally damaged, and αi = 0 means this element is intact. Structural 
parameters to be identified are θi = 1 − αi, i = 1,2, ...,ne.

3.2. Combined correlation function of heterogenous responses

Output-only damage detection method for civil structures under 
ambient excitations based on correlation functions of acceleration re-
sponses or strain responses have been developed and employed in recent 
years, and their detailed descriptions can be found in Refs. [36–39].

The acceleration cross-correlation function Rüμϛ (τ) between the μ- th 
and ζ-th DOFs is written as [36]

Rüμϛ (τ) = E
[

ẍμ(t)ẍϛ(t − τ)
]

= Hüμϛ (θ)S (17) 

where Hüμϛ (θ) represents the convolution of the unit impulse response 
functions of acceleration, Hüμϛ (θ) =

∫+∞
0 ḧμ(t)ḧϛ(t + τ)dt, and it is 

related to unknown structural parameters; S is related to the ambient 
excitations.

If na accelerometers are installed on the structure, for the traditional 
reference point-defined method, the acceleration correlation functions 
Rüγ with measuring point γ as the reference point can be expressed as 

Rüγ =

[

Rüγ,1 ,Rüγ,2 ,Rüγ,3 , ⋅⋅⋅,Rüγ,γ , ...,Rüγ,na

]

(18) 

However, in traditional reference point-defined methods, as dis-
cussed in Refs. [37–39,43], the selection of reference point for correla-
tion functions is crucial and significantly influences the damage 
identification results. Poor response sensitivity to structural damage at 
the chosen reference point can adversely affect identification accuracy. 
In other words, the effectiveness of this method heavily relies on the 
proper selection of the reference point, presenting difficulties and 
challenges for practical applications. To deal with this problem, a new 
reference point-free method based on combined correlation function of 
acceleration responses is introduced as follows 

Rü =

[

Rü1,2 ,Rü1,3 , ⋅⋅⋅,Rü1,na ,Rü2,3 ⋅⋅⋅,Rü2,na ,Rü3,4 ⋅⋅⋅,Rüna− 1,na

]

(19) 

Accelerometers can effectively monitor the structural health state at 
a global level, while damage is typically a local phenomenon. Small or 
minor damages may not be successfully identified using acceleration 
responses alone. In contrast, strain responses are more sensitive to small 

damages and can capture local information if the damage is in the vi-
cinity of strain gauges. Therefore, strain responses are used to identify 
structural damages. The cross-correlation function Rεpq (τ) of strain re-
sponses from sensors at the locations p and q can be derived as [39]

Rεpq (τ) = E
[
εp(t)εq(t − τ)

]
= Hεpq (θ)S (20) 

where Hεpq (θ) is related to unknown structural parameters.
If ns strain gauges are installed on the structure, for the traditional 

reference point-defined method, the strain correlation functions Rεγ with 
measuring point γ as the reference point can be expressed as 

Rεγ =
[
Rεγ,1 ,Rεγ,2 ,Rεγ,3 , ⋅⋅⋅,Rεγ,γ , ...,Rεγ,ns

]
(21) 

The proposed reference point-free method based on the combined 
correlation function of strain responses is 

Rε =
[
Rε1,2 ,Rε1,3 , ⋅⋅⋅,Rε1,ns ,Rε2,3 ⋅⋅⋅,Rε2,ns ,Rε3,4 ⋅⋅⋅,Rεns− 1,ns

]
(22) 

In fact, various types of measurements are available for health 
monitoring systems installed on structures with multiple sensors. 
Therefore, acceleration and strain measurements could be utilized 
simultaneously, considering the complementary characteristics of these 
responses. Integrating both types of measurements enhances the effec-
tiveness and accuracy of structural damage identification. The correla-
tion function between acceleration response üμ(t) and strain response 
εp(t) is calculated by 

Rüμεp (τ) = E
[

üμ(t)εp(t + τ)
]

= Hüμεp (θ)S (23) 

where Hüμεp (θ) represents the convolution of the unit impulse response 
functions of acceleration and strain, Hüμεp (θ) =

∫+∞
0 ḧμ(t)εp(t + τ)dt, and 

it is related to unknown structural parameters.
If the γ-th acceleration measurement is selected as reference point, 

the correlation function between acceleration response and strain 
response can be expressed as 

Rüγ =

[

Rüγ , ü1 ,Rüγ , ü2 , ⋅⋅⋅,Rüγ , üna ,Rüγ , ε1 ,Rüγ , ε2 , ⋅⋅⋅,Rüγ , εns

]

(24) 

where na and ns stand for the number of accelerometers and strain 
gauges, respectively.

If the γ-th strain measurement is selected as reference point, the 
correlation function between acceleration response and strain response 
is 

Rεγ =
[
Rεγ , ü1 ,Rεγ , ü2 , ⋅⋅⋅,Rεγ , üna ,Rεγ , ε1 ,Rεγ , ε2 , ⋅⋅⋅,Rεγ , εns

]
(25) 

For the proposed reference point-free method, the combined corre-
lation function of heterogeneous responses is 

Rüε =
[
Rü1 , ü2 , ⋅⋅⋅,Rü1 , üna , ...,Rü1 , εns ,Rü2 , ü3 , ⋅⋅⋅,Rü2 , εns , ...,Rε1 , ε2 , ...,

Rε1 , εns , ...,Rεns− 1 , εns

] (26) 

Based on the proposed combined correlation function of heteroge-
neous responses, the objective function Obj is formulated as 

Obj =
‖Rest − Rmea‖2

‖Rmea‖2
(27) 

where Rmea and Rest are the combined correlation function among ac-
celeration and strain of measured and estimated data. Combined cor-
relation function of heterogeneous responses Rmea can be directly 
computed using Eq. (26), and Rest is inversely calculated by 
Hest

(
HT

estHest
)− 1HT

estRmea.
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4. Simulation and analysis

The performance of the proposed HJDEA-BFGS algorithm is initially 
evaluated using some representative classical benchmark functions. 
Subsequently, the effectiveness of the proposed output-only damage 
identification method for civil structures under unknown ambient ex-
citations based on the proposed HJDEA-BFGS and combined correlation 
functions is verified using a series of numerical studies on the Guangz-
hou New TV Tower and a 39-bar three-dimensional space truss struc-
ture. All analyses are implemented in MATLAB R2020a on a personal 
computer. To ensure reliable identification results, 30 independent runs 
are conducted.

4.1. Mathematical benchmark functions

In this section, four classical benchmark functions (F1, F9, F10, F11), 
as listed in Table 1, are utilized to validate the optimization capability of 

the proposed HJDEA-BFGS. Three-dimensional plots of these four 
mathematical benchmark functions are shown in Fig. 5.

The proposed HJDEA-BFGS is compared with typical heuristic al-
gorithms, namely, GA [45], DE [48], Jaya algorithm, and improved Jaya 
algorithm (I-Jaya) [27]. The common parameter settings for these al-
gorithms are: population size NP = 100, maximum iterations Gm = 500, 
termination threshold = 10-10. The adopted mutation probability and 
crossover probability are 0.2 and 0.8 for GA, 0.5 and 0.8 for DE. For 
HJDEA, Nw and Mw are set as 50 and 60, respectively. The convergence 
lines of four benchmark functions (F1, F9, F10, F11) based on GA, DE, 
Jaya, I-Jaya, and HJDEA-BFGS are presented in Fig. 6, and the total 
number of iterations required by each algorithm is listed in Table 2. It is 
evident that GA and DE encounter difficulties in solving the Rastrigin 
and Ackley functions because the objective function values are large 
beyond 500 iterations. Compared with Jaya and I-Jaya, the proposed 
HJDEA-BFGS achieves more superior convergence speed and much 
better accuracy in these four classical benchmark functions. More spe-
cifically, using the proposed hybrid optimization algorithm, only 53, 59, 
66, and 85 iterations are required for F1, F9, F10, and F11, respectively, 
which is significantly fewer than the iterations needed by GA, DE, Jaya, 
I-Jaya. These results as shown in Table 2 reveal the effectiveness and 
efficiency of the proposed method. Therefore, HJDEA-BFGS is an 
attractive and promising algorithm for diverse optimization problems, 
including applications to damage identification of civil structures.

4.2. Guangzhou New TV tower

To validate the effectiveness of the proposed method for structural 

Table 1 
Four classical benchmark functions for tests.

Number Function Name Range Dimension Type

1 F1 Sphere [-100, 
100]

30 Uni-modal, 
Separable

2 F9 Rastrigin [-5.12, 
5.12]

30 Multi-modal, 
Separable

3 F10 Ackley [–32, 32] 30 Multi-modal, 
Non-separable

4 F11 Griewank [-600, 
600]

30 Multi-modal, 
Non-separable

Fig. 5. Three-dimensional plots of four classical benchmark functions.
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damage identification, a series of numerical studies are conducted. The 
Guangzhou New TV tower, as presented in Fig. 7(a), is taken as the first 
numerical example. As a famous landmark of Guangzhou City, the 
Guangzhou New TV Tower serves multiple functions, including televi-
sion and radio transmission, sightseeing, dining, and entertainment. The 
structure has 37 floors and a total height of 610 m. To evaluate its safety 
during construction and operation, a structural health monitoring sys-
tem with over 700 muti-type sensors was implemented. Chen et al. [49]
established a full-scale 3D FEM to analyse its dynamic behaviours. This 
complex FEM consists of 122,476 elements, 84,370 nodes, and 505,164 
DoFs. However, it is impractical to directly use such a complex model for 
structural damage identification. Consequently, Ni et al. [50] further 
simplified the FEM from the full-scale model. As shown in Fig. 7(c), the 
reduced-order FEM has 37 beam elements and 38 nodes. Each node has 
5 Dofs, including lateral translational displacements in the x and y di-
rections, and rotations about the x, y, and z axes. The vertical translation 
is not considered. As a result, the total Dofs of the reduced-order FEM are 
185. The natural frequencies and modal shapes calculated from the 
simplified model closely match well with those of the full-scale nu-
merical model. Therefore, the reduced-order FEM is utilized in the 
following studies of damage identification.

White noises with a zero mean, one standard deviations, and an 
amplitude of 1000 N are applied to each node to simulate ambient 

excitations. Five accelerometers are installed on the 4th, 8th, 15th, 25th, 
and 35th floors to record the acceleration responses in the x direction. 
The sampling duration and sampling frequency are set to 1800 s and 
200 Hz. The selection of reference points and their corresponding cor-
relation functions are listed in Table 3. For the traditional reference 
point defined method, taking the acceleration of node 4 as reference 
point (Ref-Acc-4), the correlation functions are R4,4, R4,8, R4,15, R4,25, 
R4,35; Taking the measurement of node 15 as reference point (Ref-Acc- 
15), the correlation functions are R15,4, R15,8, R15,15, R15,25, R15,35; 
Taking the acceleration of node 35 as reference point (Ref-Acc-35), the 
correlation functions are R35,4, R35,8, R35,15, R35,25, R35,35. For the pro-
posed reference point-free method (Ref-Free), the combined correlation 
functions are R4,8, R4,15, R4,25, R4，35, R8,15, R8,25, R8,35, R15,25, R15,35, 
R25,35. The first 50 data points of each correlation function are selected, 
resulting in a total of 500 data points used for damage identification.

In this example, there are 37 unknown parameters to be identified 
with only 5 acceleration responses and 37 unknown excitations. The 
number of sensors is less than that of external loads. To address this 
challenging inverse problem, the proposed HJDEA-BFGS is employed 
with parameters identical to those used in classical benchmark tests. 
Assuming there is 20 % and 20 % elemental stiffness reduction at ele-
ments 16 and 23, i.e., α16 = 0.2, α23 = 0.2, the identification results 
based on HJDEA-BFGS and combined correlation function (Ref-Free) 
with 0 %, 10 %, and 20 % noise are shown in Fig. 8. It can be found that 
the damaged element 16 and element 23 are successfully located and 
quantified. The identified mean error and maximum error are 0.25 % 
and 0.84 % in the noise-free case, 0.34 % and 1.29 % in the 10 % noise 
case, 0.26 % and 0.94 % in the 20 % noise case. Thus, the proposed 
combined correlation function demonstrates good robustness to noise 
and can accurately identify the elemental stiffness damages under 
multiple unknown ambient excitations. For comparison purposes, GA 
[45], GBABC [51], Jaya, HJDEA are also used to detect damages of 
Guangzhou New TV tower. As shown in Table 4, GA, GBABC and basic 

Fig. 6. The convergence process of Sphere, Rastrigin, Ackley, Griewank functions with 30 dimensions.

Table 2 
The total number of iterations for GA, DE, Jaya, I-Jaya, HJDEA-BFGS.

Function Number of iterations

GA DE Jaya I-Jaya HJDEA-BFGS

F1 Sphere 500 459 377 168 53
F9 Rastrigin 500 500 240 157 59
F10 Ackley 500 500 329 212 66
F11 Griewank 500 484 398 160 85

G. Zhang et al.                                                                                                                                                                                                                                  Measurement 246 (2025) 116678 

8 



Jaya algorithm could not provide accurate results, with maximum errors 
exceeding 10 % in the 20 % noise case. In contrast, the performance of 
HJDEA is acceptable with less than 5 % error alarm. The proposed 
HJDEA-BFGS yields the best results with, with a maximum error of only 
1.29 %, due to the effective integration of the powerful global search 
optimizer HJDEA and the efficient local search operator BFGS.

Furthermore, the identified results using the traditional reference 
point defined method, i.e., Ref-Acc-4, Ref-Acc-15, Ref-Acc-35, are listed 
in Table 4. Obviously, Ref-Acc-4 provides the worst identification results 
with mean error and maximum error exceeding 4.9 % and 14.3 % 
respectively when contaminated with 20 % noise. Ref-Acc-15 can ach-
ieve better results than Ref-Acc-4, but the maximum errors are 6.81 %, 
7.11 %, and 8.06 % for the 0 %, 10 %, and 20 % noise cases, respectively, 
which exceed the acceptable range for false alarms to some extent. Ref- 
Acc-35 obtains the most satisfactory results among Ref-Acc-4, Ref-Acc- 
15, and Ref-Acc-35, but still performs worse than the proposed Ref-Free 

method. This study demonstrates the selection of reference points 
significantly affects the detected results. Improper selection of reference 
point may result in unaccepted false identifications, whereas the Ref- 
Free method can avoid incorrect damage identification results caused 
by an improper selection of reference point.

In summary, the favorable performance of the HJDEA-BFGS algo-
rithm in solving optimization-based damage identification for the 
Guangzhou New TV Tower implies that the proposed method is both 
effective and robust. It successfully identifies structural damages even 
with 20 % noise-contaminated output-only responses by optimizing the 
combined correlation function-based objective function. This demon-
strates the potential for structural health monitoring under various noise 
conditions.

4.3. Three-dimensional space truss structure

The accuracy and effectiveness of the proposed method are further 
verified by a numerical example of three-dimensional space truss 
structure. As shown in Fig. 9, the truss has a length of 1.0 m, a width of 
0.5 m, and a total height of 3 m. It consists of 16 nodes and 39 truss 
elements. Each bar has a circular cross-section with an outer diameter of 
20 mm and a thickness of 2 mm. Each node has three Dofs, and the 
bottom supports at nodes 1, 2, 3, and 4 are constrained. Hence, the space 
truss has a total of 36 Dofs. The material used for the three-dimensional 
truss is steel. The Young’s modulus and mass density are 2.10 × 1011N/ 
m2 and 7850 kg/m3, respectively.

A Rayleigh damping model is used with damping coefficients 
calculated from the first two modes. In order to simulate the dynamic 
behavior of the three-dimensional space truss structure under ambient 
excitations, multiple white noise excitations are applied in the x direc-
tion at nodes 5, 8, 9, 12, 13, and 16, and in the y direction at nodes 7, 8, 

Fig. 7. Guangzhou New TV Tower and its simplified finite element model.

Table 3 
Selection of reference point and their correlation functions for the Guangzhou 
New TV Tower.

Methods Name Location of 
accelerations

Correlation functions

Acceleration as 
reference point

Ref- 
Acc-4

4th (Ref), 8th, 15th, 
25th, and 35th floors

R4,4, R4,8, R4,15, R4,25, 
R4,35

Ref- 
Acc-15

4th, 8th, 15th (Ref), 
25th, and 35th floors

R15,4, R15,8, R15,15, R15,25, 
R15,35

Ref- 
Acc-35

4th, 8th, 15th, 25th, 
and 35th (Ref) floors

R35,4, R35,8, R35,15, R35,25, 
R35,35

Combined 
correlation 
function

Ref- 
Free

4th, 8th, 15th, 25th, 
and 35th floors

R4,8, R4,15, R4,25, R4，35, 
R8,15, R8,25, R8,35, R15,25, 
R15,35, R25,35
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11, 12, 15, and 16. Four accelerometers measure the acceleration re-
sponses in the x direction at nodes 6 and 9, and in the y direction at 
nodes 8 and 15, i.e., ü6(x), ü9(x), ü8(y), ü15(y). Additionally, strain 
responses from elements 2, 17, 26, and 34 are collected, i.e., ε2, ε17, ε26,

ε34. Thus, there are four acceleration responses and four strain re-
sponses in total. The sampling duration is 1800 s and the sampling 
frequency is 1000 Hz. Assuming there are 30 %, 20 %, and 10 % stiffness 
reductions in the 13th, 21th, and 30th elements, respectively, which 

means α13 = 0.3, α21 = 0.2, α30 = 0.1.

4.3.1. Comparison of reference point free and defined method
For heterogeneous responses including acceleration and strain 

measurements, damage identification results vary when either acceler-
ation response or strain response is used as the reference point in the 
reference point-defined method. Moreover, the specific acceleration or 
strain data selected as the reference point also impacts the final damage 
detection results. To address these issues, a reference point-free method 
based on the combined correlation function is proposed in Section 2.2. 
This section compares the performance of the proposed reference point- 
free method with the reference point-defined methods in terms of 
damage identification accuracy and robustness. As listed in Table 5, 
three methods are considered: acceleration as reference point (Ref-Acc), 
strain as reference point (Ref-Strain), and the combined correlation 
function (Ref-Free). For the Ref-Acc method, the acceleration response 
at node 9 in the x direction is selected as reference point, expressed as 
Ref-Acc-9(x). For the Ref-Strain method, the strain response at element 
17 is selected as reference point, expressed as Ref-Strain-17. For the Ref- 
Free method, the combined correlation functions are R6(x),9(x), R6(x),8(y), 
R6(x),15(y), R6(x),2, R6(x),17, R6(x),26, R6(x),34, R9(x),8(y), R9(x),15(y), R9(x),2, R9 

(x),17, R9(x),26, R9(x),34, R8(y),15(y), R8(y),2, R8(y),17, R8(y),26, R8(y),34, R15(y),2, 
R15(y),17, R15(y),26, R15(y),34, R2,17, R2,26, R2,34, R17,26, R17,34, R26,34. This 
method involves 6 acceleration-acceleration correlation functions, 6 
strain-strain correlation functions, and 16 acceleration-strain 

Fig. 8. Damage identification results of the Guangzhou New TV Tower using HJDEA-BFGS and Ref-free method: (a) 0% noise; (b) 10% noise; (c) 20% noise.

Table 4 
Statistical results of GA, GBABC, Jaya, HJDEA, HJDEA-BFGS algorithms.

Methods Algorithms Noise free 10 % noise 20 % noise

Mean Max Mean Max Mean Max

Ref-Free GA 5.67 28.66 5.34 32.08 5.82 30.13
GBABC 2.94 9.92 3.06 8.48 3.65 14.03
Jaya 1.83 8.19 1.65 8.51 1.76 10.36
HJDEA 0.77 3.43 1.11 4.12 1.02 4.47
HJDEA- 
BFGS

0.25 0.84 0.34 1.29 0.26 0.94

Ref-Acc-4 HJDEA- 
BFGS

5.06 14.72 5.19 16.58 4.97 14.34

Ref-Acc- 
15

HJDEA- 
BFGS

2.20 6.81 2.63 7.11 2.23 8.06

Ref-Acc- 
35

HJDEA- 
BFGS

1.26 4.50 1.09 5.44 1.17 5.06

G. Zhang et al.                                                                                                                                                                                                                                  Measurement 246 (2025) 116678 

10 



correlation functions. The first 50 data points of these 28 correlation 
functions are used to evaluate the objective function. The proposed 
hybrid optimization algorithm HJDEA-BFGS is utilized to identify 
damages in the 39-bar three-dimensional space truss structure subjected 
to multiple unknown ambient excitations. Identification results for Ref- 
Acc-9(x), Ref-Strain-17 and Ref-Free using HJDEA-BFGS are presented 
in Fig. 10 and Table 6.

As shown in Fig. 10, the identified damage extents of elements 13, 21 
and 30 are 30.95 %, 19.10 % and 2.12 % when taking the acceleration 
response of node 9(x) as the reference point (Ref-Acc-9(x)). There are 
large identification errors, nearly 8 %, at the 8th and 17th elements. 
When using the strain response from element 17 as the reference point 
(Ref-Strain-17), it is not feasible to accurately locate the damaged ele-
ments or quantify the degree of damage. In contrast, using the proposed 
combined correlation functions of heterogeneous responses (Ref-Free), 
the position and extent of the damaged elements can be successfully 
located and accurately identified with a small mean error of 0.55 % only 
and a maximum error 3.05 %. Compared with the Ref-Acc-9(x) and Ref- 
Strain-17, the proposed Ref-Free method can not only avoid incorrect 
damage identification results caused by the improper selection of a 
reference point, but also further improve the accuracy of damage 
detection since more acceleration-acceleration correlation functions, 
acceleration-strain correlation functions, and strain-strain correlation 
functions are involved in objective function evaluation. Thus, the su-
periority of the proposed Ref-Free method is reasonably validated by the 
results.

4.3.2. Comparisons with other heuristic algorithms
To further verify the performance of the proposed HJDEA-BFGS, 

comparisons with GA, GBABC, Jaya, and HJDEA are conducted. Three 
noise levels are considered to study the adverse effect of noise on the 
damage identification results. The identified errors with these five 
intelligent optimization algorithms are shown in Table 6. The maximum 
errors for the GA, GBABC, Jaya, and HJDEA algorithms are 28.66 %, 
9.92 %, 8.19 %, and 5.78 % in the noise-free case, respectively, which 
are significantly larger than the acceptable range. In contrast, the 
maximum identification error of HJDEA-BFGS is less than 1.5 % even 
under 10 % and 20 % noise conditions, demonstrating the robustness of 
the combined correlation function to noise. The proposed HJDEA-BFGS 
algorithm exhibits stronger optimization capabilities since the local 
optimizer BFGS can improve solution accuracy by refining the current 
best solution. Therefore, HJDEA-BFGS achieves better accuracy 
compared with GA, GBABC, Jaya, and HJDEA, as presented in Fig. 11
and Table 6. The simulated damages at the 13th, 21th, and 30th ele-
ments are accurately detected with only minor errors observed. These 
results demonstrate that the proposed structural damage identification 
method, based on HJDEA-BFGS and combined correlation function of 
heterogeneous responses, can accurately identify structural damage 
location and degree under unknown ambient excitations.

5. Discussions

Discussions on various conditions, such as different noise levels, 
sampling frequencies, sampling durations and number of data points, 
will inevitably require considerable computing resources, especially for 
large and complex structures, which is not conducive to efficient anal-
ysis and conclusion. Hence, to save computational time, a relatively 
simple 10-Dofs structure is used to further analyze the effects of noise 
level, sampling frequency, sampling duration, and the number of data 
points on damage identification results with the proposed approach. 
Fig. 12 presents the setup of the 10-Dofs shear-type structure [47]. The 
stiffness and mass parameters are listed in Table 7. Random excitations 
with a mean value of zero, unit standard deviation, and amplitude of 
200 N are horizontally applied to each floor. Three accelerometers are 
installed on the 1st, 5th, and 9th floors to collect horizontal acceleration 
responses. The sampling duration is 1800 s and the sampling frequency 
is 100 Hz. The combined correlation function of acceleration response R 
= [R1,5, R1,9, R5,9] is calculated. The first 50 data points of R1,5, R1,9, 
R5,9, 150 data points in total, are selected for damage identification. It is 
assumed that elements 3 and 8 have stiffness damage of 30 % and 20 %, 
respectively, i.e., α3 = 0.3, α8 = 0.2. The parameter settings of HJDEA 
used are: population size NP = 60, maximum iterations Gm = 100, Nw =

30; Mw = 20.

Fig. 9. Three-dimensional space truss structure.

Table 5 
Selection of reference point and their correlation functions for the truss 
structure.

Methods Location of 
accelerations

Location of 
strains

Correlation functions

Ref-Acc-9(x) 6(x), 9(x)(Ref), 
8(y), 15(y)

2，17， 
26，34

R9(x),6(x), R9(x),9(x), R9(x),8(y), 
R9(x),15(y), R9(x),2, R9(x),17, 
R9(x),26, R9(x),34

Ref-Strain-17 6(x), 9(x), 8(y), 
15(y)

2，17 
(Ref)， 
26，34

R17,6(x), R17,9(x), R17,8(y), 
R17,15(y), R17,2, R17,17, 
R17,26, R17,34

Combined 
correlation 
function Ref- 
Free

6(x), 9(x), 8(y), 
15(y)

2，17， 
26，34

R6(x),9(x), R6(x),8(y), R6(x),15 

(y), R6(x),2, R6(x),17, R6(x),26, 
R6(x),34, R9(x),8(y), R9(x),15(y), 
R9(x),2, R9(x),17, R9(x),26, R9 

(x),34, R8(y),15(y), R8(y),2, R8 

(y),17, R8(y),26, R8(y),34, R15 

(y),2, R15(y),17, R15(y),26, R15 

(y),34, R2,17, R2,26, R2,34, 
R17,26, R17,34, R26,34
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5.1. Effect of noise level

To account for the adverse effects of measurement noise, Gaussian 
white noise is added to the numerically obtained acceleration data [52]. 
Four noise levels, 0 %, 10 %, 20 %, and 30 %, are considered. The 
damage identification results using HJDEA-BFGS are shown in Fig. 13. 
The average errors at noise levels of 0 %, 10 %, 20 %, and 30 % are 0.28 
%, 0.33 %, 0.47 %, 0.39 %, respectively, with maximum errors of 1.04 
%, 1.25 %, 1.36 %, 1.60 %. Notably, the maximum identification error 
does not exceed 2 % even with 30 % noise, indicating that the combined 
correlation function proposed in this paper exhibits good robustness to 
noise. Fig. 14(a) shows the acceleration time history of the first five 
seconds of the fifth floor with and without measurement noise, 
demonstrating that the acceleration response is susceptible to mea-
surement noise. Fig. 14(b) shows the time history of the cross- 
correlation function R5,9 under 0 % and 20 % noise levels. It is 
observed that the curves almost overlap. The relative error (RE) and 
Pearson correlation coefficient (PCC) are RE = 1.47 % and PCC =
0.9989. These results indicate that the method based on the combined 
correlation function is insensitive to noise.

5.2. Effect of sampling frequency

The first 10 natural frequencies of the 10-Dofs frame structure are 
0.76 Hz, 1.98 Hz, 3.29 Hz, 4.47 Hz, 5.63 Hz, 6.59 Hz, 7.43 Hz, 7.98 Hz, 
8.75 Hz, and 9.25 Hz. Six different sampling frequencies, i.e., 5 Hz, 10 
Hz, 20 Hz, 50 Hz, 100 Hz, and 200 Hz, are used to study their effects on 
the identification results. Fig. 15 shows the identification errors asso-
ciated with these sampling frequencies. It can be observed that as the 
sampling frequency increases, the average identification error gradually 
decreases. When the sampling frequencies are 5 Hz and 10 Hz, the 
maximum identification error exceeds 6 %, while smaller identification 
errors are obtained when the sampling frequency is larger than 20 Hz. 
These results imply that it is difficult to obtain the response information 
of the high-order modes at relatively low sampling frequency, which is 
not conducive to the accurate identification of local damage. Therefore, 
the sampling frequency should be reasonably selected according to the 
natural frequencies of the target structure.

5.3. Effect of sampling duration

Six different sampling durations, 5 min, 10 min, 20 min, 30 min, 40 
min, and 60 min, are considered to study their effects on the identifi-
cation results. Fig. 16 shows the identification errors associated with 
different sampling times. It can be observed that the identification errors 
gradually decrease as the sampling time increases. When the sampling 
time does not exceed 20 min, the maximum identification error exceeds 
3 %. However, after the sampling time exceeds 30 min, the identification 
errors only slightly change. As shown in Table 8, the computational time 
also increases significantly with longer sampling duration. Thus, blindly 
increasing the sampling duration may not further improve identification 
accuracy but consume more computational resources. Therefore, to save 
computational costs, it is important to choose an appropriate sampling 
time within an acceptable error range.

Fig. 10. Identification results for Ref-Acc-9(x), Ref-Strain-17 and Ref-Free using HJDEA-BFGS without noise.

Table 6 
Identification errors with GA, GBABC, Jaya, HJDEA, and HJDEA-BFGS (%).

Methods Algorithm Noise free 10 % noise 20 % noise

Mean Max Mean Max Mean Max

Ref-Acc-9 
(x)

HJDEA- 
BFGS

1.54 8.30 1.63 8.46 1.70 7.61

Ref-Strain- 
17

HJDEA- 
BFGS

4.66 20.51 5.02 24.82 4.76 26.17

Ref-Free GA 5.67 28.66 5.34 32.08 5.82 30.26
GBABC 2.94 9.92 3.06 8.48 3.33 14.21
Jaya 1.83 8.19 1.65 8.51 1.71 10.58
HJDEA 1.06 5.78 0.93 5.24 1.19 5.60
HJDEA- 
BFGS

0.32 1.09 0.28 1.27 0.34 1.10
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5.4. Effect of number of data points

It is necessary to determine the number of data points using the 
combined correlation function R = [R1,5, R1,9, R5,9]. Six different 
numbers of data points, i.e., 50, 100, 150, 200, 250, and 300, are 
considered to study their impact on computational efficiency and 
identification accuracy. By the results in Fig. 17 and Table 9, the 
maximum identification errors are 1.52 % and 4.37 % for data points of 
100 and 300, with computational times of 288.6 s and 859.5 s. It can be 
observed that using more data points may not improve the accuracy of 

the results, instead, it consumes more computational resources. To 
further investigate this phenomenon, the relative errors between the 
measured combined correlation function Rmea and the estimated com-
bined correlation function Rest are analyzed. As shown in Table 9, the 
relative errors between the measured and estimated values accumulate 
as the number of data points increases, negatively impacting the accu-
racy of the identification results due to noise accumulation with more 
data points. Therefore, considering both computational efficiency and 
identification accuracy, it is necessary to choose reasonable number of 
data points.

Fig. 11. Identified results using five different heuristic algorithms and Ref-free method under 20% noise: (a) GA; (b) GBABC; (c) Jaya; (d) HJDEA; (e) HJDEA-BFGS.
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6. Conclusions

This paper proposes a novel approach for damage detection of civil 
structures subjected to ambient excitations using the HJDEA-BFGS and a 
combined correlation function of heterogeneous responses to address 

the challenges including the selection of reference point in traditional 
correlation function-based methods and the limitations of single-method 
optimization strategies. In this approach, the hybrid optimization al-
gorithm HJDEA-BFGS is developed by integrating the local search 
optimizer of BFGS into the global search optimizer of HJDEA. A new 
objective function is established based on the combined correlation 
function among hybrid acceleration and strain measurements. Some 
high-dimension classical benchmark functions are used to evaluate the 
performance of the proposed HJDEA-BFGS, comparing its results with 
those of existing heuristic algorithms. Numerical examples, including 
the Guangzhou New TV Tower and a 39-bar three-dimensional space 
truss structure subjected to ambient excitations, validate the applica-
bility and effectiveness of the proposed method. Furthermore, the effects 
of noise levels, sampling times, sampling frequencies, and the number of 
data points are discussed to facilitate the implementation of the pro-
posed method. Some conclusions can be drawn from these studies: 

(1) The proposed output-only damage identification method based 
on HJDEA-BFGS and the combined correlation function of het-
erogeneous responses can achieve less than 0.4 % mean error for 
varying damage scenarios and maintains robustness under noise 
levels up to 20 %, demonstrating its reliability for real-world 
applications.

(2) The maximum identification error of HJDEA-BFGS is less than 
1.5 % even under 10 % and 20 % noise conditions, demonstrating 
the robustness of the combined correlation function to noise. The 
hybrid strategy of HJDEA-BFGS achieves more accurate and 
robust damage identification results than GA, GBABC, Jaya, and 
HJDEA.

(3) The selection of a reference point significantly impacts the final 
identification results. Improper selection of a reference point can 
lead to false identifications. The proposed combined correlation 
function, as a reference point-free method, outperforms tradi-
tional reference point-defined methods and exhibits strong 
robustness to noise.

(4) Selecting an appropriate sampling frequency that corresponds to 
the natural frequencies of the target structure is crucial for 
accurately capturing high-order mode responses. Excessively 

Fig. 12. Numerical model of 10-Dofs frame structure.

Table 7 
Structural parameters of 10-Dofs structure.

Structural parameters Floors Values

Stiffness 1–4 5000 (kN/m)
5–8 4000 (kN/m)
9–10 3000 (kN/m)

Mass 1–5 6000 (kg)
6–10 4200 (kg)

Fig. 13. Damage identification results under different noise.
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increasing the sampling duration does not necessarily improve 
identification accuracy but increases computational costs.

Some aspects are not considered in the present paper, such as 
modeling errors, temperature variation, boundary stiffness alteration, 
and optimal sensor placement. The effectiveness of the proposed method 
is validated using numerical examples, which might not capture the full 
complexity of real-world structural conditions. Scaled model experi-
ments in the laboratory and field measurement data will be used to 
validate the method in future studies. Exploring the integration of 
additional heterogeneous data types, such as non-contact vision-based 

Fig. 14. Comparison of time histories: (a) acceleration with 0% and 20% noise; (b) correlation function with 0% and 20% noise.

Fig. 15. Identified errors with different sampling frequencies.

Fig. 16. Identified errors with different sampling durations.

Table 8 
Identified results with different sampling times (%).

Sampling 
duration (min)

Error Standard 
deviation

Calculation 
time (s)

Mean 
value

Maximum 
error

5 1.87 8.83 2.02 173.8
10 1.36 5.72 1.45 183.6
20 0.53 3.27 0.86 201.9
30 0.28 1.04 0.42 217.3
40 0.29 0.89 0.34 246.1
60 0.24 0.98 0.31 297.2

Fig. 17. Identified errors with different numbers of data points.
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displacement measurement for enhanced damage detection robustness. 
Additionally, the method will be adapted for application to other 
structural types, such as plates and trusses, to further validate its 
versatility and robustness.
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