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Abstract

To enhance the seismic resilience of historical and cultural heritage sites, protective measures were
implemented through the installation of advanced heritage protection platform facilities. A structural
health monitoring system was developed to safeguard historical relics during construction activities by
continuously monitoring the overall condition of the relics and the integrity of critical components.
Key parameters, such as settlement differences, tilt, crack width, and acceleration, were meticulously
tracked, with predefined warning and alarm thresholds established. Alerts were triggered whenever
these parameters exceeded their respective thresholds, ensuring timely interventions. To ensure the
reliability and consistency of the collected data, this study proposes an evaluation method that
integrates multi-source data fusion with statistical analysis techniques. Building on this foundation,
an unsupervised algorithm was employed to identify construction activities impacting the structural
health of the relics. The results demonstrate the effectiveness of combining multi-source data and
intelligent algorithms for reliable monitoring and early detection of risks during conservation. The
developed system offers automated, real-time assessments and can serve as a model for future heritage
protection projects. Looking forward, integrating wireless sensors and diverse data sources could
improve system accuracy, efficiency, and cost-effectiveness, further enhancing the protection of
cultural heritage.

Introduction

The conservation of cultural relics not only exemplifies reverence for and the preservation of historical culture
but also contributes positively to both social stability and economic development [ 1-3]. Monuments, as
distinctive cultural relics, serve to commemorate and document significant historical events, figures, or societal
cultures [4—7].

However, due to the absence of seismic measures and prolonged natural weathering, cultural relics exhibit
low resistance to seismic risks. Historical examples demonstrate the vulnerability of historical relics to seismic
damage [8—10]. On February 6, 2023, Gaziantep Castle,a UNESCO World Cultural Heritage site, collapsed
during the magnitude 7.8 Richter scale earthquake in Turkey. Moreover, the Ministry of Culture and Tourism
has identified over 8,000 historic structures in eleven provinces severely affected by earthquakes [11]. Similarly,
during the Ming Dynasty, a suspected moment magnitude (Mw) 8 earthquake in Shaanxi, China, caused the
collapse or fracture of 40 out of 114 stone monuments, some of which are examined in this paper [12]. These
examples highlight the urgent need to enhance the seismic resilience of cultural relics [13].

© 2025 IOP Publishing Ltd. All rights, including for text and data mining, Al training, and similar technologies, are reserved.
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Figure 1. Frontal perspective of the exhibition room prior to seismic performance enhancement.

In contemporary engineering, two widely adopted methods for improving the seismic resistance of cultural
relics are direct fixation to an external frame and the installation of isolation platforms [13, 14]. In contrast to
smaller artifacts typically showcased in compact display units, monuments with larger dimension are
structurally connected to their bases through foundations. Research indicates that monuments fortified using
the two aforementioned methods exhibit resilience against seismic forces, maintaining their upright position
during such events [15]. However, employing the direct fixation of the monument to the external frame may
result in some cracking in the connection region between the monument and its base. In contrast, the base
isolation reinforcement method enhances the monument’s direct seismic resistance by extending the vibration
period of the entire system, preventing the occurrence of cracks in the connection area between the monument
body and its base. Therefore, the installation of isolation platforms for monuments emerges as an effective
approach.

This paper focuses on monitoring efforts undertaken during the seismic functional upgrading of an
exhibition room in a historic stone monuments museum located in Xi’an, China. As the ancient capital of China
during the 13th Dynasty, Xi’an boasts a profound cultural heritage and a rich historical legacy. The museum,
with nearly a millennium of existence, houses a significant collection of stone monuments with great artistic
value. However, situated at 108.95 °E longitude and 34.27 °N latitude, Xi’an is positioned between the two
largest seismic zones globally: the Mediterranean Himalayan Seismic Belt and the Circum-Pacific Seismic Belt.
Additionally, it is on the edge of the Qinling Seismic Belt, posing unfavorable conditions for the protection of
cultural relics.

In specific terms, each monument involved in the seismic performance enhancement has approximate
dimensions of 2 m in height and 1 meter in length, with six monuments forming a group. Several groups of
monuments are interconnected by concrete frameworks, forming an elongated concrete structure, as illustrated
in figure 1. Unlike smaller relics like statues, these tall and slender monument monuments cannot be directly
hoisted for enhancement with relocation. The enhancement process involves cutting the existing foundations,
installing steel beams, and using hydraulic jacks to lift the monuments for in situ replacement of their
foundations. The necessity of cutting and lifting the monument foundation within limited space introduces
significant construction complexity. Hence, the installation of protective platform facilities inevitably imposes
forces and dynamic stimuli on the monument, introducing a certain level of safety risk during construction
activities. Furthermore, insufficient stiffness of the steel beams may lead to uneven settlement of the
monuments, leading to the safety risk of localized damage and overturning during construction activities.
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Additionally, the inherent fragility of the monuments, coupled with the aged structures of their foundations and
the complexity of subsurface conditions, introduces many unpredictable variables. Lastly, the extraordinary
value of the monuments requires minimizing risks associated with construction.

Designing a structural health monitoring system and a monitoring plan, focusing on the overall structure
and key areas, becomes an effective means of risk control [16—21]. The relocation project at the Mahavira Hall of
Jade Buddha Temple in Shanghai faced challenges such as difficulty in relocation, poor overall structural
integrity, and the potential for postural changes and risk in the Buddha statues as cultural artifacts. To ensure the
safety of the main structure during the relocation process, an automated, real-time, networked, and integrated
monitoring system was designed, providing reliable assurance for the overall translation of the main structure
[22]. Therefore, implementing health monitoring throughout the entire process of restoring ancient buildings
and cultural relics is imperative [23-25].

Monitoring data can to some extent reflect the posture of the monument, and anomalies in the monument’s
posture are likely to be manifested in the monitoring data. Therefore, the processing and analysis of monitoring
data are paramount. Upon data acquisition, the initial step involves enhancing data quality through tasks such as
filling in missing data and identifying anomalies [26]. Subsequently, a comprehensive analysis of the dataset is
conducted, including stability and reliability assessments [27]. Finally, information mining and assessment of
structural health status are conducted.

In particular, throughout the project implementation, we noted a robust positive correlation between
construction activities and monument posture. Subsequently, we endeavored to identify the construction
activities from an extensive dataset using data mining techniques. Given the advancements in machine learning,
employing sophisticated algorithms for information extraction from this data has become a focal point of
research [28—34]. Monitoring data can be effectively mined using various methods, including statistical features
[35], modal parameters [36], multi-scale analysis [37], and deep learning [38]. This study has enhanced
traditional statistical feature-based methods and, considering the specific nature of the target monitoring
project, incorporated unsupervised machine learning to classify the construction activities.

This paper presents a comprehensive overview of the structural health monitoring (SHM) system
implemented in the project, with three primary objectives: to acquire the most reliable monitoring data, issue
early warnings for potential structural risks, and analyze the structural response based on the collected data.
Leveraging the unique characteristics of this project, which involved a substantial volume of multi-source data,
the authors developed an innovative unsupervised processing approach based on data fusion, building upon
prior research [39].

This study makes significant contributions to bridging the gap between cultural heritage conservation and
modern engineering techniques. Moreover, it advances the integration of monitoring data processing with
machine learning methodologies. The findings and methodologies introduced in this work offer valuable
insights for guiding future monitoring initiatives in translocation projects and enhancing the protective
measures for key cultural relics.

Implementation of isolation replacement

The exhibition room, which has undergone seismic functional upgrading, is shaped like the letter ‘n’ and has
been artificially divided into four zones: Zone A, Zone B, Zone C, and Zone D, as shown in figure 2. Specifically,
Zones C and D each feature a set of L-shaped interlocking stone monuments, while Zones A and B comprise a set
of north-south-oriented interlocking stone monuments along with a short stone monument.

Each groups of monuments comprises the original monument, flanked by two braces, and the upcoming
installation of the new vibration isolation foundation section. Specifically, the monument encompasses the
monument body, concrete frame beams, stone foundation for the monument, and the original concrete
foundation. The brace primarily consists of the upper section of the brace and its foundation. The new vibration
isolation foundation mainly comprises two reinforced concrete foundations, the vibration isolation bearing
situated between them, and the concrete beam with a movable cover plate. Due to confidentiality concerns
regarding the actual structures, this paper focuses on the monitoring techniques and methodologies. Therefore,
only schematic diagrams are provided to illustrate the key concepts, rather than detailed depictions of the actual
structures, as shown in figure 3.

The primary objective of the seismic performance enhancement construction is to replace the original
foundation with a new vibration-isolating foundation while ensuring complete protection of the main section of
the monument. Specific monitoring and construction activities were executed successively in four zones. The
specific key processes and construction timeline are shown in figure 4 and table 1.

Prior to the seismic performance enhancement, construction simulation underwent testing using a scale
model. The crucial monitoring parameters for the construction process were ultimately defined across three
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Figure 2. The plan view of the exhibition room and its distinct zones.
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Figure 3. The cross-sectional illustration of the monument.

aspects: the overall posture, local deformation, and uneven settlement of the monument, along with the overall
tilt of the monument at all stages of construction; the detection of local cracks or deformation in key nodes
within the monument’s sensitive areas; and the dynamic response of the monument during construction
operations, encompassing velocity and acceleration measurements.

Design and deployment of monitoring system

Monitoring system
We have organized the monitoring system into five modules: displacement monitoring, inclination monitoring,
acceleration monitoring, crack monitoring, and data acquisition & cloud platform [40, 41], as shown in figure 5.
Some monitoring equipment used in the process are shown in figure 6, and the monitoring images are presented
in figure 7.

In the displacement monitoring module, following the actual measurement (two laser rangefinders were
initially installed in the first construction zone D, but construction dust significantly interfered with instrument
measurements, resulting in substantial system errors. Consequently, laser rangefinder data was not chosen for
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use), the decision was made to employ level instruments for measurement. Calibration was then supplemented
with data obtained from the total station meter.

Itis essential to recognize that a level can only measure relative displacement using the formula
S= (S — So) — (5, — Sy). Where, S represents the cumulative settlement; S; represents the current time
measurement value of the measurement point; Sy represents the initial time measurement value of the
measurement point; S; represents the current time measurement value of the datum. Sy represents the initial
time measurement value of the reference point. We also performed additional calibration and calculated the
absolute displacement of the measured points by means of the total station. Detailed information on the level
instrument and wireless inclinometer can be found in table 2.

In the inclination monitoring module, we opted for a wireless, low-power, high-precision inclinometer due
to its flexible arrangement. Additionally, a more stable wired inclinometer was selected as a supplement for some
of the points. The meaning of each angle is shown in figure 8.

The definition of positive and negative is illustrated in the figure: the x-axis is negative if above the horizontal
plane and positive if below the horizontal plane; the y-axis is negative if above the horizontal plane and positive if
below the horizontal plane; the z-axis exhibits a positive angle above the horizontal plane and a negative angle
below the horizontal plane.

Acceleration is monitored using magnetic-electric velocity (acceleration) sensors and a centralized low-
speed online monitoring system following on-site measurements for stone monument crack monitoring (real-
time monitoring by cameras does not fulfill on-site stone monument protection requirements), the digital
camera photography method has been ultimately chosen for recording. Subsequently, a crack identification
algorithm is employed to identify and monitor the expansion of cracks. Detailed information on the acceleration
monitoring module and digital camera can be found in tables 3 and 4.

The data acquisition and cloud platform module primarily involve consolidating data from the field level
instruments and inclinometers through the intelligent acquisition base station. Ultimately, all data is uploaded
to the cloud platform, as shown in figure 9. Detailed information on the intelligent acquisition base station can
be found in table 5.

Layout of sensors
As previously mentioned, the entire construction area under monitoring is subdivided into four zones: A, B, C,
and D. Different types of sensors are strategically placed in each zone and are named in the format ‘Sensor type’ -
‘Layout zone’ - ‘Number’. Here, ‘SZ’ represents a level instrument, ‘QX’ represents an inclinometer, and ‘LF’
designates the monitoring position for cracks on the monument surface. For example, ‘SZ-D-02’ signifies the
second level instrument positioned in zone D.

Displacement is primarily gauged using level instruments, supported by the total station for supplementary
monitoring. Inclination is mainly assessed through a wireless, low-power, high-precision inclinometer, with
additional wired inclinometers ensuring data integrity at specific points. The distribution across zones is as




Table 1. Construction and monitoring of key processes and moments.

Zone D

Zone C

Zone B

Zone A

Temporary protection installation for the monument

Completed by February

Installation of structural health monitoring system
Jacks Installation

Cutting of the original foundation

Removal of concrete foundations

Excavation to the bottom of the bedding

Chiseling of foundations

Rebar tying and concrete pouring

Installation of seismic isolation bearings

Remove the jacks

Sensor removal

Feb. 28th ~ Mar. 1st
Feb. 26th
Mar. 2nd ~ Mar. 4th
Mar. 3" ~ Mar. 5th
Completed by Mar. 6th
Completed by Mar. 7th
Completed by Mar. 15th
Mar. 19th
Mar. 24th
Mar. 26th

Feb. 28th ~ Mar. 2nd
Feb. 27th
Mar. 5th ~ Mar. 9th
Mar. 11th ~ Mar. 17th
Completed by Mar. 19th
Completed by Mar. 19th
Completed by Mar. 22nd
Mar. 26th
Mar. 29th

Apr. 1st~ Apr. 2nd
Apr.23™
Apr. 23" ~ Apr. 25th
Apr. 25" ~ Apr. 27th
Completed by Apr. 30th
Completed by Apr. 28th
Completed by May. 6th
May. 6th
May. 9th

May. 25th

Apr. 1st~ Apr. 2nd
Apr. 26th
Apr. 27th ~ Apr. 29th
Apr. 30th ~ Mar. 2nd
Completed by May. 3
Completed by Apr. 30th
Completed by May. 4th
May. 8th
May. 12th
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Figure 8. Schematic of the angle of each axis.

Table 2. Parameters of the level instrument and wireless inclinometer.

Precision Sensitivity Voltage Power dissipation Protection class
Level instrument 0.1 mm 0.0l mm DC5~30V <0.05W >IP67
Wireless inclinometer +0.005° <0.001° DC5V (Type-C) <0.2W >IP67

Table 3. Parameters of the acceleration monitoring module.

Centralized low-speed online monitoring system

Highest continuous sampling rate Frequency response range Operating temperature Protection class

200Hz DC~30Hz —10~50°C IP50

Magnetic-electric velocity (acceleration) sensors

Switch of gear Sensitivity Range Frequency response Operating temperature
+10% —3~+1dB

0 0.3Vm —s2 20ms 2 0.5~50Hz 0.25~100 Hz —10°C~+60°C

1 20V /ms™! 0.125ms™! 4~80Hz 1~100Hz

2 5V/m-ss~! 0.3ms™! 1~80Hz 0.5~ 100 Hz

3 0.3V/ms™! 0.6ms~! 0.5~80Hz 0.17 ~80 Hz

Table 4. Parameters of the digital camera.

Digital camera
Effective Image Maximum Range Aperture
pixels processor resolution of focus range
32500000 DIGIC8 6960 x 4640 18-135 F3.5-F5.6

mm

follows: Zone A has 7 level instruments and 7 inclinometers from north to south, Zone B has 6 of each arranged
likewise, Zone C features 7 level instruments and 4 inclinometers from east to west, and Zone D includes 7 level
instruments and 3 inclinometers from west to east. The arrangement of the level instruments and inclinometers
is shownin figures 10 and 11.

Acceleration (speed) measurements were not monitored in real time but through flexible monitoring with
real-time changes in monitoring positions during key construction processes.

For image monitoring (crack monitoring), the selected points are shown in figure 12.

Itis crucial to underscore that monitoring data should be preserved in their raw and unprocessed state.
Before analysis, the monitoring data should undergo checks, evaluations, and necessary processing, including
the elimination of abnormal data, repair of missing data, trend removal, digital filtering, and noise reduction.

By monitoring the static response and dynamic response of the structure during the displacement process
under various working conditions, displacement phases, and environmental excitation, it becomes possible to
comprehensively monitor and provide warnings for the entire process of structure displacement. Monitoring
stresses in key parts and components of the structure during the displacement stage, along with observing the
overall attitude and local uneven settlement, enables a multi-level alarm system for critical monitoring data.
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Figure 10. Installation positions of the differential level instruments.

Table 5. Parameters of the intelligent acquisition base station.

Intelligent acquisition base station

Output volt-
age and Protection
Voltage power Specification class
DCI12~ DC12/24V- 160%120%65 >IP66
30v 20W (mm)

The overall attitude, local settlement, and deformation data of the structure should be designated as
observation time points, with the initial monitoring values serving as benchmark data. Correlations should be
established with relevant data from structural safety inspections conducted prior to the shift, and attention
should be directed toward the incremental change of monitoring data relative to the initial observation values
during the monitoring phase.

Atkey time points corresponding to structural system transformations during the shifting process, several
reference time points should be set. Reference benchmark values for the observation data of the corresponding
states should be established, and incremental changes relative to different reference time points should be




I0OP Publishing Eng. Res. Express7 (2025) 015116 SXueetal

QX-D-01_ QX-D-02
[ P
L e { i —_
e . . | T m ) X-B-01
g (1 2 I MRy ey § S S 30 TRl I O U
: ‘ .
QX-A-03 ‘ ‘ QX-B-02
] e e = S o =1 e e & £ = e -
0 = e =
QX-A-04 QX-B-03
o Q D 0
QX-A-05
b || g o 5l QX-B-04
QX-A-06[0 ; Q e} 2 QX-B-05
|
!
S - B 0
QX-A-07 : QX-B-06
! O t |
Figure 11. Installation positions of the differential inclinometers.
LF-D-01 LF-D-02
o o o o o o o o o o o o o o
: - — = e ettt et e S e :
||  LF-A-02 ‘ L |
5 LED-04 | I | a
‘ |
) ~ 5 O O o5 ’|;_)'|:_|).'[|_1 O O O O O j? [
] s b -
o 3 LE-B01 | | 9
L 4 L Il AvF-B-02
Q = 8 g
LF-A-01 I
o [ ) "
L — 0—0a
Figure 12. Image monitoring (crack monitoring) positions.

analyzed in subsequent stages. Consequently, daily, weekly, and monthly reports are generated to meet the
varying needs of displacement monitoring at different stages.

Installation of sensors
During the installation process, it is imperative to secure the artifacts as securely as possible, ensuring no damage
to them, to obtain more accurate data. Specifically, level instruments and inclinometers are affixed to the top of
the monument using a hoop, with felt padding between the hoop and the monument. Accelerometers are fixed
in the measured area using cleanable rubber cement when testing is required. For points requiring crack
monitoring, a window is opened, and a foam protective layer is set up. All sensor installation methods are
compiled into a comprehensive program, submitted to the relevant management department for approval and
adoption.

Additionally, attention is given to photographic records of each point, recognizing that the installation
direction of inclinometers significantly impacts the data’s interpretation.

Setting warning and alarm values
Based on consultations with experts, relevant departments, and management units, the warning and alarm
values are detailed in table 6.
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Figure 13. Data reliability analysis of a typical moments.

Unsupervised classification of construction state

Data validation

Given the presence of multiple total station measurement points situated on both sides of the monument, data
from the level instrument, inclinometer, and total station measurements during typical time periods are
regularly selected for comparison and analysis throughout the monitoring process. This is undertaken to verify
the accuracy of the data. As an illustration, consider the data from March 18, between 8:30 and 11:30 a.m. in
Zone D, as shown in Figure 13.

Itis evident that the inclination values derived from the total station data on both sides of the monument
align closely with the data measured by the inclinometer on the top of the monument. Similarly, the settlement
values deduced from the total station data on both sides of the monument are in good agreement with the data
measured by the level meter on the top of the monument. The mutual confirmation between the level
instrument, inclinometer, and total station establishes the reliability of the data.
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Figure 14. Statistical analysis process of static data characteristics.

Table 6. Warning and alarming values in monitoring process.

Data type Warning value Alarming value Remarks

inclination 0.02° 0.05° Based on expert consultation and project guidelines

settling 0.Imm/d 0.2mm/d Daily difference, defined by management unit

differential settlement 0.2mm 0.4mm Based on adjacent station comparison, expert input

crack length (increment) 0.2mm 0.5mm Selected typical location, derived from initial measurements
acceleration 0.02g 0.05g Based on top of stone monuments, established criteria

Table 7. Data anomalies and handling methods.

Type of data anomalies Data characteristic Treatment
Abnormal datum instrument readings All data points produce the same changeof ~ Filtering with filtering algorithms
greater magnitude
Changes in the instrument due to changesin  All data points produce a small change, Analyze the amount of environmental
the external environment which soon recovers impact and subtract the abnormal
Instrumental system errors (e.g., air bubbles A change at one point is followed shortly Analyze the amount of systematic error
in water lines) by a change at all other points. effects, subtracting the anomalies
construction disruption A large change in a point location, but no Calibration of the value against total sta-
change in total station detection tion data

Exception judgment and outlier handling

In the analysis process, the initial step involves excluding outliers and retaining data that best represents the
monument’s changes. To achieve this, we have categorized various anomalies based on actual observations and
proposed corresponding processing methods for different anomalies, as shown in table 7.

Statistical analysis of static data characteristics

As itisnecessary to assess the condition of the monument on a daily basis and generate reports for submission to
the relevant departments, the following flow-based static data analysis process (shown in figure 14) has been
formulated. Real-time anomalies are identified and rejected from the data after obtaining it. The reliability of the
data is then analyzed by selecting a typical period each week, as described in the first part of this section. For the
real-time data changes, a comparison with the warning and alarm values is conducted to achieve real-time
monitoring. For the entire day’s monitoring data set, statistical indicators such as standard deviation, coefficient
of variation, and others are calculated to analyze the stability of its data within the day.

Unsupervised classification of working state
With the development of intelligent algorithms, in addition to simple limit-based judgments and some
traditional statistical algorithms, we use intelligent algorithms to analyze and evaluate the data obtained from
structural health monitoring. Common methods in existing research include prediction and warning of future
data based on RNN (or improved networks like GRU) and historical data [42], structural damage identification
based on CNN and images [43, 44], and structural comfort and safety assessment based on Bayesian networks
[45, 46]. However, most commonly used methods are supervised machine learning algorithms, which face
challenges in being overly reliant on manual labeling to construct complete data sets. Therefore, we have opted
for unsupervised algorithms to address subsequent structural health assessment problems, as shown in figure 15.
According to the actual project, the data obtained from the zone C was the most complete in all channels and
all times. Therefore, the data from zone C was chosen as an example to be processed to examine the validity of
the method. Figure 16 is a flow chart of the experiment using actual data.

12



10P Publishing

Eng. Res. Express7 (2025) 015116

SXueetal

Descriptive index selection

Data principal component identification

Process identification in construction

based on clustering

Figure 15. Unsupervised construction state recognition process diagram.

central tendency
dispersion degree
distribution
same channel

different channels

training set

test set of actual data

test set of virtual data

Table 8. Correspondence between clustering results and construction status.

Number  Temporal characteristics Data characteristics
class 1 160 Cutting the whole foundation or chiseling and removing ~ The north and south ends of the monuments have
the concrete, which does not act directly on the obvious variations, with the extreme difference ran-
monument. ging from 0.05 mm to 0.4 mm, and the central part has
more obvious variations with the extreme difference
ranging from 0.05 mm to 0.2 mm.
class 2 26 Perform foundation drilling or monument foundation The north and south ends of the monuments have more
removal for a specific point of the monument. obvious variations with extreme differences of 0.1 mm
~ 0.2 mm, and the center has obvious variations with
extreme differences of 0.15 mm ~ 0.35 mm.
class 3 63 No construction in the vicinity of the object monument ~ All monitoring locations are within 0.1 mm of the range
that has a significant impact on the monument of change.
throughout the day (day and night)
class 4 3 Construction is concentrated in the central area, where Localized extremes of 0.5 mm or more
significant changes are observed.
class 5 2 Construction is concentrated in the north side, where Localized extremes of 0.5 mm or more
significant changes are observed.
class 6 1 Construction is concentrated in the south side, where Localized extremes of 0.5 mm or more

significant changes are observed.

The level instrument datasets from 2023.4.12.0:00 to 2023.4.29.24:00 in zone C serve as the training set.
Initially, all data in the training set undergo calibration with the inclinometer and total station to acquire
corrected data. The time dimension is segmented into hourly intervals, and the relative elevation change data
between two adjacent level positions constitute different channels in the spatial dimension. For instance, the
dataset 2023.4.12 00:00 — 2023.4.12 01:00’ for the channel ‘SZ-A-02-SZ-A-01 illustrates the variations in
elevation difference between point 2 and point 1 in Zone C from 0:00 to 1:00 on April 12,2023 (given that actual
level readings are taken every five minutes, resulting in 11 data points per set). Three steps are executed on the
training set obtained from this collation.

The initial step involves the selection of descriptive indices. Data description statistics primarily encompass
three facets: trend concentration (plurality, mean, median), dispersion degree (maximum, minimum, extreme
deviation, variance, standard deviation, coefficient of variation), and distribution (kurtosis and skewness). Given
the nature of the data, the mean is chosen as a representative value for the data set trend. Through the analysis of
the inherent meaning and correlation among these representative values, a more pronounced correlation is
observed among the maximum value, minimum value, and extreme deviation, while the variance, standard
deviation, and coefficient of variation exhibit a stronger correlation. Consequently, extreme deviation and
standard deviation are chosen as the characterizing values for dispersion degree. Considering the limited data in
each data set, the data distribution is not taken into account. In summary, mean, extreme deviation, and
standard deviation are selected as the representative values for each data set. Practically, the mean reflects the
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Figure 16. The flow chart of unsupervised classification of working state.
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Figure 18. Cumulative PVE of two principal component analyses.

magnitude of change in the data over time, positively correlated with the cumulative change over that period.
The extreme deviation mirrors the maximum range of change within the time frame, and the standard deviation
indicates the degree of dispersion of the change over the temporal range. These three values capture the
indicators of interest. Following descriptive metrics statistics, each dataset is replaced with these three statistics,
providing a more explicit representation of the relationship indicators while significantly reducing the data
volume.

The second step involves the identification of data principal components(PCA). The PCA method
systematically identifies the primary directions of variation within the dataset and projects them onto a new
coordinate system. The first principal component captures the maximum variance present in the data, followed
by the second principal component, which captures the second-highest variance orthogonal to the first. This
process continues iteratively, unfolding subsequent principal components. Upon actual calculation, a robust
correlation persists among the mean, extreme deviation, and standard deviation, especially evident in datasets
with a limited sample size, where extreme deviation and standard deviation exhibit a pronounced linear
relationship, as shown in Figure 17. To address this, the three statistically descriptive values are initially
represented by their first two principal components within each set of clusters, achieving an explanatory rate
exceeding 99%, as shown in figure 18(Cumulative PAE(a)). This process results in six channels for each unit time
band, each comprising two data points. Subsequently, a principal component analysis is applied to these 12 data
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Figure 19. Clustering results when the number of clusters is different.

points, revealing that the first five principal components can adequately explain approximately 90% of the
variance, as shown in figure 18(Cumulative PAE(b)). In practical terms, the mean indicates whether these
displacement differences tend to shift in a particular direction or remain generally stable, while the variance
reflects the consistency or dispersion of these differences, revealing whether there are significant fluctuations in
displacement between points. Consequently, the first five principal components are selected to characterize the
state of the monuments in the western chamber during that specific time period.

The third step involves clustering from construction process recognition. Initially, clustering is executed
based on the data set generated in the previous step, utilizing 2, 3, 4, 5, 6, and 7clussters, respectively, as shown in
figure 19. Upon comparison with the actual data and corresponding construction scenarios, it is observed that
classification is insufficient when divided into 2, 3, 4, and 5 classes. Simultaneously, there is redundancy when
divided into 7 classes. Consequent, the clustering method with a classification of 6 classes is chosen.

Upon comparing the clustering results with the construction conditions documented in the field, it was
observed that the construction status of each category aligns more accurately with the observed features, as
shown in table 8.

The experimentsal data for the west side chamber spans from 2023.4.30.0:00 to 2023.5.21.24:00. However,
given that most of the foundation construction work in the west side chamber had concluded between
2023.4.12.0:00 and 2023.4.29.24:00, the subsequent time periods exhibited smoother trends without
misrecognition. Exceptions were noted during three time intervals in the central and northern areas related to
earth excavation before the third day of May, where significant variations occurred but remained below the
alarm threshold. To supplement Experiment 1, the algorithm generated datasets corresponding to the six types
of engineering conditions, each comprising 12 sets of data. These sets underwent clustering through the
machine learning process. Only three points were misidentified during recognition, resulting in a recognition
efficiency exceeding 95%. It’s noteworthy that the misidentified points were concentrated near the intersection
of two classes, suggesting the effectiveness of the earlier training process.

Moreover, both Experiment 1 and Experiment 2 exhibit shortcomings in the data. The data in Experiment 1
is evidently insufficient, yet it aligns more closely with the actual scenario. Conversely, the data generated by the
algorithm in Experiment 2 deviates somewhat from the actual data. This discrepancy affects the clustering
center, which does not consistently align with the midpoint of each class. However, these two experiments
complement each other, compensating for their respective shortcomings and strengthening their overall
findings, as shown in figure 20. The combined recognition efficiency exceeds 98%.

In conclusion, the unsupervised machine learning intelligent discrimination method proposed by us can be
effectively applied in engineering, complementing real-world scenarios. This approach offers valuable insights
for the advancement of intelligent engineering health monitoring.

16



10P Publishing

Eng. Res. Express7 (2025) 015116 SXueetal

o Tt class o dth class ¢ Sthclass 1st class 2nd class 3rd class 4th class
- ) : ’ 5th class » 6th class misclassification = center of clustering
(a) The result of test-1 (b) The result of test-2

Figure 20. Results of two clustering tests.

Vibration characterization and structural dynamic response in construction-focused
processes

Characterization of vibration during construction

In light of the meticulous attention required for heritage preservation efforts, the vibration excitation during key
processes necessitates thorough testing and analysis before construction commences. Three sets of control
experiments were simulated for each construction process (shown in table 9), observing vibrations on the
ground, the steel beam at the base of the monument, and the top of the monument. Among all construction
processes, the use of an electric breaker during concrete breaking generated the most significant vibration
excitation as shown in table 10. Therefore, this section focuses on the data obtained from simulating concrete
breaking with an electric breaker as an illustrative example.

The first set of experiments measured acceleration in three directions east-west, north-south, and vertical,
on the ground near the crushed concrete block (corresponding to test—1-1, test—1-2, test—1-3). Despite a slight
tremor being perceptible on the ground near the concrete block undergoing breaking, the maximum
accelerations remained below 0.02 g.

The second set of experiments gauged the dynamic response on a steel beam at the base of the monolith near
the crushed concrete block (corresponding to test—2—1, test—2-2, test—2—3). When the electric pick was
employed for the concrete breaking work, the vibration acceleration of the steel beam at the bottom of the
monument increased significantly compared to other construction processes but remained smaller than the first
group of experimental data.

The third set of experiments measured the dynamic response of the top of the monument near the crushed
concrete block (corresponding to test-3-1, test-3 — 2, test-3 — 3). Due to the lesser restraint at the top of the
monument, the acceleration in both horizontal directions exceeded that recorded when the sensor was placed
on the steel beam at the bottom of the concrete. However, it still remained below the levels observed in the first
set of data and well below the warning value.

Measurement of structural dynamic response

As previously mentioned, the structural dynamic response was not monitored in real time but rather by focusing
on key construction nodes. The following details some of the monitoring work carried out in Zone D, which was
the initial construction zone. Figure 21 shows the distribution of acceleration monitoring points in zone D.

Arrange two horizontal acceleration sensors, JSD-D—-01 and JSD-D-02, along with one vertical acceleration
sensor, JSD-D-03, on the tops of the first and second sets of monuments. The horizontal acceleration along the
short side of the monument surpasses the vertical and the horizontal acceleration along the long side but
essentially remains below 0.03m /52, which is under the preset alarming value 0f0.02 g.

Position two horizontal acceleration sensors, JSD-D-04 and JSD-D-05, along with one vertical acceleration
sensor, JSD-D-06, at the top of the middle of the first group of monuments. The cutting begins at the
intersection of the first and second monuments from west to east until the cutting of the second monument is
completed. The maximum values of east-west and vertical acceleration are approximately 0.0171/s2, while the
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Table 9. Response of broken concrete to different locations.
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Table 9. (Continued.)
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Figure 21. A part of acceleration monitoring work in zone D.

Table 10. Maximum values of acceleration at different positions when breaking concrete.
Measuring direction Groupl Group IT Group III
horizontal acceleration in the north-south direction 0.047 m/s? 0.012 m/s? 0.024 m/s?
horizontal acceleration in the east-west direction 0.096 m /s> 0.012 m/s? 0.037 m/s?
vertical direction 0.162 m/s? 0.042 m/s? 0.045 m/s?

north-south direction, along the short axis of the monument, being less constrained, results in a larger
acceleration with a maximum value of about 0.033m/s2. All these values remain below the set warning
threshold.

On the east side of Zone D, position a vertical acceleration sensor, JSD-D-07, and a horizontal acceleration
sensor, JSD-D-08, in the north-south direction, along with another vertical sensor, JSD-D-09. Between 10:38
and 11:18 a.m. on a specific day, cutting commenced from the position of JSD-D-07, encompassing all east-west
monuments in Zone D. This was accompanied by chiseling and drilling beneath the monument on the
westernmost side of Zone D. The sudden change in acceleration values during this period may be attributed to
the vibration of the steel beam at the bottom of the monument due to the construction work at the site. The
acceleration in the vertical direction of JSD-D-09 exceeds that in the vertical direction of JSD-D-07, presumed to
be aresult of cutting in the vicinity of the steel beam underneath the acceleration sensor JSD-D-09. The test
results for JSD-D—-01 to JSD—-D-09 are detailed in table 11.

Conclusions

To enhance the seismic resilience of precious historical relics, a health monitoring system, combined with multi-
source data analysis and intelligent algorithms, was employed to assess the impact of renovation projects and
ensure the safety of these artifacts during construction. This research contributes to the field by designing an
advanced structural health monitoring system tailored for large-scale artifacts, such as monuments, in the
context of functional improvement. The system integrates multiple sensors, data acquisition systems, and
management platforms to achieve automation, real-time monitoring, and network connectivity, thereby
offering comprehensive surveillance of the relics’ condition.

A key innovation of this study is the application of data fusion techniques to combine interrelated
monitoring data, enabling more reliable assessments of the artifacts’ structural health. Furthermore, intelligent
algorithms were leveraged to automatically detect construction-related impacts, providing an efficient method
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Table 11. Structural dynamic response analysis.
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Table 11. (Continued.)
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for assessing the risks associated with ongoing work. In comparison to previous studies, this approach offers a
more robust and data-driven framework for real-time structural monitoring, addressing challenges that have
been inadequately explored in earlier literature. For example, many existing systems rely on manual evaluations
and static data, whereas the integrated system in this research automates data processing and incorporates
dynamic monitoring parameters, such as tilt, settlement, and crack width, significantly improving predictive
capabilities.

The findings of this study highlight that the combination of automated monitoring and intelligent data
processing can significantly enhance the resilience of historical artifacts during renovations. The real-time
detection and early warning capabilities of the system are crucial for mitigating risks and ensuring the
preservation of cultural heritage. However, while the system proved effective in the context of this project,
further improvements could include the integration of passive and wireless sensors for cost-effectiveness and
ease of deployment. Additionally, combining static and dynamic data from diverse sources would enhance the
system’s accuracy and contribute to more precise evaluations of the artifacts” health. Future work could explore
these enhancements to further optimize the system’s capabilities and improve its applicability to a broader range
of cultural preservation projects.
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