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A B S T R A C T

A tuned viscous mass damper (TVMD) is an inerter-based damper that has been adopted in several high-rise
buildings in earthquake-prone Japan recently to protect the structures from seismic-induced vibrations. How-
ever, as a TVMD contains a mass element, it adds degrees of freedom to the controlled structure, making the
system’s eigenmodes complex. Inspired by the Rayleigh damping matrix, this study proposes a mass-
proportionally distributed TVMD (MPD-TVMD) system, which enhances the efficiency of TVMD utilization
compared to the previously proposed stiffness-proportionally distributed TVMD (SPD-TVMD) system. It is
theoretically proven in this study that when the arrangements of the TVMDs are proportional to the stiffness or
mass distribution of the primary structure, the equations of motion of a TVMD controlled shear building can be
decomposed into the eigenmodes of the uncontrolled structure. This modal principle allows structural engineers
to estimate the response of the controlled structure by understanding the modal characteristics of the uncon-
trolled system, which is highly beneficial for preliminary design decisions and the retrofitting of existing
structures. Furthermore, given that the damping properties at each story level are typically adjusted by the
number of dampers installed, it is often unrealistic in practical design to maintain strict proportionality in
damper distribution. Through numerical examples, this study demonstrates that TVMD systems with realistic
distribution patterns that are slightly different from a strictly proportional distribution can still perform as
effectively as strictly proportional systems, providing a comprehensive design basis for the application of inerter-
based damper in practical engineering.

1. Introduction

Improving passive control technology using inerters to protect
structures from damage and undesired vibrations has gained consider-
able research attention [1–7]. The resistive force generated by a gravi-
tational mass element, is proportional to the absolute acceleration,
whereas those of the damping and spring elements are proportional to
the relative velocity and displacement between the two terminals,
respectively. This renders the analogy between mechanical and elec-
tronic networks incomplete. To fill the gap in the force-current analogy
between mechanical and electronic networks, Smith [8] defined the
inerter as a mass element that generates a resistive force proportional to
the relative acceleration between two terminals.Inerter-like devices
were proposed before the terminology was proposed. Kawamata [9,10]

proposed a fluid inerter called a mass pump. Fujinami and Yamamoto
[11] and Sone et al. [12] proposed an inerter-like device using leverage
and a pendulum to improve the performance of a dynamic vibration
absorber (DVA). Okumura [13,14] developed a vibrational insulator
using a rack-and-pinion inerter. The gyro-mass examined by Saitoh [15]
is a type of inerter. Arakaki et al. [16,17] developed a device that could
enhance damping performance using a ball-screwmechanism. However,
the apparent mass produced by the ball-screw mechanism was not uti-
lized because its apparent mass amplification effect was insufficient for
controlling civil structures. Watanabe et al. [2] remodeled the ball-screw
device to achieve a large apparent mass exceeding 6000 metric tons,
which was later put into practical use in Japan [18,19]. Hwang et al.
[20] proposed a rotational inertia damper that employs the same
mechanism as the ball-screw inerter developed by Watanabe et al. To
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date, many types of inerter devices have been developed including those
using fluids [5,21,22], hydraulics [23], electromagnetic mechanisms
[24], and living hinge mechanisms [25].

In addition to the development of various inerter implementation
methods, the underlying vibration suppression mechanisms of inerter-
based dampers have also been elucidated. Furuhashi and Ishimaru
[26] demonstrated that inerters can increase the fundamental natural
period of a building structure without changing its mode shapes when
the height-wise distribution of the inerters is proportional to the hori-
zontal stiffness of the primary structure. Furthermore, they developed a
control strategy to eliminate the participation of the high modes of the
structure using a specific height-wise arrangement of inerters. Recog-
nizing the limitations of the conventional tuned mass damper (TMD) in
controlling earthquake-induced vibrations due to its reliance on a large
gravitational mass [27], Ikago et al. [1] proposed the tuned viscous mass
damper (TVMD). The TVMD uses an inerter to achieve a large apparent
mass with minimal physical mass, enhancing its effectiveness in vibra-
tion control. Expanding on this approach, Lazar et al. [4,28] introduced
the tuned inerter damper (TID), where the damping element is arranged
in parallel with a spring, contrasting with the TVMD’s configuration,
where the damping element is arranged in parallel with the inerter.
While the different configurations of TMD and TVMD impact their
installation methods, both are designed to optimize energy dissipation
through precise tuning. Based on these principles, Ikago et al. [1] also
derived a closed-form optimal design formula for a TVMD incorporated
into a single-degree-of-freedom (SDOF) structure. Consequently, Zhang
et al. [29] theoretically examined the damping enhancement effect of
inerter-based dampers, and elucidated its relationship with the response
mitigation effect.

Although simple formulae useful for practicing engineers have been
proposed for SDOF systems, their expansion to multiple-degree-of-
freedom (MDOF) systems remains challenging. Krenk and Høgsberg
[30] considered the influence of non-resonant modes and proposed a
two-step design procedure for single inerter-based dampers. In contrast,
the balancing principle for multiple distributed inerter-based dampers
still needs to be investigated [31]. Using a numerical optimization
approach, Taflanidis et al. [32] solved a multi-objective optimization
problem for the design of MDOF structures equipped with inerter-based
dampers. Wen et al. [33] synchronously optimized the parameters and
placements of tuned-inerter-based dampers using the numerical
method. Zhang et al. [34] proposed a semi-analytical method for
applying the damping enhancement principle to the design of
inerter-controlled MDOF systems. Jangid and his co-workers utilized
numerical search techniques to obtain the optimal parameters for
structures with tuned inerter-based dampers, considering the H 2 norm,
and derived relevant design formulas through curve fitting technique
[35,36]. Considering the characteristics of earthquakes and their tran-
sient effects on the design parameters of TVMD, Djerouni and his
co-workers conducted a systematic study on the numerical optimization
of these design aspects [37,38]. These studies provide valuable insights
for enhancing the control effectiveness of inerter-based dampers.

Equally important is the need for practical engineers to have access
to a straightforward damper design method that does not rely on nu-
merical algorithms, enabling more efficient preliminary design de-
cisions. A promising approach to achieve this is by arranging dampers in
a way that allows the modal characteristics of the controlled structure to
be quickly understood. Mazza F and Vulcano A [39,40] proposed a
simple yet effective ‘proportional stiffness criterion’ for arranging
additional braces and viscoelastic dampers, which led to a
displacement-based design method applicable to both steel and concrete
structures. They emphasized that because vibration mode shapes remain
practically unchanged when braces and/or viscoelastic dampers are
added, this criterion is particularly suitable for retrofitting [40]. Simi-
larly, Bruschi E et al. [41] applied the ‘proportional stiffness criterion’ to
the distribution of hysteretic dampers and introduced a streamlined
design procedure for the seismic upgrade of frame structures. Ikago et al.

[42,43] proposed a response approximation method for MDOF systems
containing TVMDs, based on the assumption that uncontrolled mode
shapes provide a good approximation of controlled mode shapes when
the height-wise TVMD distribution is close to the stiffness distribution of
the primary structure. Numerical case studies [34,42–45] have sug-
gested that well-designed TVMDs incorporated into a building structure
practically preserve uncontrolled modes, validating the response
approximation method. However, the scope of these studies on
inerter-based device arrangements is limited to their installation be-
tween adjacent floors, and they do not provide a clear theoretical basis
for approximating the mode shapes of TVMD controlled shear buildings
using uncontrolled mode shapes. Given the promising application of
TVMDs for complex structures, the easy-to-understand design principle
and installation criterion is required for the inerter-based control tech-
nology in practical engineering.

Inspired by the physical implementation of the Rayleigh damping
matrix [46–48], this study identifies a novel proportional distribution
form for installing TVMDs between floors and the ground, namely the
mass-proportionally distributed TVMD (MPD-TVMD). Along with the
previously studied stiffness-proportionally distributed TVMD
(SPD-TVMD), this research aims to establish a comprehensive distribu-
tion pattern and corresponding modal principles for TVMDs in
multi-degree-of-freedom (MDOF) structures. Initially, the governing
equations, H ∞ optimal design method, and eigenvalue analysis for
SDOF structures containing a TVMD were reviewed. Following this,
methods for implementing stiffness- and mass-proportional damping
systems using TVMDs were introduced, along with unified governing
equations. The modal participation vectors of MDOF systems controlled
by these TVMDs were then constructed to explore the relationship be-
tween the participation mode vectors of the uncontrolled and TVMD
controlled structures. Finally, analytical examples were employed to
validate the modal principles of SPD-TVMD and MPD-TVMD systems.
The impact of deviations from the ideal distribution patterns due to
practical arrangement issues, as well as the efficiency of SPD- and
MPD-TVMD in utilizing TVMDs, were also thoroughly discussed.

2. SDOF structures containing a TVMD

This section reviews the equations of motion for a SDOF structures
containing a TVMD [1] and the H ∞ optimal design method [49],
providing straightforward design formulas for the proportionally
distributed TVMDs in the following sections. Through eigenvalue anal-
ysis of SDOF structures incorporating a TVMD, this section defines the
equations for the complex mode vectors in TVMD controlled SDOF
structures, thereby establishing a foundational basis for the theoretical
exploration in Section 3 of the relationship between the participation
mode vectors of uncontrolled and TVMD controlled MDOF structures.

2.1. Equations of motion and H ∞ optimal design

The incorporation of a TVMD into an SDOF structure adds one DOF
yielding a 2-DOF system, as shown in Fig. 1(a). The equations of motion
of the 2-DOF system subjected to ground acceleration ẍ0 can be
expressed as follows:

M̂
˙
x̂
.

+ Ĉ ˙̂x + K̂ x̂ = − M̂rẍ0 (1)

where,

M̂ =

[
m 0
0 md

]

, Ĉ =

[
c 0
0 cd

]

, K̂ =

[
k+ kb − kb
− kb kb

]

, x̂ =

{
x
xd

}

, r

=

{
1
0

}

. (2)

x and xd are the displacements of the primary system and the inerter,
respectively. m, c, and k denote the mass, damping coefficient, and
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stiffness of the primary system, respectively. md, cd, and kb denote the
apparent mass, supporting spring stiffness, and damping coefficient of
the TVMD, respectively.

Dividing both sides of Eq. (1) by m yields:

ẍ+ 2hω0ẋ+ (1+ η)ω2
0x − ηω2

0xd = − ẍ0
μẍd + 2μβhdω0ẋd − ηω2

0x+ ηω2
0xd = 0

(3)

where,

μ =
md

m
, ω0 =

̅̅̅̅
k
m

√

, ωd =

̅̅̅̅̅̅

kb
md

√

, h =
c

2
̅̅̅̅̅̅̅
mk

√ , hd =
cd

2
̅̅̅̅̅̅̅̅̅̅̅
mdkb

√ , β =
ωd

ω0
, η

=
kb
k

(4)

As illustrated in Fig. 1(b), considering the goal to minimize the peak
of the displacement amplification factor of a SDOF system containing a
TVMD, namely through the H ∞ optimization in the frequency domain,
Saito et al. [49] derived the following closed-form design formulas:

βo =
1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − 4μ

√

2μ , hod =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

3(1 −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − 4μ

√
)

√

4
, ηo = μ(βo)

2 (5)

where the superscript “o” denotes the optimum design.
By substituting the optimal solutions βo, hod and ηo from Eq. (5) into

Eq. (4), the equations for the supporting spring stiffness and damping
coefficient of the TVMD are obtained in terms of the apparent mass of
the TVMD:

cd = 2βohodω0md, kd = (βo)
2ω0

2md (6)

Hence, the correlation between the mass ratio μ and the added
damping coefficient of the target mode resulting from the installation of
a TVMD can be concluded in Fig. 1(c). For example, a TVMDwith a mass
ratio μ = 0.1, when installed in a damped SDOF structure, increases the
damping coefficient of the targeted mode from an inherent damping
value of 0.02 to a damped condition of 0.114.

2.2. Eigenvalue analysis of SDOF structure containing TVMD

The second-order differential equation, Eq. (1), is reduced to a first-
order differential equation as follows:

Aż+Bz = Awẍ0 (7)

where

z =
{

˙̂x
x̂

}

,A =

[
O M̂
M̂ Ĉ

]

,B =

[
− M̂ O
O K̂

]

,w =

{
r
0

}

(8)

The characteristic equation for the 2-DOF system is

|λA+B| = 0 (9)

Provided that this non-classically damped system is underdamped,
Eq. (9) yields two pairs of complex conjugate eigenvalues λℓ, λ∗ℓ, (ℓ = 1,
2) and the corresponding eigenvectors can be expressed as ϕℓ =

{
ϕℓ, ϕd,ℓ

}T
, ϕ∗

ℓ =
{

ϕ∗
ℓ, ϕ∗

d,ℓ

}T
, where ()* denotes the complex conju-

gate. Thus, based on the definition of eigenvalues for a non-classically
damped system, substituting x = ϕℓeλℓ t , xd = ϕd,ℓeλℓ t and x = ϕ∗

ℓeλ∗ℓ t , xd =

ϕ∗
d,ℓe

λ∗ℓ t into Eq. (3) yields the following equations for (ℓ = 1,2):

λℓ
2ϕℓ + 2hω0λℓϕℓ + (1+ ηo)ω2

0ϕℓ − ηoω2
0ϕd,ℓ = 0

μλℓ
2ϕd,ℓ + 2μβohodω0λℓϕd,ℓ − ηoω2

0ϕℓ + ηoω2
0ϕd,ℓ = 0

(10)

λ∗2ℓ ϕ∗
ℓ + 2hω0λ∗ℓϕ∗

ℓ + (1+ ηo)ω2
0ϕ∗

ℓ − ηoω2
0ϕ∗

d,ℓ = 0
μλ∗2ℓ ϕ∗

d,ℓ + 2μβohodω0λ∗2ℓ ϕ∗
d,ℓ − ηoω2

0ϕ∗
ℓ + ηoω2

0ϕ∗
d,ℓ = 0

(11)

It is worth noting that, despite their relative complexity, Eqs. (10)
and (11) represent the same characteristic equation for the 2-DOF sys-
tem as Eq. (9). These equations can also be directly used to solve for the
complex conjugate eigenvalues λℓ, λ∗ℓ, (ℓ = 1, 2) and the corresponding
eigenvectors [50].

Let υℓ and υ∗ℓ denote participation factors of ϕℓ and ϕ∗
ℓ, the following

relationship holds:
∑2

l =1

(
υl ϕl + υ∗

l ϕ∗
l

)
= r (12)

υl =
mϕl

mϕ2
l +mdϕ2

d,l
, υ∗

l =
mϕ∗

l

mϕ∗2
l +mdϕ∗2

d,l
(13)

3. MDOF shear buildings containing proportionally distributed
TVMDs

Despite the emergence of various optimization methods to enhance
the vibration control efficiency of TVMDs, the addition of mass elements
in a TVMD increases the degrees of freedom in the controlled structure,
complicating the system’s characteristics for engineers to manage.

Fig. 1. Single-degree-of-freedom (SDOF) structure controlled by tuned viscous mass damper (TVMD): (a) Schematic of an uncontrolled SDOF structure and its
configuration after TVMD installation. (b) H ∞ optimization concept, illustrating the minimization of peak displacement amplification factor through fixed points on
the controlled structure’s response curves. (c) Enhancement of the damping coefficient through TVMD installation, demonstrating increased damping effect with
higher mass ratio μ.
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Therefore, finding a reasonable distribution to simplify this complexity
is desirable. In this section, two types of proportionally distributed
TVMDs, with their installation methods illustrated in Fig. 2, are exam-
ined. The apparent masses of the TVMDs are proportionally distributed
according to either the primary stiffness or mass, referred to as stiffness-
proportionally distributed TVMD (SPD-TVMD) and mass-proportionally
distributed TVMD (MPD-TVMD), respectively. First, a transfer matrix is
employed to unify the governing equations of these TVMD controlled
systems. Then, the modal participation vectors of MDOF systems
controlled by these TVMDs are constructed to explore the unique modal
principles arising from these distribution patterns.

3.1. Equations of motion

The mass and stiffness of the j-th story of the primary structure are
denoted as mj and kj. The displacement of the j-th story relative to the
ground is denoted by kj. The equation of motion of the uncontrolled
structure can be expressed as follows:

MPẍ+CPẋ+KPx = − MPrẍ0 (14)

where

x = {x1, x2,…, xn}
T
, r = {1,1,…,1}T (15)

MP = diag(m1,m2,…,mn) (16)

K0 = diag(k1, k2,…, kn) (17)

KP = TTK0T (18)

T is the n × n ordinate transformation matrix that transforms the
relative displacements into interstory drifts.

T =

⎡

⎢
⎢
⎢
⎢
⎣

1 0 ⋯ 0
− 1 1
0 ⋱ ⋱ ⋱ ⋮
⋮ − 1 1 0
0 ⋯ 0 − 1 1

⎤

⎥
⎥
⎥
⎥
⎦

(19)

Hence, the equation of motion of the system shown in Fig. 2 can be
expressed as follows [43]:

M̃¨̃x+ C̃ ˙̃x+ K̃x̃ = − M̃r̃ẍ0 (20)

where M̃, C̃, and K̃ are the mass, damping, and stiffness matrices of the
MDOF shear building containing distributed TVMDs, respectively.

x̃ =

{
x
xd

}

, M̃ =

[
MP 0
0 MD

]

, C̃ =

[
CP 0
0 CD

]

, K̃

=

[
KP + KB11 KB12

KB21 KB22

]

(21)

MD = diag
(
md,1,md,2,…,md,n

)
(22)

CD = diag
(
cd,1, cd,2,…, cd,n

)
(23)

KB = diag
(
kb,1, kb,2,…, kb,n

)
(24)

KB11 = TT
cKBTc, KB12 = − TT

cKB, KB21 = KT
B12, KB22 = KB (25)

r̃ =
{
rT ,0, 0,…,0

}T (26)

xd = {xd,1, xd,2,…, xd,n}T denote the relative displacement between
the two terminals of the inerters. md,j, cd,j, kb,j represent the apparent
mass, damping coefficient, and tuning spring stiffness of the TVMD
corresponding to the j-th story, respectively.

To ensure that the uncontrolled structure decouples into indepen-
dent equations of motion while maintaining reasonable damping char-
acteristics within a certain range, the dampingmatrix is assumed to be of
Rayleigh type, which is a linear combination of the mass and stiffness
matrices:

CP = αMMP +αKKP (27)

where, αM and αK denote the mass-proportional and stiffness-
proportional damping coefficient, respectively. Tc is the n × n coordi-
nate transformation matrix that transforms the relative displacements of
the primary structure into deformations of the TVMDs.

In the case of interstory-installed TVMDs (Fig. 2(a)), of which SPD-
TVMD is a special case, Tc can be expressed as

Fig. 2. Two TVMD controlled multiple-degree-of-freedom (MDOF) Systems: (a) Interstory-installed TVMDs. (b) Grounded-installed TVMDs.
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Tc =

⎡

⎢
⎢
⎢
⎢
⎣

1 0 ⋯ 0
− 1 1
0 ⋱ ⋱ ⋱ ⋮
⋮ − 1 1 0
0 ⋯ 0 − 1 1

⎤

⎥
⎥
⎥
⎥
⎦
= T (28)

When TVMDs are installed between the floor and ground, as shown
in Fig. 2(b), of which MPD-TVMD is a special case, Tc is the identity
matrix of size n.

Tc = diag(1,1,…,1) (29)

For SPD-TVMD system, combining with the Eq. (6), the following
equation holds for interstory-installed TVMDs when all TVMDs are
tuned to the first mode:

md,j = αkj (30)

cd,j = 2βohodω1md,j = 2αβohodω1kj (31)

kd,j = (βo)
2ω1

2md,j = α(βo)
2ω1

2kj (32)

where, α is the scaling factor, and ω1 is the first fundamental angular
frequency of the uncontrolled structure.

Then,

MD = αK0 (33)

CD = 2βohodω1MD = 2αβohodω1K0 (34)

KB = (βoω1)
2MD = α(βoω1)

2K0 (35)

KB11 = TTKBT = α(βoω1)
2KP (36)

Similarly, for MPD-TVMD system, combining with the Eq. (6), the
following equation holds when TVMDs are installed between the floor
and ground and all TVMDs are tuned to the first mode:

md,j = αmj (37)

cd,j = 2βohodω1md,j = 2αβohodω1mj (38)

kd,j = (βo)
2ω1

2md,j = α(βo)
2ω1

2mj (39)

Then,

MD = αMP (40)

CD = 2βohodω1MD = 2αβohodω1MP (41)

KB = (βoω1)
2MD = α(βoω1)

2MP (42)

KB11 = KB = α(βoω1)
2MP (43)

3.2. Theoretical proof of modal principles

For typical building structures, their eigen-vectors are linearly in-
dependent [50]. Consequently, an arbitrary displacement vector of a
n-DOF primary structure, x can be expressed by a linear combination of
the eigen-vectors of the uncontrolled primary system uj (j = 1…n) [51]:

x =
∑n

j=1
ξjuj (44)

where ξj denotes the j-th modal coordinate of the primary system.
Note that the matrix Tc is invertible, vectors Tcuj (j = 1…n) are lin-

early independent as well. Consequently, an arbitrary vector of the
relative displacements between the two terminals of the inerters xd can
be expressed by a linear combination of Tcuj (j = 1…n) [51]:

xd =
∑n

j=1
ξd,jTcuj (45)

where ξd, j is the j-th modal coordinate of the inerter displacement.
From the orthogonality of the mode vectors of the undamped pri-

mary structure, if r ∕= s, then it follows that

ur
TMPus = 0 (46)

ur
TKPus = 0 (47)

ur
TCpus = 0 (48)

Hence, Eqs. (33)-(35) ensure the following orthogonality relation-
ship for SPD-TVMD if r ∕= s:

ur
TTT

cMDTcus = αur
TTTK0Tus = αur

TKPus = 0 (49)

ur
TTT

cCDTcus =
(
2αβohodω1

)
urTTTK0Tus =

(
2αβohodω1

)
urTKPus = 0

(50)

ur
TTT

cKBTcus = α(βoω1)
2ur

TTTK0Tus = α(βoω1)
2ur

TKPus = 0 (51)

Similarly, Eqs. (40)-(42) ensure the following orthogonality rela-
tionship for the MPD-TVMD if r ∕= s:

ur
TTT

cMDTcus = αur
TMpus = 0 (52)

ur
TTT

cCDTcus =
(
2αβohodω1

)
urTMpus = 0 (53)

ur
TTT

cKBTcus = α(βoω1)
2ur

TMpus = 0 (54)

Thus, left-multiplying {ukT, ukTTc
T} to Eq. (20) and substituting Eqs.

(44)-(54) yield,

Mkξ̈k +Ckξ̇k +Kkξk = − νkMkrẍ0 (55)

where

ξk =
{

ξk, ξd,k
}T (56)

Mk =

[
Mp,k 0
0 Md,k

]

(57)

Ck =

[
Cp,k 0
0 Cd,k

]

(58)

Kk =

[
Kp,k + Kb,k − Kb,k

− Kb,k Kb,k

]

(59)

νk =
ukTMPr
Mp,k

(60)

Mp,k = ukTMPuk, Kp,k = uk
TKPuk, Cp,k = uk

TCPuk (61)

Md,k = uk
TTT

cMDTcuk,Kb,k = uk
TTT

cKBTcuk,Cd,k = uk
TTT

cCDTcuk (62)

Note that Mp,k, Kp,k, Cp,k represent the generalized mass, stiffness,
and inherent damping coefficients of the k-th mode of the primary sys-
tem, respectively. Similarly, Md,k, Kb,k, and Cd,k are the generalized
apparent mass, supporting spring stiffness, and damping coefficient of
the secondary system (TVMDs) for the k-th mode, respectively.

Eq. (55) represents the k-th equivalent 2-DOF system reduced from
Eq. (20), proving that the equations of motion of an MDOF structure
controlled by SPD-TVMD and MPD-TVMD can be decomposed using the
original modes of an undamped primary structure. When the target
mode is the first mode, the ratio of the generalized secondary mass to the
first-order generalized primary mass is
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μ =
Md,1

Mp,1
=

{
αω1

2 SPD − TVMD
α MPD − TVMD (63)

Let λk
ℓ and λk∗

ℓ denote the complex conjugate pair of eigenvalues, and

ϕk
ℓ =

{
ϕk

ℓ,ϕ
k
d,ℓ

}T
, ϕk∗

ℓ =
{

ϕk∗
ℓ , ϕk∗

d,ℓ

}T
denote the complex conjugate pair

of eigenmodes for the equivalent 2-DOF system stemming from the k-th
uncontrolled system, controlled by the Eq. (55). Then, 2 n specific
conjugate pairs of values and vectors can be constructed as follows:

λ̃r = λkℓ
λ̃
∗

r = λk∗
ℓ

ũr =

⎧
⎨

⎩

ϕk
ℓuk

ϕk
d,ℓTcuk

⎫
⎬

⎭

ũ∗r =

⎧
⎨

⎩

ϕk∗
ℓ uk

ϕk∗
d,ℓTcuk

⎫
⎬

⎭

(64)

where k = 1,2,…,n, ℓ = 1,2, r = n(ℓ − 1) + k.

Substituting Eqs. (28), (33)-(36), and x̃ = ũreλ̃r t , ũ∗r eλ̃
∗

r t into Eq. (20)
and setting ẍ0 = 0, we obtain the following result for SPD-TVMD:
{

λ̃r
2
ϕk

ℓ + 2hkωkλ̃rϕk
ℓ + (1+ ηo)ωk

2ϕk
ℓ − ηoωk

2ϕk
d,ℓ

}
uk

TMPukeλ̃r t = 0
{

μλ̃r
2
ϕk
d,ℓ + 2μβohodω1λ̃rϕk

d,ℓ − ηoω1
2ϕk

ℓ + ηoω1
2ϕk

d,ℓ

}
uk

TKpukeλ̃r t = 0

(65)
{

λ̃
∗2
r ϕk∗

ℓ + 2hkωkλ̃r
∗
ϕk∗

ℓ + (1+ ηo)ωk
2ϕk∗

ℓ − ηoωk
2ϕk∗

d,ℓ

}
uk

TMPukeλ̃
∗

r t = 0
{

μλ̃
2
r ϕk∗

d,ℓ + 2μβohodω1λ̃
∗

rϕ
k∗
d,ℓ − ηoω1

2ϕk∗
ℓ + ηoω1

2ϕk∗
d,ℓ

}
uk

TKpukeλ̃
∗

r t = 0

(66)

Substituting Eqs. (29), (40)-(42), and x̃ = ũreλ̃r t , ũr
∗eλ̃

∗

r t into Eq. (20)
and setting ẍ0 = 0, we obtain the following result for MPD-TVMD:
{

λ̃r
2
ϕk

ℓ + 2hkωkλ̃rϕk
ℓ +

(
ωk

2 + ηoω1
2)ϕk

ℓ − ηoω1
2ϕk

d,ℓ

}
uk

TMPukeλ̃r t = 0
{

μλ̃r
2
ϕk
d,ℓ + 2μβohodω1λ̃rϕk

d,ℓ − ηoω1
2ϕk

ℓ + ηoω1
2ϕk

d,ℓ

}
uk

TMPukeλ̃r t = 0

(67)
{

λ̃
∗2
r ϕk

ℓ + 2hkωkλ̃
∗

rϕ
k∗
ℓ +

(
ωk

2 + ηoω1
2)ϕk∗

ℓ − ηoω1
2ϕk∗

d,ℓ

}
uk

TMPukeλ̃
∗

r t = 0
{

μλ̃
∗2
r ϕk∗

d,ℓ + 2μβohodω1λ̃
∗

r ϕ
k∗
d,ℓ − ηoω1

2ϕk∗
ℓ + ηoω1

2ϕk∗
d,ℓ

}
uk

TMPukeλ̃
∗

r t = 0

(68)

where, ωk is the k-th angular frequency of the uncontrolled structure.

hk =
1
2

(

αKωk +
αM

ωk

)

(69)

It can be observed that, since ukTMpuk ∕= 0 and ukTKpuk ∕= 0, Eqs. (65)-
(68) match those of the characteristic equation of the equivalent 2-DOF
system controlled by the Eq. (55). According to the definitions of λk

ℓ, λk∗
ℓ ,

and ϕk
ℓ =

{
ϕk

ℓ,ϕ
k
d,ℓ

}T
, ϕk∗

ℓ =
{

ϕk∗
ℓ , ϕk∗

d,ℓ

}T
, it can be concluded that Eqs.

(65)-(68) are always valid. Thus, the 2 n specific conjugate pairs of
values and vectors defined by Equation (70) are indeed the eigenvalues
and eigenvectors of the TVMD controlled system. By comparing the
primary structure’s modal vector component in the controlled structure
from Equation (71) with the modal vector of the uncontrolled structure,
it becomes evident that the modal vector of the primary structure re-
mains unchanged after the installation of SPD- or MPD-TVMDs. This
modal principle can be referred to as the mode-preserving characteristic.

Hence, the r-th fundamental angular frequency ω̃r and damping ratio
h̃r for the TVMD controlled system can be obtained as follows:

ω̃r = |̃λr| = |̃λr
∗
| (72)

h̃r = −
Re[̃λr]

|̃λr|
= −

Re[̃λr
∗
]

|̃λr
∗
|

(73)

Specifically, corresponding to the target mode of the uncontrolled
structure (k = 1,ℓ = 1,2), Eqs. (65)-(68) are consistent with Eqs. (10)-
(11). This indicates that the impacts of the MPD-TVMD and SPD-TVMD
systems on the target modal response of MDOF structures align with
their effects on a corresponding SDOF structure, including the extent to
which they alter the angular frequency and increase the damping ratio.

For other modes (k∕= 1), their eigenvalues function derived from Eqs.
(65)-(68) can be approximated as follows:

SPD − TVMD :

{(
λ̃r
ωk

)2

+2hk
λ̃r
ωk

+(1+ηo)
}{

μ
(

λ̃r
ωk

)2
+2μβohod

ω1

ωk

(
λ̃r

ωk

)}

=0
(74)

MPD − TVMD :

{(
λ̃r
ωk

)2

+2hk
λ̃r

ωk
+1

}{

μ
(

λ̃r
ωk

)2

+2μβohod
ω1

ωk

(
λ̃r
ωk

)}

=0

(75)

In this derivation, it was assumed that the natural frequencies of the
structure are well-separated, i.e., (ω1/ωk)

2→0. The two sets of solutions
for Eqs. (74) and (75) correspond to the eigenvalues of the uncontrolled
structure and the intrinsic eigenvalues of the TVMD device, respectively.
This indicates that for other modes (k∕=1), both SPD-TVMD and MPD-
TVMD have minimal impact on their frequencies and damping coeffi-
cient of the uncontrolled structure.

The participation factors of TVMD controlled systems ν̃r and ν̃r∗ can
be obtained:

ν̃r =
ũT
r M̃r̃

ũT
r M̃ũr

= νk
ℓνk

ν̃∗

r =
ũ∗Tr M̃r̃
ũ∗Tr M̃ũ∗r

= νk∗
ℓ νk

,

⎧
⎨

⎩

k = 1,2,…, n
ℓ = 1,2
r = n(ℓ − 1) + k

(76)

where νkℓ and νk∗ℓ are the participation factors of the reduced 2-DOF
system derived from the uncontrolled primary k-th mode are:

νk
l =

{
ϕk

l

}T
Mkr

{
ϕk

l

}T
Mkϕk

l

νk∗
l =

{
ϕk∗

l

}T
Mkr

{
ϕk∗

l

}T
Mkϕk∗

l

(77)

This implies that ν̃r and ν̃∗

r can be obtained by combining the
participation factors of the uncontrolled primary structure νk and those
of the reduced 2-DOF system νk

ℓ and νk∗
ℓ . The following relationship

holds.

∑2n

r=1

(

ν̃rũr + ν̃∗

r ũ
∗

r

)

=
∑n

k=1

{

νk

∑2

l=1

[

νk
l

{
ϕk

l uk
ϕk
d,l Tcuk

}

+ νk∗
l

{
ϕk∗

l uk
ϕk∗
d,l Tcuk

}]}

=
∑n

k=1
νk

{
uk
0

}

= r̃ (78)

Eq. (78) shows that the uncontrolled participation mode vector νkuk
can be obtained by superimposing the two complex conjugate controlled
mode vectors stemming from the k-th uncontrolled mode. Accordingly,
the seismic responses of a TVMD controlled system can be estimated by
utilizing the uncontrolled participation mode vector and added damping
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coefficients without any complex-valued eigenvalue analysis of the
TVMD controlled MDOF [43], which will be illustrated in Section 4.

4. Analytical examples

4.1. 2-story shear building

In this section, a 2-story undamped shear building was employed to
demonstrate the modal response characteristics of an MDOF shear
building containing TVMDs. The mass of both stories in the building was
1000 kg. The stiffnesses of the first and second stories were 3000 N/m
and 2000 N/m, respectively.

Fig. 3 shows the participation-mode vectors of an undamped primary
system. The first and second angular frequencies of the primary system
are 1.00 rad/s and 2.45 rad/s, respectively. Table 1 lists the optimum
parameters for SPD-TVMD and MPD-TVMD designed based on Eqs. (5),
(30)-(32), and (37)-(39). All TVMDs were tuned to the first mode with a
mass ratio of μ = 0.05. It is evident that nearly 60 % of the total
apparent mass and damping coefficient requirements are saved with the
use of MPD-TVMD compared to SPD-TVMD. This efficiency is attributed
to the MPD-TVMD’s direct utilization of the floor deformation relative to
the ground, which is more effective in controlling the first mode
compared to the SPD-TVMD that relies on inter-story deformation. The
parameters of the two equivalent 2-DOF systems stemming from the first
and second uncontrolled systems are listed in Table 2.

Table 3 summarizes the angular frequencies and damping ratios for
the TVMD controlled 2-story shear building. Both SPD-TVMD and MPD-
TVMD exhibited similar dynamic characteristics. As the TVMDs were
tuned to the first uncontrolled mode (ω = 1.00 rad/s), the reduced 2-
DOF systems derived from the uncontrolled primary modes (r = 1,
r = 3) had angular frequencies that were close to each other and to the
first uncontrolled frequency (ω = 1.00 rad/s). By contrast, the first-
order angular frequencies of the reduced 2-DOF systems derived from
the uncontrolled second mode (r = 2) were closer to the first uncon-
trolled frequency (ω = 1.00 rad/s) than to the second uncontrolled
frequency (ω = 2.45 rad/s). Moreover, the second angular frequencies
of the reduced 2-DOF systems derived from the uncontrolled second
mode (r = 4) were close to the second uncontrolled angular frequency
(ω = 2.45 rad/s).

The first participation mode vectors of the reduced 2-DOF systems (ℓ
= 1) are shown in the left half of Figs. 4(a) and 5(a), whereas the second
mode vectors (ℓ = 2) are shown on the right-hand side. Therefore, ac-
cording to Eqs. (64) and (76), combined with the participation mode
vectors of the undamped primary system shown in Fig. 3, the complex-
valued participation vectors of the entire TVMD controlled system can
be obtained, as depicted in Fig. 4(b) and 5 (b). For comparison, the
complex-valued participation vectors obtained by directly solving the
complex modal equation of the controlled system are also marked in
Fig. 4(b) and 5 (b) using blue hollow circles. The overlap between the

blue hollow circles and the red dots numerically validates the accuracy
of the participation mode vectors constructed in Eqs. (64) and (76).

Evidently, the complex-valued participation vectors for the first and
third modes (r = 1 and 3) in Fig. 4(b) and 5 (b) demonstrate that adding
TVMD splits the uncontrolled first mode (k = 1) into two coupled modes
(r = 1) and (r = 3), which have similar natural angular frequencies of
0.936 rad/s and 1.128 rad/s, respectively. The motion of the inerter was
enhanced by the tuning effect. Because the TVMD is detuned when
incorporated into the 2-DOF system stemming from the second mode
(k = 2) of the uncontrolled system, the complex-valued participation
vectors for the second and fourth modes (r = 2 and r = 4) in Fig. 4(b)
and 5 (b) show that adding TVMD splits the uncontrolled second mode
into two decoupled modes (r = 2) and (r = 4) with natural angular
frequencies of 1.022 rad/s and 2.531 rad/s, or 1.050 rad/s and 2.463
rad/s. The motion of TVMD dominates the second mode of the
controlled system (ℓ = 1 and k=2), whereas the controlled fourth mode
(ℓ = 2 and k=2) is dominated by the uncontrolled second mode.

The damping ratios of the TVMD controlled 2-story shear building
are listed in Table 3. For both SPD-TVMD and MPD-TVMD, the damping
ratios of the first and second modes of the reduced 2-DOF systems
stemming from the first uncontrolled mode (ℓ = 1,2 and k = 1) were
identical to the value when h= 0.072. This is consistent with the optimal

Fig. 3. Participation-mode vectors of an undamped 2-story shear building without considering the inherent damping ratio: (a) First mode (k = 1). (b) Second
mode (k = 2).

Table 1
Optimum parameters for the distributed TVMDs.

story Stiffness proportionally Mass proportionally

md [kg] kb [N/m] cd [N⋅s/m] md [kg] kb [N/m] cd [N⋅s/m]

1 150.00 167.18 44.56 50.00 55.73 14.85
2 100.00 111.46 29.70 50.00 55.73 14.85

Table 2
Specifications for the reduced 2-DOF systems.

k Cases Md,k [kg] Kd,k [N/m] Cd,k [N⋅s/m] µk hd,k ηk

1 SPD 90.00 100.31 26.74 0.050 0.141 0.056
2 60.00 66.87 17.82 0.300 0.141 0.056
1 MPD 90.00 100.31 26.74 0.050 0.141 0.056
2 10.00 11.15 2.97 0.050 0.141 0.009

Table 3
Angular frequencies and damping ratios for the TVMD controlled 2-story shear
building.

ℓ k r SPD-TVMD MPD-TVMD

ω̃r [rad/s] h̃r ω̃r [rad/s] h̃r

1 1 1 0.936 0.072 0.936 0.072
2 2 1.022 0.144 1.050 0.141

2 1 3 1.128 0.072 1.128 0.072
2 4 2.531 0.001 2.463 0.001
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condition for the transfer function of a TVMD controlled SDOF system to
have the same peak value. The first-mode damping ratios of the reduced
2-DOF systems stemming from the second uncontrolled mode for the

SPD-TVMD and MPD-TVMD (ℓ = 1 and k = 2) were 0.144 and 0.141,
respectively, which were close to the damping ratio of the TVMDs
(hd=0.141). Notably, according to the corresponding complex-valued

Fig. 4. Modal principle of SPD-TVMD illustrated by a 2-story shear building: (a) First and second participation mode vectors (ℓ = 1,2) of two reduced 2-DOF systems
with SPD-TVMD (k = 1,2). (b) Comparison between the complex-valued participation vectors of the SPD-TVMD controlled system obtained by combining methods
and complex modal analysis.

Fig. 5. Modal principle of MPD-TVMD illustrated by a 2-story shear building: (a) First and second participation mode vectors (ℓ = 1, 2) of two reduced 2-DOF
systems with MPD-TVMD (k = 1, 2). (b) Comparison between the complex-valued participation vectors of the MPD-TVMD controlled system obtained by
combining methods and complex modal analysis.
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participation vectors for ℓ = 1 and k = 2 shown in Fig. 4(b) and 5 (b), it
can be observed that the motion of the TVMDs dominated, and the
primary mass was barely activated; thus, the participation of this mode
in the seismic response was negligible. In contrast, as the fourth
complex-valued participation vectors in Fig. 4(b) and 5 (b) show, the
TVMDs were barely activated in the second mode of the reduced 2-DOF
system stemming from the second uncontrolled mode (ℓ = 2and k = 2);
thus, their damping ratios were very small. This means that TVMDs are
activated only by the target mode, and thereby perform selective
damping for the target mode.

As a representation of the harmonic response, Fig. 6 compares the
displacement amplification factor curves of the uncontrolled, SPD-
TVMD-controlled, and MPD-TVMD-controlled 2-story shear building.
It can be observed that the damping effects of SPD-TVMD and MPD-
TVMD are similar. After the installation of proportionally distributed
TVMDs, the displacement amplification factor curves for each story
exhibit similar peak values near the target control mode frequency
(ω = 1.00 rad/s), consistent with the effects observed in SDOF structure
shown in Fig. 1(b). For another mode (ω = 2.45 rad/s), the displace-
ment amplification factor curves of the proportionally distributed
TVMDs are similar to those of the uncontrolled structure, which is
consistent with the theoretical analysis results in Section 3.2.

4.2. 10-story benchmark steel building

In this section, a 10-story benchmark building model [52] was
employed to examine the effect of the TVMD distribution on the mode
shapes considering some practical issues. Table 4 lists the specifications
of the 10-story building. The primary structure was assumed to remain
elastic and possess an inherent damping ratio of 0.02 for the first mode.
Fig. 7 shows the mode shapes and modal interstory drifts of the partic-
ipation mode of an uncontrolled primary structure. The first two
fundamental angular frequencies are shown in Fig. 7 as well.

4.2.1. 10-story benchmark steel building containing SPD-TVMD
With a mass ratio μ = 0.1, the optimal frequency ratio β◦ and sup-

plemental damping ratio hd◦ were determined to be 1.127 and 0.206,
respectively. Table 5 lists the specifications of SPD-TVMD obtained
using Eqs. (30)-(32). This TVMD distribution pattern is hereafter
referred to as Case A. Because the number of dampers usually varies in a
discrete manner in practical structural design, another more realistic
case in which the TVMDs are distributed in a discrete manner is
considered, hereafter referred to as Case B. Fig. 8(a) depicts the apparent
mass distributions of Cases A and B. As shown in Fig. 8(b), in Case B,
each TVMD device has an apparent mass of 1000 t, which can be ach-
ieved using the mass amplification effect produced by a ball-screw
mechanism [1,2]. The maximum deviation in the apparent mass be-
tween Cases A and B was 22.98 %.

Fig. 9(a) depicts the two pairs of conjugate participation mode

vectors vkl ϕk
ℓ and vk∗l ϕk∗

ℓ (ℓ = 1,2) of equivalent 2-DOF systems stem-
ming from the first two uncontrolled modes (k = 1 and 2). The primary
system displacement relative to the ground ϕk

ℓ, inerter’s relative

displacement ϕk
d,ℓ, and deformation of the supporting spring

(
ϕk

ℓ − ϕk
d,ℓ

)

are represented by ○, * , and △, respectively. Notably, each value shown
in this figure is doubled, considering the value of its conjugate mode.
The figure shows that the relative displacements of the inerter and
supporting spring are significantly larger than the relative displacement
of the primary mass, and their phases oppose each other in the target
mode (k = 1). It means that well-designed TVMD will resonate with the
primary structure at the target control mode (k = 1), effectively ampli-
fying the displacement of the damping element in parallel with the
inerter.

Fig. 9(b) and (e) compare the primary structure and supporting
spring displacement participation mode vectors of the SPD-TVMD
controlled system obtained by two different methods: one method in-
volves constructing the participation mode vectors as outlined in Eqs.
(64) and (76), while the other method uses complex-valued eigenvalue
analysis directly without modal decomposition. The results obtained by
the former method are hereafter referred to as SPD-Baseline and are
indicated by solid lines. In the figure, Case A, shown by hollow circles,
represents the result obtained using the complex-valued eigenvalue
analysis directly, while the participation mode vectors of Case B are
indicated by solid circles. The red and blue lines represent the real and
imaginary parts, respectively. The complex-valued eigenvalue analysis
result of Case A is consistent with that of SPD-Baseline, numerically
reaffirming the mode-preserving characteristic of the proportionally
distributed TVMD controlled system discussed in Section 3.

Although the participation mode vectors of Case B differ slightly
from those of Case A, owing to the difference in apparent mass distri-
bution, as shown in Fig. 9(b), the differences in the modes that dominate
the seismic response are practically negligible. More specifically, the
differences in the rooftop displacements of the participation mode

Fig. 6. Displacement amplification factor curves of the uncontrolled, SPD-TVMD-controlled, and MPD-TVMD-controlled 2-story shear buildings.

Table 4
Specification of the analytical model.

story primary structure

mass mi [t] stiffness ki [kN/m] height [m]

10 875.41 158550.00 4.00
9 649.49 180110.00 4.00
8 656.22 220250.00 4.00
7 660.20 244790.00 4.00
6 667.24 291890.00 4.00
5 670.10 306160.00 4.00
4 675.71 328260.00 4.00
3 680.00 383020.00 4.00
2 681.63 383550.00 4.00
1 699.90 279960.00 6.00

J. Kang et al. Engineering Structures 322 (2025) 119175 

9 



vectors that stem from the undamped first mode (k = 1) between Cases
A and B were 0.9 % and 1.42 %, respectively. This implies that the
mode-preserving characteristic is precisely maintained when the TVMD
strictly follows the SPD pattern. However, even when the SPD pattern is
only approximately followed due to practical engineering consider-
ations, as in Case B, the modes of the uncontrolled structure can still be
approximately preserved.

As shown in Fig. 9(c), the phase angles of the first (r = 1) and elev-
enth modes (r = 11) of Case A are 30.9◦ and − 39.1◦, respectively, which
stem from the first equivalent 2-DOF system as shown in Fig. 6(a)
(k = 1). In contrast, the corresponding phase angles in Case B were 31.0◦

and − 39.3◦. This indicates that the improvement in first-mode damping
for both Case A and Case B is nearly consistent with the enhancement in
modal damping that the TVMD achieves in the SDOF system.

4.2.2. 10-story benchmark steel building containing MPD-TVMD
Although implementing a mass proportional distribution pattern in

practical is often challenging due to the requirements for floor-to-
ground device installations, the superior device utilization efficiency
offered by this pattern compared to stiffness proportional distribution
pattern is notably promising [46–48]. This section proposes a light-
weight, flexible external braced frame for implementing the MPD-TVMD
system and verifies the impact of the external braced frame’s flexibility
and mass on its mode-preserving characteristic. As shown in the planar
and transverse sections (Y direction) in Fig. 10, two external frames are
symmetrically distributed on both sides of the structure and are con-
nected to the main structure via TVMDs.

Assuming the floors are rigid in the horizontal plane and the masses
are concentrated at the floor levels, due to the symmetry of the frames,
we can equivalently represent the two external frames as a single
external frame in the mathematical expressions. Let Mexo and Kexo
represent the equivalent mass and stiffness matrices of the external
braced frame, respectively; the motion equations of the 10-story
benchmark steel building connected with external braced frames via
the MPD-TVMD system subjected to strong ground motion can be
expressed as:

Fig. 7. Participation mode vectors of the uncontrolled primary system. (a) Displacement relative to ground. (b) Inter-story drifts.

Table 5
Specification of SPD-TVMD.

story (i) SPD-TVMD ( Case A)

md,i [t] cd,i [kN⋅s/m] kb,i [kN/m]

10 1626.22 2352.96 20138.49
9 1847.36 2672.92 22876.97
8 2259.07 3268.61 27975.42
7 2510.77 3632.80 31092.41
6 2993.87 4331.79 37074.89
5 3140.23 4543.56 38887.42
4 3366.91 4871.53 41694.49
3 3928.57 5684.20 48649.92
2 3934.01 5692.06 48717.24
1 2871.50 4154.74 35559.58

Fig. 8. Apparent mass distributions for SPD-TVMDs: (a) Ideal apparent mass distribution (Case A) and practical apparent mass distribution (Case B). (b) TVMD
device in Case B with 1000 t apparent mass achieved through a ball-screw mechanism.
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where y = {y1,y2,…,y10}T is the displacement vector of the external
braced frame and the stiffness matrix for the supporting springs KB is a
diagonal matrix.

KB = μ(βo
1ω)2diag

(
m1,m2,…,m10

) (
∵Equations(39)and(41)

)

(80)

Since the lightweight external braced frame is primarily introduced
to provide support for the TVMDs, the weight of the external braced
frame can be ignored (Mexo=O), Eq. (79) can be simplified using static
condensation.
[
MP 0
0 MD

]{
ẍ
ẍd

}

+

[
CP 0
0 CD

]{
ẋ
ẋd

}

+

[
KP+KB − Kʹ

exo − KB+Kʹ
exo

− KB+Kʹ
exo KB − Kʹ

exo

]{
x
xd

}

= −

{
MPrẍ0

0

}

(81)

Fig. 9. Modal principle of the SPD-TVMD controlled 10-DOF system: (a) Conjugate participation mode vectors (ℓ = 1,2) of equivalent 2-DOF systems from the first
two uncontrolled modes (k = 1,2). (b) Comparison of participation mode vectors of the SPD-TVMD controlled system obtained by modal decomposition (Eqs. (64)
and (76)) and by direct complex-valued eigenvalue analysis. (c) Phase angles of the first (r = 1) and eleventh (r = 11) modes of Case A. (d) Phase angles of the first
(r = 1) and eleventh (r = 11) modes of Case B. (e) Supporting-spring displacement modes comparison for the Baseline and Cases A and B.
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where

Kʹ
exo = KB(Kexo + KB)

− 1KB (82)

By replacing the stiffness matrix for optimal supporting spring KB in
K̃ of Eq. (21) with KB − Kʹ

exo, we get Eq. (81), which results in detuning
of the MPD-TVMD system. Notably, when the external braced frames are
sufficiently rigid, their displacements are negligible, resulting in
Kʹ

exo ≈ O. Then, Eq. (81) reduces to Eq. (20).
Here, we consider a set of supporting spring stiffnesses ḱ d,j and

define the relevant stiffness matrices as follows:

Kʹ
B = diag

(
kʹ
b,1, k

ʹ
b,2,…, kʹ

b,10

)
(83)

Kʹ́
exo = Kʹ

B
(
Kexo + Kʹ

B
)− 1Kʹ

B (84)

The detuning effect induced by the flexibility of the external braced

frame can be improved by redesigning the supporting spring stiffnesses
kʹ
d,j such that

{
kʹ
d,j

}
=

{{
kʹ
d,j

}⃒
⃒
⃒minkʹd,j

⃒
⃒
⃒KB − Kʹ

B +Kʹ́
exo|

}
(85)

Here, the results obtained by the modal decomposition method and
direct eigenvalue analysis of the controlled structure for the MPD-TVMD
system are referred to as MPD-Baseline and Case C, respectively. In
Cases D and E, the flexibility of the external braced frame was consid-
ered. Notably, unlike the requirement in the study of MPD viscous
dampers by Trombetti et al. [46–48], which necessitates significantly
higher stiffness in external braced frame, often several times that of the
primary structure to prevent displacement loss, the external braced
frame in MPD-TVMD can function as part of the tuning spring. Conse-
quently, its stiffness only needs to be slightly higher than or equal to the
optimal tuning stiffness required by the TVMD at that stroy, making the
supporting spring stiffnesses in Eq. (82) physically realizable. In this

Fig. 10. 10-story benchmark steel building with the MPD-TVMD based external dissipative system: (a) Planar view showing the layout of the building with the
positions of the MPD-TVMD devices. (b) Elevation view illustrating the placement of MPD-TVMD devices on each story along with the supporting structural elements.

Table 6
Specification of MPD-TVMD.

story Case C Cases D and E

md,i [t] cd,i [kN⋅s/m] kb,i [kN/m] md,i [t] cd,i [kN⋅s/m] kb,i [kN/m]

10 87.54 126.66 1084.07
70.00

100.36 863.66 (985.08)

9 64.95 93.97 804.30
70.00

100.36 863.66 (986.49)

8 65.62 94.95 812.64
70.00

100.36 863.66 (987.12)

7 66.02 95.52 817.57
70.00

100.36 863.66 (987.99)

6 66.72 96.54 826.29
70.00

100.36 863.66 (988.36)

5 67.01 96.96 29.83
70.00

100.36 863.66 (988.60)

4 67.57 97.77 836.78
70.00

100.36 863.66 (988.76)

3 68.00 98.39 842.09
70.00

100.36 863.66 (988.85)

2 68.16 98.62 844.11
70.00

100.36 863.66 (988.90)

1 69.99 101.27 866.73
70.00

100.36 863.66 (988.90)
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context, we assume that Kexo = Kp.
Table 6 lists the specifications of MPD-TVMD obtained from Eqs.

(37)-(39) (MPD-Baseline and Case C), assuming a mass ratio of μ = 0.1
and a rigid external braced frame. Because changing the properties of
the device story-by-story, such as in Case C, is unrealistic, TVMDs with
an apparent mass of 70.00 t are incorporated at each floor level in Cases
D and E. In Case D, the supporting spring stiffnesses is determined by Eq.
(39), whereas it is determined by Eq. (85) in Case E. As a result, the
TVMDs in Case D are detuned, whereas they are well-tuned in Case E.

The redesigned supporting spring stiffness obtained from Eq. (85) for
Case E is indicated in parenthesis in Table 6. A comparison of the total
apparent mass and damping coefficient requirements between Cases D
and E with the parameters of Case B, which represents the realistic
distribution patterns of SPD-TVMD, reveals that the total apparent mass
and damping coefficient requirements are reduced by more than 90 %
with MPD-TVMD compared to SPD-TVMD. This indicates that the MPD
pattern is highly efficient in utilizing TVMDs, although it comes at the
cost of requiring additional structural components, such as external

Fig. 11. Modal principle of the MPD-TVMD controlled 10-DOF system: (a) Conjugate participation mode vectors (ℓ = 1,2) of equivalent 2-DOF systems from the first
two uncontrolled modes (k = 1,2). (b) Comparison of participation mode vectors of the MPD-TVMD controlled system obtained by modal decomposition (Eqs. (64)
and (76)) and by direct complex-valued eigenvalue analysis, showing the deviation caused by the flexibility of external braced frame. (c) Phase angles of the first
(r = 1) and eleventh (r = 11) modes of Case C. (d) Phase angles of the first (r = 1) and eleventh (r = 11) modes of Case E. (e) Supporting-spring displacement mode
vectors comparison for the Baseline and Cases C, D, and E.
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braced frames.
Fig. 11 (a) depicts the participation mode vectors of the equivalent 2-

DOF systems of the MPD-TVMD controlled system. Similar to those of
the SPD-TVMD, the relative displacements of the inerter and supporting
spring were significantly larger than the displacement of the primary
mass, and their phases opposed each other in the target mode (k = 1),
thereby demonstrating the damping enhancement effect of TVMD.
Moreover, Fig. 11 (b) and (e) depicts the participation mode vectors and
supporting spring deformation in Case D, where the displacements of the
primary masses and supporting springs are ○ and △, respectively.
Evidently, the participation mode vectors of Case D deviate from MPD-
Baseline and Case C. The primary cause is the flexibility of the external
braced frame. The participation mode vectors depicted in Fig. 11 (b)–(e)
for Cases C and E are consistent with the MPD-Baseline. This confirmed
that modifying the tuning spring’s stiffness to cancel the flexibility of the
external braced frame improved the tuning effect, even when the
external braced frame was as flexible as the primary structure.

Fig. 12 illustrates the impact of the external braced frame’s mass on
the mode-preserving characteristic of the MPD-TVMD. In this analysis,
the stiffness parameters of the external braced frame and the design
parameters of the MPD-TVMD are consistent with those in Case E, while
the mass of each story of the external braced frame is proportional to the
mass of the corresponding story in the benchmark building, with the
proportionality factor denoted as μE, i.e., Mexo= μE Mp. In Fig. 12(a),
scatter points in different colors represent the two controlled modes that
split from the first uncontrolled mode due to the installation of the MPD-
TVMD under various values of μE. A comparison with the ideal condition
(Baseline) shows that as the mass ratio increases, the controlled modes
progressively deviate from the Baseline. As shown in Fig. 12 (b), this
deviation is quantified based on the maximum differences in the rooftop
displacements of the participation mode vectors between the MPD-
TVMD systems with varying μE. It indicates that when the mass of the
external braced frame is kept at a relatively low level, for instance, less
than 5.2 % of the mass of the benchmark building, this deviation re-
mains minimal.

4.2.3. Comparison of dynamic responses
First, from the perspective of harmonic response, Fig. 13 compares

the displacement amplification factor curves for the 5th and 10th stories
of the 10-story benchmark steel building without control, and with
practical SPD-TVMD (Case B) and practical MPD-TVMD (Case E). As a
supplement, the displacement amplification factor curves for all stories
of the relevant systems are presented in Appendix A, Figures A.1 to A.3.
It can be observed that the damping effects of practical SPD-TVMD and
MPD-TVMD are similar, both significantly reducing the peak response

near the first mode (ω = 3.122).
Consequently, based on the aforementioned discussion, it can be

concluded that the TVMDs installed according to the proportional dis-
tribution pattern proposed in this study, namely SPD-TVMD and MPD-
TVMD, offer the advantage of enhancing the damping ratio of a spe-
cific mode without affecting the other modal characteristics. As a result,
engineers can quickly estimate TVMD controlled structures using
methods such as the Square Root of the Sum of Squares (SRSS) method
[50].

Consider the example of a 10-story building controlled by SPD-
TVMD (Cases A and B) and MPD-TVMD (Cases C and E), with the
target control mode being the first mode. As depicted in Fig. 1(c), after
the installation of TVMDs with a mass ratio μ = 0.1, the first mode
damping of the controlled structure increases from 0.02 to 0.114. Based
on this, the peak displacement responses of the controlled and uncon-
trolled structures can be rapidly estimated using the SRSS method as
follows:

xun,i =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(
Sd(ω1, 0.02)ν1u1,i

)2
+
∑10

k=2

(
Sd(ωk, hk)νkuk,i

)2

√
√
√
√ i = 1…10

(86)

xcon,i =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(
Sd(ω1,0.114)ν1u1,i

)2
+
∑10

k=2

(
Sd(ωk, hk)νkuk,i

)2

√
√
√
√ i = 1…10

(87)

where, xun,i and xcon,i correspond to the displacements of the i-th story
for the uncontrolled and controlled structures, respectively. uk,i repre-
sents the i-th component of the k-th mode vector of the uncontrolled
structure. Sd(ωk, hk) represents the spectral displacement response of a
SDOF system with a damping ratio of hk and a frequency of ωk. As an
illustration, an artificial earthquake wave was generated using the
earthquake signal-processing tool EQSignal [53], targeting the design
spectrum from the Code for Seismic Design of Buildings of China (site
classification: IV) [54]. The spectral displacement response of an arti-
ficial earthquake wave considering damping ratios of 0.02, 0.053 (the
first and secondmode damping of the uncontrolled structure), and 0.114
(the first mode damping of the controlled structure) are presented in
Fig. 14 (a).

It is noteworthy that the modal information required for the above
calculation involves only the uncontrolled structure, which is familiar to
designers. The only difference in response calculation between the un-
controlled and controlled structures lies in the use of different first mode

Fig. 12. The impact of the external braced frame’s mass on the mode-preserving characteristic of the MPD-TVMD system: (a) Participation mode vectors of the MPD-
TVMD controlled systems corresponding to the first uncontrolled mode. (b) The relationship between the deviation of the controlled mode from the baseline and the
mass of the external braced frame.
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damping ratios. Fig. 14 (b) and (c) compare the maximum structural
displacement responses estimated by the time history response analysis
and the SRSS method. It can be observed that there is a considerable
degree of consistency between the two methods. The slight discrep-
ancies are mainly due to the SRSS method neglecting the coupling ef-
fects between modes. For comparison, the optimal damping effects,
quantified by maximum drift angles, achievable by interstory-installed
TVMDs (a general form of SPD-TVMD) and ground-installed TVMDs (a
general form of MPD-TVMD), both with a mass ratio of μ = 0.1,
considering variations in distribution patterns, are depicted in Fig. 14
(b) and (c) as lines labeled Case F and Case G. The design parameters for
Cases F and G were determined using a numerical optimization algo-
rithm. The design variables included the apparent mass distribution of
each story’s TVMDs, along with the corresponding frequency ratio β and

damping ratio hd. The objective was to minimize the maximum inter-
story drift angle under the selected seismic wave. Fig. 14 (d) and (e)
illustrate the optimal distribution of interstory and ground-installed
TVMDs. It is observed that to maintain modal preservation character-
istics, the damping performances of SPD-TVMD and MPD-TVMD are
reduced by 8.3 % and 6.0 %, respectively, compared to the optimal
cases. Nonetheless, given the design convenience offered by SPD-TVMD
and MPD-TVMD, this trade-off is deemed acceptable.

5. Conclusion

This study examines the modal response characteristics of propor-
tionally distributed TVMDs incorporated in an MDOF shear building.
The main contributions of this study are summarized as follows.

Fig. 13. Displacement amplification factor curves for the 10-story benchmark steel building without control, and with practical SPD-TVMD (Case B) and practical
MPD-TVMD (Case E).

Fig. 14. Comparison of maximum structural displacement responses: (a) Spectral displacement response of an artificial earthquake wave considering damping ratios
of 0.02, 0.053, and 0.114. (b) Comparison of maximum structural drift angles for Cases A, B and F estimated by time history analysis and the SRSS method. (c)
Comparison of maximum structural drift angles for Cases C, E and G estimated by time history analysis and the SRSS method. (d) Apparent mass distribution
comparison for Cases B and F. (e) Apparent mass distribution comparison for Cases E and G.
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• By constructing the modal participation vectors of MDOF systems
controlled by SPD-TVMD and MPD-TVMD, it was demonstrated that
the fundamental modes of the undamped primary system remain
unchanged after the addition of SPD-TVMD and MPD-TVMD.
Furthermore, the complex participation mode vectors of the
controlled MDOF structure can be obtained by combining the
participation mode vectors of the uncontrolled system with those of
corresponding reduced 2-DOF systems.

• The analysis of 2-story and 10-story example structures containing
SPD-TVMD and MPD-TVMD further verified numerically that these
distribution patterns possess mode-preserving characteristic. A
comparison of design parameters indicates that the MPD-TVMD
configuration reduces the total apparent mass and damping coeffi-
cient requirements by over 60 % and 90 %, respectively, compared
to the SPD-TVMD for the 2-story and 10-story structures. This
demonstrates that the MPD pattern is highly efficient in utilizing
TVMDs, albeit at the cost of requiring additional structural compo-
nents, such as external braced frames.

• The analysis of a 10-story benchmark steel building containing SPD-
TVMD demonstrated that the mode-preserving characteristic could
be practically maintained even if the TVMDs did not strictly adhere
to a stiffness-proportional distribution considering the practical
design.

• The analysis of a 10-story benchmark steel building with an MPD-
TVMD based external dissipative system demonstrated that by
modifying the tuning spring stiffness to cancel the flexibility of the
external braced frame that has the same stiffness as the primary
structure, the mode-preserving characteristic of MPD-TVMD could
be practically maintained.

Although this study focused only on TVMDs, it is expected that the
conclusions drawn from this study can be applied to other types of
inerter-based devices. This study solely considers the practical limita-
tions encountered in engineering, where TVMDs may not be distributed
in strict proportionality. It demonstrates that these constraints

minimally affect the modal preservation and control effectiveness of
both SPD- and MPD-TVMD systems. Consequently, the implementation
of SPD- andMPD-TVMD systems warrants further exploration with more
realistic design considerations, including restrictions on the height of
floor-to-ground device installations.
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Appendix A

Figure A.1. Displacement amplification factor curves for each story of the 10-story uncontrolled benchmark steel building.

.

Figure A.2. Displacement amplification factor curves for each story of the 10-story benchmark steel building controlled by the practical SPD-TVMD (Case B).

.
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Figure A.3. Displacement amplification factor curves for each story of the 10-story benchmark steel building controlled by the practical MPD-TVMD (Case E).

.
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