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Abstract

Ensuring the robust operation of bridges demands swift and precise forecasting of structural performance within the
health monitoring system. However, challenges arise in the realm of long-time series forecasting context-free data.
These challenges encompass scenarios where there is a lack of reference data pre- and postforecasting, instances of
missing data before forecasting (near-forecasting), or predictions of the distant future (far-forecasting). Addressing these
issues, a current imperative is the development of a framework adept at efficiently and directly forecasting context-free
long-time series data. This article introduces a framework, the convolutional generative adversarial network with pro-
gressive growing and self-attention (PSA-CGAN) mechanisms, tailored for forecasting context-free data. The approach
employs generative adversarial networks in tasks related to long-time series. Additionally, progressive growing and self-
attention mechanisms are harnessed to capture both long- and short-term features in the time series, notably enhancing
the efficiency and accuracy of the forecasting method. The proposed method undergoes validation through application
to two distinct bridge cases, confirming its generality and real-time forecasting prowess. On two bridges, PSA-CGAN
can effectively predict acceleration data in various context-free scenarios and is capable of forecasting progressively
changing damage data. It provides a valuable reference for predicting damage data. Additionally, the results indicate that
PSA-CGAN is a promising and practical solution for the prediction of context-free data. It represents an efficient and
rapid tool for damage prediction.
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To ensure the stability and safety of large-scale infra-
structure projects such as bridges, skyscrapers, and
dams during their operational lifetimes, structural

health monitoring systems have been widely implemen-
ted.'”” Within the context of structural health monitor-
ing systems for bridge structures, the rapid and
accurate prediction of structural performance to ensure
the healthy operation of bridges has become a top pri-
ority. However, there are challenges in the field of
long-term time series prediction without contextual
information, such as predicting without reference data,
dealing with data gaps prior to prediction (normal
forecasting), or forecasting far into the future (long-
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term forecasting). These challenges have not yet
received sufficient research attention. Current research
methods typically employ a two-step approach, where
missing data are first filled using imputation methods,
followed by the application of prediction methods to
forecast future data. This dual-method approach
results in lower efficiency. Furthermore, many predic-
tion methods cannot be directly applied to the task of
long-term time series prediction without context, and
most methods are designed for short-term time series
prediction tasks. Therefore, one of the current chal-
lenges is to design a framework that can efficiently and
directly predict long-term time series data without con-
textual information.

In the realm of data prediction, prevalent methods
can be broadly categorized into two types: those
grounded in statistical approaches and those rooted in
machine learning methods. Statistical time series fore-
casting models are widely recognized for estimating
structural responses. Specifically, parametric and non-
parametric methods are two main types for statistical
time series modeling, based on discretized excitation
and response random vibration data records. Non-
parametric methods are easily trainable and highly effi-
cient, albeit at the expense of forecasting performance.
On the other hand, parametric methods offer superior
performance but are applicable only to a limited data-
set.® Owing to their predominantly brief application in
time series and their inability to meet accuracy and effi-
ciency requirements, statistical learning methods are
rarely employed.

In recent decades, machine learning has emerged as
a promising solution to address the challenges men-
tioned earlier. Han et al.” provided a summary of fore-
casting methods for predicting and isolating
temperature-induced components of overall responses,
including regression analysis (RA), support vector
machine (SVM), artificial neural network (ANN), prin-
cipal component analysis (PCA), empirical mode
decomposition (EMD), and more. While RA methods
are easily applicable for forecasting structural
responses with simple and explicit formulas, their per-
formance suffers in the presence of nonlinear relation-
ships between temperature and responses. Notably,
SVM and ANN can address these issues, albeit at the
expense of clear and explicit modeling formulas. PCA
excels in analyzing current responses but struggles to
separate and predict future responses under complex
nonlinear environmental effects. EMD is effective in
analyzing dynamic response data at specific sampling
frequencies under the influence of various environmen-
tal factors (e.g., temperature, wind speed), yet it faces
challenges in analyzing static data with low-frequency
sampling. In addition, Kang et al.' introduced a
response prediction method based on long-term air

temperature, combining the Jaya optimizer, salp
swarm algorithms, and SVM algorithms to forecast
monitoring data for a concrete gravity dam.
Importantly, this method doesn’t pose a significant
computational burden, especially when the number of
training samples is not very large.

Bayesian methods stand out as crucial in machine
learning forecasting. Wan and Ni'"*'? introduced struc-
tural response forecasting frameworks employing
Bayesian modeling methods. However, the traditional
Bayesian forecasting approach faces challenges in reli-
ably predicting missing data in certain cases when using
different covariance functions. Wang and Ni'* pro-
posed a Bayesian dynamic linear model (BDLM) capa-
ble of forecasting both stationary and nonstationary
time series data. It delineates the time-dependent struc-
tural strain response by invoking various hidden com-
ponents, including overall trend, seasonal (cyclical),
and regressive components. In a related work, Wang
and Ni'* presented a BDLM framework for forecasting
structural responses in the context of typhoon-induced
nonstationarity, large data fluctuations, and strong
randomness in existing in-service bridges. Notably, the
BDLM framework yields robust results by leveraging
monitoring data both before and after the missing seg-
ments. Latterly, Ren'® introduced Bayesian and Tensor
analysis to forecast random missing strain and tem-
perature in concrete bridges. This approach constructs
one-dimensional data as second- or third-order tensors,
mining reliable underlying characteristics rather than
directly utilizing the original incomplete data. Green
and Jaspan'® employed a Bayesian approach with
uncertainty quantification (UQ) techniques for anom-
aly detection and forecasting inclinometer data. Yi
et al.'” proposed a Bayesian robust tensor learning
model to reconstruct monitoring data tensors by
extracting potential spatiotemporal data features.
Additionally, Lai et al.'"® utilized partially observable
Markov decision processes and Bayesian forecasting to
predict the life-cycle condition, including cycling
impacts and estimating deterioration rates, under sto-
chastic environments using actual long-term monitor-
ing data.

Wei et al."” enhanced dam displacement time series
forecasting by employing a combination of backpropa-
gation neural network and the autoregressive inte-
grated moving average (ARIMA) model. This
approach effectively addresses both high-frequency
and low-frequency signals, leading to improved fore-
casting precision and convergence speed. Yang et al.*°
introduced singular spectrum analysis (SSA) to predict
the long-term trend and short-term fluctuation of
strains. Comparative results demonstrate the superior-
ity of SSA over the ARIMA model. Subsequently, Qu
et al.>! proposed fitted models, specifically the seasonal
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SARIMA model, for predicting future development
trends based on current and previous monitoring data.
In a related study, Zhang et al.** utilized two autore-
gressive (AR) based matrix factorization (MF) meth-
ods to forecast spatiotemporal structural monitoring
time series. To enhance efficiency in computing non-
linear structural dynamics responses, an innovative
graph-based temporal regularizer was incorporated
with standard MF. Simultaneously, the AR-based
matrix was introduced to forecast spatiotemporal
structural information. Later, Wang and Zhang®® sug-
gested a combined approach involving the AR model
and MF method with a graph-based temporal regulari-
zer for data imputation prediction. This method effec-
tively captures cyclic characteristics and random
variability.

Wang and Ni** leveraged the heteroskedasticity
characteristics of Variational Heteroscedastic Gaussian
Process, employing a fusion of variational approxima-
tion and heteroscedastic Gaussian process. This inno-
vative approach was applied to forecast strain field
data in structural health monitoring (SHM) during
typhoon events, resulting in heightened forecasting pre-
cision and reduced uncertainty.

The generative adversarial network (GAN) has
become a focal point in research due to its outstanding
generative capabilities and has been widely applied in
fields such as image and sound synthesis.> 2’ Its appli-
cation scope has gradually expanded into the field of
time series, with the current network framework pri-
marily utilizing recurrent networks to perform time
series generation tasks. However, as the length of time
series increases, its application effectiveness diminishes.
Yoon et al.?® use GANs for the reconstruction of miss-
ing data, while Jiang, et al.*>? enhance GANs by
applying hint mechanisms and data augmentation to
improve the accuracy of generated data. Additionally,
Lei et al.>* demonstrate that GANSs generate signals by
learning features at different frequencies. Fan et al.>*3°
propose improvements to the SegGan architecture,
incorporating skip connections and dense blocks for
reconstructing short-term acceleration data in numeri-
cal simulations and steel frameworks. However, there
are still some shortcomings in the application of time
series, especially when dealing with long-time series.
For example, modeling long-term dependencies and
extending recurrent networks to long-time series face
significant challenges, restricting the application of time
seriecs GANs to long-time series lengths. To achieve
longer and more realistically synthesized time series,
one approach is to adopt a convolutional network
framework. However, traditional convolutional mod-
ules primarily capture short-term dependencies in the
data. Therefore, current research lacks in enhancing

data accuracy, especially in extracting short-range and
long-range information in long-time series data.

This article introduces a convolutional generative
adversarial network with progressive growing and self-
attention (PSA-CGAN) for context-free data predic-
tion. This method applies GANs to tasks involving
long-time series data. Furthermore, the article incorpo-
rates two crucial mechanisms, progressive growing and
self-attention, to capture both long-term and short-
term features within long-time series data, significantly
enhancing the efficiency and accuracy of the prediction
method. Additionally, the method is applied to two
different bridge cases to validate its versatility and real-
time prediction capability.

The structure of the article is as follows: section
“The proposed unsupervised damage forecasting” pro-
vides a detailed overview of the framework structure
and theoretical background of this method; section
“Application case study I: Tongling bridge” presents
the results of applying this method to the undamaged
scenario of the Tongling dual-purpose railway and
highway bridge over the Yangtze River; section
“Application case study II: Z24 bridge” demonstrates
the results of applying this method to the damage sce-
nario of the Z24 bridge (as a benchmark model); sec-
tion “Conclusion” primarily discusses the main
conclusions of this paper.

The proposed unsupervised damage
forecasting

This section demonstrates the proposed unsupervised
framework for forecasting structural damage and con-
ditions in bridge structures equipped with SHM sys-
tems. This approach is principally utilized for far-
forecasting the context-free acceleration sensors in
SHM systems.

Problem demonstration

When it comes to the daily monitoring system for the
health of bridge structures, accurately predicting data
from critical node sensors becomes paramount. This
aids in better analyzing and monitoring the state of the
structures. However, a challenge is encountered in data
prediction tasks, which is making predictions without
contextual information. This can significantly impact
the accuracy of the data and the credibility of the anal-
ysis results. As shown in Figure 1, predictions without
context can typically be categorized into two scenarios:
long-term forecasting (far-forecasting) and short-term
forecasting (near-forecasting).

In the past, researchers often followed a two-step
approach, initially filling in missing data and then
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Figure 2. Architecture of convolutional generative adversarial network with progressive growing and self-attention.

applying prediction methods to forecast the data.
Furthermore, many researchers focused on short-series
data, which do not meet the widespread demand for
long-time series data today. Therefore, finding an
appropriate, efficient, and direct prediction method
has become especially important. This article is based
on a data-driven approach and aims to directly address
the challenge of predicting long-time series data in
situations where contextual information is absent.

Training of the PSA-CGAN

This article presents “PSA-CGAN,” a context-free pre-
diction method based on a convolutional GAN that
integrates progressive growing and self-attention func-
tionalities. The network architecture resembles

common GAN structures, comprising a generator and
a discriminator, as depicted in Figure 2. The generator
and discriminator structures are mirror-like, each con-
sisting of N main blocks with convolution and spectral
normalization modules. Notably, they differ signifi-
cantly in key aspects. To extract subtle features effec-
tively, the generator utilizes a combination of
convolution and upscaling techniques. In contrast, the
discriminator employs a mix of convolution and down-
scaling methods to filter out irrelevant small features
while retaining crucial information.

In the context of GAN applications, recurrent
neural networks are often applied to time series data,
focusing on short-term series. To overcome the limita-
tion in handling long-time series, convolutional neural
networks are introduced to capture relevant features
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over extended periods. However, traditional convolu-
tional modules primarily capture short-term dependen-
cies. To address this, we enhance PSA-CGAN’s ability
to capture remote dependencies by introducing the
self-attention mechanism, modeling distant dependen-
cies within the convolutional feature maps.

Furthermore, the progressive growing module can
better capture features in long-time series. During
training, this module initially extracts time features
over extensive intervals and subsequently captures
detailed time features, providing a comprehensive
understanding of temporal information in the time
series data. Additionally, PSA-CGAN incorporates
spectral normalization and progressive growing mod-
ules to improve training stability.

Main function

As shown in Figure 3, the main function is a crucial
component of both the generator and the discrimina-
tor. It consists mainly of three parts: convolution, self-
attention, and spectral normalization. The activation
function used is LeakyReL U, as expressed in Equation
(1). The self-attention part involves a parameter named
“gamma (7y),” which starts from zero to encourage
learning of detailed time features and gradually
increases as the network learns broader time features.
Additionally, both the generator and the discriminator
benefit from using spectral normalization layers. In the
discriminator, spectral normalization contributes to
stable training by constraining the Lipschitz constant
of the discriminator to be within the bound of 1. In the
generator, spectral normalization stabilizes training

and prevents the unstable increase in gradient magni-
tude. In addition, convolutional network architecture,
compared to common recurrent network architectures,
not only saves memory but also proves to be more
efficient.

M (x;) : x; — ySA(LR(SN(CONV(x;))))

+LR(SN(CONV(x,))) m

where SA is referenced as self-attention; LR represents
LeakyReLU activation; SN denotes Spectral normali-
zation, CONV denotes convolution; x; denotes time
series; A 1is learnable.

Progressive growing architecture

PSA-CGAN can be extended to long-time series
because it adopts a progressive growing architecture,
starting with modeling coarse-grained time series fea-
tures and gradually iterating toward finer-grained
details during training. This architecture can generate
longer series by increasing the number of blocks. To
ensure stability when adding new blocks and avoid
instability caused by the random initialization of new,
untrained parameters, progressive growth techniques
are utilized to smoothly incorporate new blocks.

The primary contribution of progressive growing is
an improvement in GAN training methods. We begin
modeling with coarse-grained time series features and
then progressively add finer-grained time series fea-
tures, as illustrated in Figure 4. This incremental
approach allows training to initially capture large-scale
structural aspects of the data distribution and then gra-
dually shift attention toward increasingly finer-scale
details, without the need to simultaneously learn all
scales.

In this article, generator and discriminator networks
that mirror each other are employed, growing synchro-
nously throughout the training process. All existing
layers in both networks are trainable. When adding
new layers, the layers are smoothly used to prevent sud-
den disruptions to already well-trained fine-grained
time series features.

Progressive training offers several benefits. In the
early stages, generating coarse-grained time series fea-
tures is more stable, as there is less class-specific infor-
mation and simpler patterns to capture. By gradually
increasing the granularity of time series features, we
incrementally tackle increasingly complex challenges,
without the immediate need to solve the final goal of
mapping from latent vectors to real data, among other
objectives.

Another advantage is reduced training time. For
progressive growing GANSs, the majority of iterations
are completed with coarse-grained time series features.
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This typically results in shorter training times while
achieving comparable result quality.

Structure of generator

The generator, as an indispensable component of PSA-
CGAN, receives inputs from time series. Its output
consists of the generated data, which also serve as input
for the discriminator. Furthermore, the discriminator
can be divided into three hierarchical layers, as depicted
in Figure 5.

First, the first layer primarily comprises main
blocks, with computations as shown in Equation (2).
To accommodate long-time series applications, the sec-
ond layer adopts a progressive growing architecture. In
second layer, it mainly consists of N upscaling

operations and main blocks, with computations
detailed in Equation (3). To better capture minute fea-
tures, upscaling employs the method of maximum
interpolation. The third layer mainly consists of mod-
ules composed of convolution and spectral normaliza-
tion, with calculations as shown in Equation (4).

First layer:

G1 ZX() —>X1=M(X()) (2)
Secondary layer to penult layer:
G,‘ :)(i—l —),XYIZM(UP()(,,O) (3)
Last layer:

Giv1 1 Xi — Xip1 =SN(LR(CONV(X))))  (4)
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where M represents Main function; LR represents
LeakyReLU activation; UP denotes upscaling opera-
tions, CONV denotes convolution; SN denotes
Spectral Normalized; X; denotes time series in
generator.

Structure of discriminator

As a crucial component of PSA-CGAN, the discrimi-
nator’s structure divides its input into two parts: one
corresponds to the length of the data generated by the
generator (fake time series), while the other corre-
sponds to the length of real data (real time series). Its
output is a score used to assess the generated data, to
adjust this score appropriately to make it as close to
real data as possible. Additionally, the discriminator
can be categorized into three levels, with its structure
depicted in Figure 6.

First, the first layer primarily consists of convolu-
tion and spectral normalization, calculated as shown in
Equation (5). To accommodate long-time series appli-
cations, the second layer employs a progressive grow-
ing architecture. In second layer, it mainly comprises
N downsampling operations and main blocks, with cal-
culations detailed in Equation (6). To filter out irrele-
vant small features while retaining critical information,
downscaling employs the average pooling method.

The third layer primarily consists of modules com-
posed of main blocks, convolution, and spectral nor-
malization, complemented by fully connected layers
and modules utilizing spectral normalization, with cal-
culations as depicted in Equation (7). In the end, the
input series is mapped into a score by using a fully con-
nected layer and the spectral normalization.

First layer:

Diyy: Xip1 — Y;=SN(LR(CONV(X;1 1)) (5)
Secondary layer:
Dyt Y — Yiy = DOWN(M(Y))) (6)
The last module:
Dy : ¥) — Y, =SN(EC(LR(CONV(M(Y))))))  (7)

where SN denotes spectral normalized; LR represents
LeakyReLU activation; CONV denotes convolution;
FC denotes fully connected layer; M represents main
function; Y; denotes time series in discriminator.

Loss function

In traditional GANSs, the discriminator is treated as a
classifier and uses the cross-entropy function as the loss
function. This method is prone to issues such as gradi-
ent vanishing and mode collapse. This article addresses
these issues by using least squares loss instead of cross-
entropy loss, thereby improving data generation qual-
ity and stabilizing the training process in traditional
GAN:E.

In traditional GANs, when the generator produces
fake data that are classified as real by the discrimina-
tor, updating the generator’s parameters may lead to
gradient vanishing. Even though these fake data points
are still far from real data, the generator stops optimiz-
ing them because the cross-entropy loss is already very
small. This means the quality of the generated data is
not high. When using least squares loss, the discrimina-
tor pulls the fake data toward the decision boundary,
which passes through real samples, making the gener-
ated data closer to the real data. The least squares loss
function penalizes data that are far from the decision
boundary, pushing it toward the boundary and thus
avoiding the gradient vanishing problem.

The Ilearning process of traditional GANs is
unstable, especially due to the gradient vanishing prob-
lem, which makes it difficult to update the generator
and leads to training difficulties. Cross-entropy loss
easily reaches saturation (i.e., zero gradient), further
increasing training difficulty. The least squares loss
penalizes generated samples based on their distance
from the boundary, avoiding the gradient vanishing
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problem and making the training process more stable.
Unlike cross-entropy loss, least squares loss only satu-
rates at one point, thus providing a continuous gradi-
ent signal during training.

In addition, the introduction of progressive growing
technology enhances training stability by smoothly
increasing the training layers. The use of spectral nor-
malization layers benefits both the generator and the
discriminator. In the discriminator, spectral normaliza-
tion stabilizes the training process by constraining the
Lipschitz constant to be within 1. In the generator,
spectral normalization also stabilizes training and effec-
tively prevents the escalation of gradient magnitudes.

Empirical evidence shows that the combination of
least squares method, progressive growing technology,
and spectral normalization can effectively stabilize the
training process of PSA-CGAN.

It is well-known that the suitable loss function deci-
des the stability of training process in GAN. In this
article, the application of loss function effectively miti-
gates the model collapse and gradient vanishing. The
loss can be calculated as the absolute sum of two com-
ponents: one measures the mean difference between
forecasted time series and raw time series, while the
other quantifies the disparity in standard deviation
between forecasted and raw time series:

Loss = |Fuean — RMean| +|Fstd — Rsud] (8)

where Fpean denotes the mean of forecasting time
series; Ryean denotes the mean of raw time series; Fgq
denotes the standard deviation of forecasting time
series; Rsyq the standard deviation of raw time series.

Application case study I: Tongling bridge

To evaluate the predictive prowess of the PSA-CGAN
framework, a practical study is conducted on the accel-
eration of a dual-purpose road and railway bridge.
Utilizing the PSA-CGAN framework, the acceleration
for 14 key and undamaged sensors on the bridge under
various context-free scenarios are successfully fore-
casted. The forecasting framework is applied in
pytorch, and the configurations of the computational
platform are two Intel Xeon(R) E5-2696 v4 CPUs, a
256 GB memory, and an NVIDIA TITAN X (Pascal)
GPU for boosting algorithm application. The hyper-
parameters of the models are presented in Table 1.
Furthermore, the identical configuration is employed
across all other scenarios discussed in this article. The
implemented process of the data forecasting method
will be discussed in detail below.

Table |. Hyperparameters of model.

Hyperparameters Value

N (Number of blocks) 2

Batch size 121

Epoch 50
Optimizer Adam
Learning rate (generator) 0.0005
Learning rate (discriminator) 0.0005

Bi 0.9

B2 0.999
Activation function LeakyRelLU

SHM system

The Tongling Bridge, built in 2015, is a long-span high-
way-railway dual-purpose bridge. As shown in Figure
7(a), the entire bridge consists of the North Approach
Bridge, the main span across the river, and the South
Approach Bridge. The total length of the main span
across the river is 1290 m, with spans arranged as
90 + 240 + 630 + 240 + 90 m. The main span is
630 m, allowing for bidirectional navigation in a single
span, and the height of the bridge deck is 32 m. The
main tower is a rhombic reinforced concrete structure
with an inverted Y-shaped design above the bridge
deck, and the tower height is 212 m. An advanced
SHM system is applied to monitor the structural condi-
tion during its in-service period, ensuring its stability.
The SHM system includes a large number of sensors
installed on the bridge to measure acceleration, displa-
cement, strain, structural temperature, air temperature,
wind speed, humidity, and more. Acceleration, as a key
sensor data for monitoring the vibration of the bridge
under the influence of vehicle and environmental loads,
is measured by 15 acceleration sensors installed on the
bridge deck. The sampling frequency is 100 Hz, and
the monitoring points are depicted in Figure 7(b).

Forecasting results

Figure 8 presents the predicted results of 14 accelera-
tion sensors in the time domain. In this visualization,
both the measured and predicted signals from all 14
sensors are concurrently displayed to highlight the pre-
dictive efficacy of PSA-CGAN. To enhance clarity
regarding the prediction details, we opted for a signal
with a sampling length of 5 s and a sampling frequency
of 100 Hz.

The figure demonstrates PSA-CGAN’s successful
anticipation of signals, irrespective of whether they ori-
ginate from vehicle-induced or environmental stimuli.
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Figure 7. The schematic chart of the Tongling Bridge: (a) General view and (b) Front view.

Precise signal prediction and the identification of vehi-
cle positions, potentially within safe zones, contribute
significantly to structural safety assessments. The capa-
bility to remotely forecast future signals further fortifies
confidence in structural safety. Additionally, predicting
accelerometer responses from sensors ensures the
ongoing collection of actual measurement results by
the SHM system, ensuring data integrity.

Three distinct remote prediction intervals are
selected to underscore the method’s excellence: 10, 30,
and 60 s. The comparative results of their predicted sig-
nals against measured signals are depicted in Figures 8
to 10. Evidently, the PSA-CGAN method exhibits
robust stability in remote predictions across varying
intervals, maintaining consistent alignment between
predicted and measured signals. Upon comparison,
Figures 8 to 10 reveal that with increasing time inter-
vals, there may be minor fluctuations in the stability of
predicted data for some sensors, yet these fluctuations
remain within a manageable range.

Figure 11 showcases the correlation between pre-
dicted and measured signals from 14 sensors at three
different intervals (10, 30, and 60 s). The correlation
plot reveals a well-distributed arrangement of data
points on both sides of the positive correlation curve

(v = x), vividly highlighting a robust linear correlation
between predicted and measured signals. Moreover, as
the time intervals increase, the number of scattered
data points on the positive correlation curve grows, yet
they consistently adhere closely to the curve. This
underscores the outstanding generalization capability
of the proposed PSA-CGAN, ensuring reliable predic-
tive outcomes across diverse sensor signals and various
signal scenarios.

Application case study Il: Z24 bridge
SHM system

Z24 Bridge spans between Bern and Zurich in
Switzerland and is a post-tensioned concrete box girder
bridge. Figure 12 provides an overview mapping of
724 Bridge. The main span of the bridge is 30 m, with
side spans of 14 m on each side, resulting in a total
length of 60 m and a width of 8.6 m. Constructed in
1963, the bridge was in use for 35 years and was dis-
mantled at the end of 1998. To address the gap in the
study of the actual damage process of the bridge, a
comprehensive SHM study was conducted on Z24
Bridge from November 1997 to September 1998, just
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Gao et al.

=0 T T T =1 - - v
NTE_A J1 ——Measured data —— Forecasting data Né_) J8 ——Measured data —— Forecasting data
g g
2 0 2 0
i53 Q
< 2
-1 : . ; 3 . . .
0 2 3 4 5 0 2 3 4 5)
Time(s) Time(s)
1 ; , ‘ 1 : ; :
NE J2 ——Measured data —— Forecasting data N% J9 ——Measured data —— Forecasting data
g g
g0 g
3 3
< , ‘ , S
0 2 3 4 5
Time(s) Time(s)
P T T T o | : : ;
NE J3 ——Measured data —— Forecasting data N%» J11 ——Measured data —— Forecasting data
] g
S0 =0
E E
= l 1 1 1 -l 1 1 1
0 2 3 4 5 0 2 3 4 5
Time(s) Time(s)
=g : : ; 1 - : :
Né_) J4 ——Measured data — Forecasting data NE J12 ——Measured data —— Forecasting data
g 5
'E 0y *é 0F
g g
-1 i : . 1 J " i
0 2 3 4 5 0 2 3 4 5
Time(s) Time(s)
1 ; : : o : : .
Nﬁ J5 ——Measured data —— Forecasting data N‘é J13 ——Measured data —— Forecasting data
-1 g
£ g
§ 0 ‘é 0 1
[}
3 3
Q
< 4 ; 2 ; < . . i
0 2 3 4 5 0 2 3 4 =)
Time(s) Time(s)
s | : ’ . | . . ;
NE J6 ——Measured data —— Forecasting data Ng J14 ——Measured data —— Forecasting data
g 3
g £
) )
g g
2 ; ’ i 1 i " "
0 2 3 4 5 0 2 3 4 5
Time(s) Time(s)
1 . . . 1 . v .
Néa J7 ——Measured data — Forecasting data ‘% J15 ——Measured data —— Forecasting data
= b=
L £
g0 g
3 51
4 , ‘ ‘ g
0 2 3 4 5
Time(s) Time(s)

Figure 9. Measured and forecasting data results for 30-s far-forecasting intervals.



Structural Health Monitoring 00(0)

Acceleration(m/sz) Acceleration(m/sz) Acceleration(m/sz) Acceleration(m/sz) Acceleration(m/sz)

Acceleration(m/sz)

Acceleration(m/sz)

—

(=]

(=]

0
—

—

(=]

T T

J1 . ——Measured data —— Forecasting data
0 1 2 3 4 5
Time(s)
——Measured data —Forecastlng data
0 1 2 3 4 )
Time(s)
J3 ' ——Measured data —— Forecasting data
0 1 2 3 4 5
Time(s)
J4 ——Measured data —— Forecasting data
0 1 2 3 4 5
Time(s)
J5 ——Measured data —— Forecasting data
0 1 2 3 4 5
Time(s)
J6 ——Measured data —— Forecasting data
0 1 2 3 4 5
Time(s)
J7 ——Measured data —— Forecasting data

Time(s)

Acceleration(m/sz) Acceleration(m/sz) Acceleration(m/sz) Acceleration(m/s?') Acceleration(m/sz)

Acceleration(m/sz)

Acceleration(m/sz)

(=1

1
—

—

(=]

—

——Measured data —— Forecasting data

Time(s)

J9

——Measured data —— Forecasting data

2 3 4 5

0
Time(s)
J11 ——Measured data —— Forecasting data
0 2 3 4 S
Time(s)
J12 ——Measured data —— Forecasting data
0 2 3 4 5
Time(s)
J13 ——Measured data —— Forecasting data
0 2 3 4 5
Time(s)
J14 ——Measured data —— Forecasting data
0 2 3 4 5
Time(s)
J15 ——Measured data — Forecasting data

Time(s)

Figure 10.

Measured and forecasting data results for 60-s far-forecasting intervals.
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Figure 12. The schematic chart of the Z24 bridge: (a) Vertical view and (b) End view.

Table 2. Progressive damage period implemented on the Z24
bridge.

Damage number  Time Description
PDO 23/02/1998  No Damage, Pier Hinge
Added (Baseline)
PDI 10/08/1998  Settlement of pier, 20 mm
PD2 12/08/1998  Settlement of pier, 40 mm
PD3 17/08/1998  Settlement of pier; 80 mm
PD4 18/08/1998  Settlement of pier, 95 mm
PD5 19/08/1998  Tilt of foundation
PDé6 20/08/1998 No Damage, Pier Restored
PD7 25/08/1998  Spalling of concrete, 12 m?
PD8 26/08/1998  Spalling of concrete, 24 m?
PD9 27/08/1998  Simulation of landslide
PDIO 31/08/1998  Formation of concrete hinges
PDI1 02/09/1998  Failure of anchor heads
PDI2 03/09/1998  Failure of anchor heads #2
PDI3 07/09/1998  Rupture of tendons #1
PD14 08/09/1998  Rupture of tendons #2
PDI5 09/09/1998  Rupture of tendons #3

before its demolition. A modern SHM system was
employed for quantitative assessment of the structural

condition. The design of the SHM system took into
account the importance of the monitoring object and
vulnerability analysis of monitoring locations. Vibration
is a crucial aspect of the bridge monitoring, significantly
impacting the safety and overall health of the structure.
Therefore, monitoring the acceleration of the bridge
became a fundamental and intuitive parameter for asses-
sing vibration response. In Figure 12, the arrangement
diagram of the SHM system for the bridge consists of 15
acceleration sensors. Red dots indicate sensors that failed
due to reasons other than damage, while green dots rep-
resent the acceleration sensors used in this study. These
sensors captured vibration responses induced by both
vehicle loads and environmental loads, with a sampling
frequency of 100 Hz.

Data preparation and evaluation metrics

To investigate the impact of structural damage on the
bridge, a comprehensive series of 14 progressive dam-
age experiments was conducted between November
1997 and September 1998, with the specific damage
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processes outlined in Table 2. Various sensors were
strategically placed on the bridge to measure accelera-
tion, temperature, humidity, rainfall, wind speed, and
wind direction. Each hour, accelerometers recorded the
bridge’s vibrations at a frequency of 100 Hz for
approximately 10 min, resulting in each sample con-
taining a total of 65,536 acceleration values.

Acceleration is a paramount parameter in identify-
ing structural damage to the bridge. This study utilized
the dataset from sensors S3, S5, S6, S7, S10, S12, S14,
and S16, with their locations depicted in Figure 12.
Predictions were made at 5-s intervals, spanning 5-s
data, 30-s intervals, and 60-s intervals, aiming to assess
the predictive efficacy of the PSA-CGAN method.

To comprehensively evaluate the predictive perfor-
mance of the forecasting model, this study employs
three key evaluation metrics: Normalized Root Mean
Square Error (NRMSE), Mean Absolute Percentage
Error (MAPE), and Mean Absolute Error (MAE).
NRMSE serves as a relative measure of performance,
allowing for the convenient assessment of prediction
error magnitude through relative comparisons of the
same samples. MAPE is commonly used to illustrate
the percentage of errors between measured values and
target values. MAE represents the average deviation
level between measured values and target values.
Smaller values for these metrics indicate superior per-
formance, with values closer to zero considered indica-
tive of better evaluation performance. To address the
issue of the denominator approaching zero in the
MAPE calculation, this article implements a modified
version of the MAPE formula that includes a small
threshold value e. The modified formula is as follows:

1 =
NRMSE- | LS~ |2 )
“=7 |[Ymax — Ymin
100 | yi —
MAPEnogifica = —— ) | — =~ 10
modified n ; max(|yi], e) "o
1 n
MAE:ZZWi_yli' (1)
i=1

where y; denote measured data, y. denote forecasting
data, and n is the number of data, ¢=0.001.

Training and testing

In the proposed PSA-CGAN model, progressive grow-
ing and self-attention mechanisms are employed to
accurately capture signal characteristics in measure-
ment series, effectively reducing nonlinear and nonsta-
tionary variations, thereby enhancing the predictability

of time series. Predictive results for different interval
lengths (10, 30, 60 s) under PD6 damage conditions are
illustrated in Figures 13 to 15. Clearly, the method con-
sistently demonstrates excellent predictive performance
across these scenarios, successfully forecasting data
from diverse sensors and affirming its precision and
generalization. Notably, it’s observed that the model’s
accuracy experiences only marginal variations with
increasing interval lengths.

As the prediction interval increases, some sensors,
such as S14, exhibit poorer results due to the extended
interval, which negatively impacts prediction accuracy.
Additionally, the sensor arrangement in the SHM sys-
tem leads to distinct data characteristics for different
sensors. Feature analysis indicates that significant
changes in time series features influence the prediction
results. Each sensor operates in a constantly changing
environment, and these environmental variations con-
tribute to differences in prediction outcomes. Overall,
the predictive performance of PSA-CGAN remains
robust and effective.

Data correlation is a crucial metric for assessing the
accuracy of predictions. Figure 16 illustrates a robust
correlation between the predicted and measured values
of eight sensors at three distinct intervals. As the time
interval expands, the correlation gradually diminishes.
This underscores the influence of time interval length
on the precision of data predictions.

Data forecasting in diverse long-term series

Additionally, the predictions for the data of diverse
long-term series from eight sensors under PD6 damage
conditions (5, 10, 20s) are conducted. NRMSE,
MAPE, and MAE were selected as one of the evalua-
tion metrics for the PSA-CGAN method to assess the
predictive efficacy of varied long-term series data (5,
10, 20 s). As depicted in Figure 17, three performance
metrics for all eight sensors are consistently low across
the three different prediction data lengths. This implies
that PSA-CGAN exhibits robust predictive capabilities
across varying data lengths and sensors. Furthermore,
the stability of the method is evident, as three perfor-
mance metrics remain steady with an increase in data
length. Although a slight downward trend suggests a
marginal reduction in predictive data capabilities, over-
all, the method demonstrates resilience and effective
predictive performance.

Data forecasting in progressive damage period

Modal identification is pivotal for monitoring struc-
tural conditions and detecting damage. However, accu-
rate and timely prediction of damage data are critical
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Figure 13. Measured and forecasting data results for 10-s far-forecasting intervals.

across diverse operational scenarios, emphasizing the
significance of precise and stable data prediction meth-
ods. To showcase the superiority of the proposed PSA-
CGAN prediction method under various conditions,
modal identification was employed to predict damage
scenarios for the Z24 bridge.

Given the substantial volume and noise in data col-
lected by SHM systems, utilizing parameter identifica-
tion techniques like the random subspace identification
algorithm becomes challenging when applying time-
domain and frequency-domain techniques to bridge
data. Frequency-domain decomposition (FDD) stands
out as a method capable of directly and accurately
identifying modal parameters. In this study, FDD was
applied for modal identification on measured and pre-
dicted data for 16 operational scenarios. FDD breaks
down signals into sine components of varying frequen-
cies and amplitudes, extracting latent dynamic infor-
mation. Modal parameter identification involved a

comparison of measurement and prediction results
from eight sensors, assessing the robustness and accu-
racy of the proposed method, as depicted in Figures 18
and 19.

These results underscore the high-quality data pre-
diction capabilities of PSA-CGAN. Figure 18(a) illus-
trates the natural frequencies of the first six modes for
measured and predicted data under 16 progressive
damage scenarios. Figure 18(b) details the errors in
these modal natural frequencies. Likewise, Figure 19(a)
showcases the damping ratios of the first six modes for
measured and predicted data under 16 progressive
damage scenarios, and Figure 19(b) presents the errors
in these damping ratios. These figures reveal that pre-
diction errors for natural frequencies are within 0.5 Hz,
and errors for signal-to-noise ratios are within 0.025%,
confirming the high accuracy of the predicted results.
Overall, the predicted data effectively identified modal
parameters for six modes, affirming the outstanding
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Figure 14. Measured and forecasting data results for 30-s far-forecasting intervals.

capability of the PSA-CGAN model in structural dam-
age prediction.

Discussion on the case study

To fully comprehend the impact of progressive growing
architecture and self-attention mechanisms on the
PSA-CGAN model, this study provides a detailed anal-
ysis through comparative experiments. Three models
were utilized for comparison: the PSA-CGAN model
with self-attention and progressive growing (PSA-
CGAN), the PSA-CGAN model without self-attention
(PSA-CGAN-N-SA), and the PSA-CGAN model with-
out progressive growing (PSA-CGAN-N-PG). The
comparative experiments were conducted across three
different context-free time intervals (100 data points,
1000 data points, and 2000 data points). All algorithms
were executed on computers with identical configura-
tions, as detailed in section “Application case study I
Tongling bridge.”

The results of the comparison are presented in
Table 3. It was observed that in various context-free

prediction scenarios, the PSA-CGAN model outper-
formed the models lacking progressive growing and
self-attention mechanisms. This demonstrates that the
PSA-CGAN model effectively captures both long-term
and short-term features in time series through the inte-
gration of progressive growing and self-attention
mechanisms, thereby significantly enhancing the effi-
ciency and accuracy of the prediction methods.

To gain a thorough understanding of the predictive
prowess of the PSA-CGAN model, PSA-CGAN along-
side several prominent forecasting models (including
Probabilistic Forecasting with Autoregressive Recurrent
Networks (DeepAR), Gated Recurrent Unit (GRU),
and Long Short-Term Memory (LSTM)) are employed
to predict context-free scenario data across 16 diverse
operational conditions. Various context-free time inter-
vals were explored, and a comparative analysis ensued.
All algorithms were executed on a computer with the
same configuration as detailed in section “Application
case study I: Tongling bridge.”

Figure 20 delineates the predictive performance
analysis of PSA-CGAN and the three other
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Figure 15. Measured and forecasting data results for 60-s far-forecasting intervals.

Table 3. Comparative experiments of the main component in PSA-CGAN.

Model 500 data points 1000 data points 2000 data points

NRMSE MAPE MAE NRMSE MAPE MAE NRMSE MAPE MAE
PSA-CGAN 0.0021 1.4794 0.0855 0.0135 2.8902 0.0942 0.0223 4.9321 0.1102
PSA-CGAN-N-SA 0.023 5.56 0.3612 0.043 8.35 0.4235 0.052 12.56 0.5631
PSA-CGAN-N-PG 0.012 3.86 0.2811 0.021 7.54 0.3954 0.031 9.05 0.4269

PSA-CGAN: convolutional generative adversarial network with progressive growing and self-attention; PSA-CGAN-N-SA: PSA-CGAN model
without self-attention; PSA-CGAN-N-PG: PSA-CGAN model without progressive growing.

Bold part represents the optimal score.

interpolation models under the PD6 operational condi-
tion. The PSA-CGAN model consistently exhibits high
precision and stable predictive capabilities in context-
free scenarios. This is chiefly attributed to the inherent
support for progressive growth and self-attention
mechanisms within the PSA-CGAN framework,
enabling the extraction of pivotal long- and short-term
information from context-free sensors. Specifically, as

depicted in Table 4, across the 16 scenarios, the PSA-
CGAN model showcases superior predictive perfor-
mance and heightened accuracy, generally yielding the
smallest values for NRMSE, MAPE, and MAE. In
scenarios with contextual information, DeepAR dis-
plays robust predictive abilities, yet its effectiveness
diminishes in context-free scenarios. Furthermore,
while GRU and LSTM stand as typical forecasting
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methods in recurrent neural networks, they demon-
strate commendable performance in certain scenarios
but exhibit lower accuracy in context-free situations. In
summary, the PSA-CGAN model demonstrates robust
predictive capabilities, high accuracy, and remarkable
generalization, rendering it well-suited for deployment
across diverse sensor arrays.

Conclusion

This article proposes a PSA-CGAN mechanisms for
predicting context-free data. The method applies
GANs to tasks involving long-time  series.
Additionally, the article incorporates two crucial
mechanisms—progressive growth and self-attention—
to capture long- and short-term features in time series,
significantly enhancing the efficiency and accuracy of
the prediction method. Moreover, the method is
applied to two different bridge cases, the Tongling

public-rail dual-use bridge and the Z24 bridge, to vali-
date its versatility and real-time prediction capability.
Specifically, two cases are used: predicting acceleration
data (undamaged) for the Tongling public-rail bridge
and predicting acceleration data (damaged) for the
benchmark Z4 model. Furthermore, the implemented
PSA-CGAN independently trains each sensor to pre-
dict long acceleration series obtained during different
operating conditions of the SHM system. The main
conclusions of this study are as follows:

1. The method is adaptable to both single and multi-
ple sensors, demonstrating wide applicability. Even
in SHM systems with a limited number of sensors,
it can quickly and effectively make predictions.

2. Based on the results from the two bridges, the
method shows good predictive performance in
both damaged and undamaged scenarios, indicat-
ing broad applicability.
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Table 4. Comparison of forecasting performances under different damage scenarios.

Damage type Metric PSA-CGAN DeepAR GRU LSTM
PDO NRMSE 0.0175 0.0234 0.0173 0.0517
MAPE 1.4382 2.3242 1.3771 5.3245
MAE 0.0131 0.0443 0.0252 0.5611
PDI NRMSE 0.0041 0.045 0.0264 0.0316
MAPE 2.5512 6.4012 7.1624 11.7959
MAE 0.0254 0.0735 0.1142 0.2935
PD2 NRMSE 0.0178 0.0451 0.0534 0.0824
MAPE 5.3452 10.323 8.7544 11.2321
MAE 0.0436 0.0981 0.1108 0.1198
PD3 NRMSE 0.0569 0.0897 0.1523 0.1123
MAPE 5.7512 10.2115 208121 23.2121
MAE 0.0595 0.1007 01221 0.1327
PD4 NRMSE 0.0546 0.0526 0.0456 0.0754
MAPE 8.4562 16.4567 17.7895 25.8412
MAE 0.0725 0.2156 0.2475 0.3044
PD5 NRMSE 0.0541 0.1312 0.2542 0.1521
MAPE 5.2124 11.5421 15.2102 15.5122
MAE 0.0124 0.2456 0.3457 0.3471
PD6 NRMSE 0.0245 0.0741 0.0785 0.0801
MAPE 2.8112 74123 6.412 13.5123
MAE 0.0302 0.0617 0.0603 0.1093
PD7 NRMSE 0.1512 0.1971 0.3654 0.4512
MAPE 5.5123 7.8453 15.5423 15.6541
MAE 0.0172 0.1536 0.2356 0.2453
PD8 NRMSE 0.1642 0.1842 0.3875 0.2631
MAPE 5.8542 10.6452 17.3423 23.621
MAE 0.0022 0.1874 0.2542 0.2743
PD9 NRMSE 0.0235 0.0751 0.0852 0.0954
MAPE 2.5531 10.4521 15.6421 16.3459
MAE 0.0545 0.1712 0.2623 0.2698
PDI10 NRMSE 0.0426 0.0845 0.1346 0.0845
MAPE 4.5232 19.2454 19.8423 21.2751
MAE 0.0754 0.1742 0.2151 0.2745
PDI1 NRMSE 0.0421 0.0564 0.1512 0.1903
MAPE 5.5341 10.2125 19.561 20.5431
MAE 0.0742 0.1512 0.1835 0.1956
PDI12 NRMSE 0.0541 0.5413 0.7415 0.1512
MAPE 9.5637 22,5123 245124 20.8416
MAE 0.0931 0.1535 0.2489 0.1533
PDI3 NRMSE 0.0512 0.245 0.2987 0.3512
MAPE 11.5122 17.5331 26.2753 21.5664
MAE 0.1223 0.1653 0.2765 0.2136
PD14 NRMSE 0.0564 0.1623 0.3642 0.4562
MAPE 5.5123 7.1874 15.5453 17.8158
MAE 0.0552 0.0923 0.1256 0.2453
PDI15 NRMSE 0.0542 0.1612 0.3530 0.3951
MAPE 2.5122 3.5312 16.5621 25.5631
MAE 0.0634 0.0736 0.2364 0.3654

PSA-CGAN: convolutional generative adversarial network with progressive growing and self-attention; PSA-CGAN-N-SA: PSA-CGAN model
without self-attention; PSA-CGAN-N-PG: PSA-CGAN model without progressive growing.
Bold part represents the optimal score.

3. In long-time series predictions, PSA-CGAN per-
forms well at different distance intervals. However,
as the interval distance increases, its accuracy

decreases.

PSA-CGAN, utilizing convolutional neural net-
work architecture, self-attention, and progressive
growth mechanisms, extends its applicability to
long-time series prediction. It allows modeling
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remote dependencies from convolutional feature
mappings. While performing well for the majority
of time series prediction tasks, it exhibits poor pre-
dictive capabilities for long-time series of certain
sensors (S14, S16).

5. Comparing this method with current advanced predic-
tion methods using three different evaluation criteria
(NRMSE, MAPE, MAE), it is evident that, in 16 com-
parative scenarios, this method’s evaluation values are
closer to 0, indicating better predictive accuracy.

Overall, the results suggest that the PSA-CGAN
mechanisms is a promising and practical solution for
predicting context-free data. It serves as an effective
and fast damage prediction tool.
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