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Abstract
The absence of excitation measurements may pose a huge challenge in the application of many damage identification
methods since it is difficult to acquire the external excitations, such as wind load, traffic load. To deal with this issue, a
novel output-only structural damage identification approach based on reinforcement-aided evolutionary algorithm and
heterogeneous response reconstruction with Bayesian inference regularization is developed. On the one hand, hetero-
geneous measurements (e.g., displacements, strains, accelerations) are rescaled and reconstructed with the aid of
Bayesian inference regularization technique. Structural damages are identified by minimizing the discrepancies between
the measured and reconstructed responses. On the other hand, to solve the optimization-based inverse problem, a
reinforcement-aided evolutionary algorithm, named Q-learning hybrid evolutionary algorithm (QHEA), integrating Jaya
algorithm, differential algorithm, and Q-learning algorithm is proposed as search tool. To validate the feasibility and
applicability of the proposed method, numerical studies on a three-span beam structure and laboratory tests on a five-
story steel frame structure are carried out. The effects of data rescaling and data fusion on response reconstruction and
damage identification are also investigated. The results clearly demonstrate the superiority of QHEA over other heuris-
tic algorithms and heterogeneous data fusion over a single type of measurement. It is shown that both the locations and
extents of the damaged elements can be accurately identified by the proposed method without the information of input
force.
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Introduction

Civil structures may have performance degradation and
damage accumulation during their long-term service
period owing to various reasons, such as earthquakes,
environmental corrosion, material aging, fatigue. It is
significant to implement continuous health monitoring
and early damage identification on the existing major
infrastructure for the purposes of performance assess-
ment, maintenance arrangement, future service life pre-
diction, etc. Therefore, to evaluate the health status,
various structural damage detection methods have been
proposed over the past two decades.1

The vibration-based damage identification methods
have been extensively investigated, and they can be
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roughly divided into two categories, that is, frequency
domain methods and time domain methods. Frequency
domain methods utilize the changes in model para-
meters, such as frequencies,2 mode shapes,3 mode
shape curvature,4 modal strain energy,5 and frequency
response functions,6 for structural damage identifica-
tion especially in the case of unknown excitation, while
some inherent drawbacks limit their practical engineer-
ing applications. It is found that low-order modes are
easy to obtain, but they suffer from low sensitivity to
minor or local damages. In comparison, high-order
model information is more sensitive to small damages
in principle but cannot be accurately extracted. For the
latter category, some identification methods in time
domain have been proposed directly using the time his-
tories of dynamic responses recorded by sensors, such
as the least-square method,7 the maximum-likelihood
estimation,8 the extended Kalman filter,9 the modified
particle filter.10 However, the requirement of excitation
measurements may pose a huge challenge in the appli-
cation of these damage identification methods since it
is often difficult or even impossible to acquire external
excitations, such as wind load, traffic load, earthquake.
Notably, the unknown input excitation and local dam-
ages usually coexist. In this regard, output-only identi-
fication methods are more desirable.11

To address the absence of force measurement, the
correlation function-based methods have been devel-
oped and received much attention. For example, Yang
et al.12 presented a cross correlation function amplitude
vector to detect structure damage. Zhang et al.13 suc-
cessfully identified structural damages using heuristic
algorithms and acceleration correlation functions when
structure is subjected to ambient excitation. Although
favorable results are achieved with correlation
function-based methods, the requirement of long sam-
pling duration and the assumption of stationary
Gaussian white noise process restrict their application
to some extent. Different from the aforementioned
method, another type of output-only methods has been
attempted, namely, simultaneous identification of both
unknown structural damages and unmeasured input
forces.14 For instance, He et al.15 and Zhang et al.16

simultaneously identified structural parameters and
external loads based on extended Kalman filter, and
validated the effectiveness of the proposed method by a
series of experimental tests, while it is noted that treat-
ing the unmeasured excitations as part of unknowns to
be identified may further induce the ill-posedness of the
identification problem. Kalman filter-based methods
require initial estimate of the state vector and its covar-
iance. Poor initial estimates can lead to slow conver-
gence or divergence of the filter. This sensitivity to
initial conditions can be a limitation in applications
where accurate initial state estimates are not available.

Besides, the need for matrix inversions and multiplica-
tions at each time step can pose significant computa-
tional demands, limiting the practical applicability of
these approaches for large or complex structural sys-
tems. Jayalakshmi and Rao17 adopted a new improved
regularization method and dynamic hybrid adaptive
firefly algorithm for simultaneous identification of
input forces and system parameters. Zhang et al.18 con-
structed an iterative strategy by combining Tikhonov
regularization method for force identification and
modified Jaya algorithm for damage identification.

In recent years, many investigators have reported
the use of response reconstruction technique for the
identification of structural damage, and fruitful results
have been achieved.19,20 Fan et al.21 used densely con-
nected convolutional networks to reconstruct accelera-
tion responses of Guangzhou New Television Tower
for the unavailable locations. Response reconstruction
methods based on the transmissibility concept have
received more and more attention, and their pleasant
results in damage identification have been demon-
strated in wavelet domain,22 state space domain23 and
time domain.24 In these proposed methods, the mea-
sured responses from the target structure are divided
into two sets, denoted as measurement set 1 and mea-
surement set 2. The responses of measurement set 2
can be reconstructed by using the transmissibility
matrix and the first set of measurements. Structural
damages are identified by minimizing the difference
between the measured responses from real structure
and reconstructed responses from the numerical model.
In this way, structural damage identification in time
domain is transformed into an optimization problem,
solved by various heuristic algorithms, such as the par-
ticle swarm optimization,25 the tree seeds algorithm,26

the butterfly optimization algorithm,27 the bat optimi-
zation algorithm.28 Different from the abovementioned
algorithms, a new swarm intelligence algorithm, named
Jaya algorithm, was proposed by Rao in 2016 to solve
diverse constrained and unconstrained benchmark
problems.29 The most distinct feature of Jaya algo-
rithm is that any algorithm-specific parameters are not
required. However, the poor search capability in the
basic Jaya algorithm makes it face difficulties in deal-
ing with complex optimization problems. Some modifi-
cations have been presented in previous studies,
introducing search space reduction method,30 k-means
clustering,31 Hooke–Jeeves pattern search,32 shuffling
process,33 etc. However, it is noted that the search
mode in these abovementioned algorithms is still rela-
tively single and monotonous, which is difficult to
achieve good balance between the exploration and the
exploitation. Inspired by the idea that different search
strategies have different optimization performances, to
solve the drawback of single search mode, in this
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paper, a novel reinforcement-aided evolutionary algo-
rithm, named Q-learning hybrid evolutionary algo-
rithm (QHEA), is proposed by integrating Jaya
algorithm, differential evolutionary (DE) algorithm,
and Q-learning algorithm. In each iteration, the best
search strategy from Jaya or DE is adaptively selected
under the guidance of Q-learning. To this end, the bal-
ance between the exploration and exploitation of
QHEA is well achieved.

Nevertheless, most of the output-only methods for
damage identification problem in the present literature
only use a single type of measurement. From the prac-
tical point of view, nowadays, multi-type sensors, such
as displacement transducers, strain gauges, acceler-
ometers are widely employed in the structural health
monitoring systems of large-scale civil structures. Some
studies have reported that making full use of heteroge-
neous responses can enhance the accuracy and reliabil-
ity of damage detection.34 For example, Zhao et al.35

proposed a nonlinear restoring forces identification
scheme through multisensor data fusion of acceler-
ometers and displacement responses, and the results
showed the superiority of hybrid sensor measurement.
Zhang and Xu36 presented a multisensing damage
identification method via response reconstruction, and
verified the effectiveness of the proposed method with
laboratory tests on a simply supported overhanging
beam. Jeong et al.37 applied hybrid acceleration and
angular velocity to successfully identify damages of
monopile offshore wind turbine structures. Wang
et al.38 developed a damage detection method based on
the cross-correlation function among acceleration and
strain data. Based on these previous studies, it is found
that different types of sensors, accelerometers, strain
gauges, and displacement transducers, etc., have their
own merits and drawbacks. Therefore, heterogeneous
response reconstruction is suggested for output-only
damage identification.

Considering the necessities of developing output-
only damage identification for civil structures under
unknown excitation, feasibilities of swam intelligent
algorithms and reinforcement algorithm in solving the
optimization-based inverse problem with multitype
structural responses in practice, in this study, an itera-
tive strategy to identify the unknown structural dam-
ages using output-only fused incomplete dynamic
response measurements is proposed. The contribution
of the present paper is that an output-only structural
damage identification based on QHEA and heteroge-
neous response reconstruction with Bayesian inference
regularization is proposed, to deal with the problem of
structural damage identification without the input exci-
tation. First, heterogeneous response reconstruction
technique is derived considering the complementary
benefits of multitype sensors. Additionally, to solve the

ill-posed problem in response reconstruction owing to
the presence of measurement noise, Bayesian inference
regularization is adopted, and the drifted estimation of
external excitation and structural responses can be
properly addressed. Moreover, to optimize the objec-
tive function established based on the measured and
reconstructed responses, a new reinforcement-aided
evolutionary algorithm QHEA is proposed by integrat-
ing the Jaya, DE and Q-learning algorithms. The glo-
bal search capability of evolutionary algorithms and
the adaptive learning ability of reinforcement learning
are combined. This adaptive nature of QHEA enhances
its robustness and scalability, making it well-suited to
tackle high-dimensional optimization problems, pro-
viding a more reliable solution for structural damage
identification. Finally, numerical studies on a 40-ele-
ment three-span beam structure and experimental vali-
dations on a five-floor steel frame structure are
conducted to demonstrate the applicability of the
proposed method. The effects of measurement noise,
modeling error, data rescaling, data fusion on the iden-
tification results are also investigated.

Heterogeneous response reconstruction

Response reconstruction in time domain

The equation of motion of a linear structural system
subjected to external input force can be expressed as
follows:

M€u tð Þ+ C _u tð Þ+ Ku tð Þ = Bf tð Þ ð1Þ

where €u tð Þ, _u tð Þ, u tð Þ stand for the vectors of accelera-
tion, velocity, and displacement responses, respectively;
M, C, K are the mass, damping, stiffness matrices; f tð Þ
means the time-dependent external excitation and B
denotes the mapping matrix with the value of 1 relating
the force location. Rayleigh damping model30

C = aM + bK is adopted.
For a structure under the unit impulse excitation,

the motion equation can be written as

M€h tð Þ+ C _h tð Þ+ Kh tð Þ= Bd tð Þ ð2Þ

where d tð Þ is the Dirac delta function. The impulse
response function is able to be represented as a free
vibration state with the specific initial conditions.39

Assuming the structural system is initially in static
equilibrium, the unit impulse response function can be
calculated by numerical integration methods, for exam-
ple, Newmark-b method

M€h tð Þ+ C _h tð Þ+ Kh tð Þ= 0

h 0ð Þ = 0, _h 0ð Þ= M�1B

�
ð3Þ
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where h(t), _h tð Þ, €h tð Þ are the unit impulse displacement,
velocity, and acceleration vectors in the time domain,
respectively.

The strain responses eq tnð Þ at the location q with
local co-ordinates (x, y) in a typical Euler beam ele-
ment can be described40

eq =
u�j � u�i

l
+

6y

l2
� 12xy

l3

� �
v�i +

4y

l
� 6xy

l2
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u�i

+ � 6y

l2
+

12xy

l3

� �
v�j +

2y
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� 6xy
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� �
u�j

ð4Þ

where u�i , v
�
i , u
�
i , u
�
j , v
�
j , u
�
j

h iT

stand for the i-th and j-th

nodal displacement vectors of the e-th element; l means
the length of element.

The degrees of freedom (DOFs) of elemental nodal
displacements u�i , v

�
i , u
�
i , u
�
j , v
�
j , u
�
j is rewritten as e1, e2,

e3, e4, e5, e6. The unit strain impulse response function
he

q tð Þ at location q can be calculated by the unit displa-
cement impulse response function

he
q tð Þ=

he4 tð Þ � he1 tð Þ
l
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where he1 tð Þ, he2 tð Þ, he3 tð Þ, he4 tð Þ, he5 tð Þ, he6 tð Þ are the
unit displacement impulse response function for the
DOFs e1, e2, e3, e4, e5, e6, respectively.

For a structural system with zero initial conditions,
the displacement, strain, and acceleration responses
from the m-th, q-th, s-th DOFs at instant tn under gen-
eral external excitation f(t) can be expressed as
Equations (6)–(8), respectively,

um tnð Þ =

ðtn
0

hm tn � tð Þf tð Þdt ð6Þ

eq tnð Þ =

ðtn
0

he
q tn � tð Þf tð Þdt ð7Þ

€us tnð Þ =

ðtn
0

€hs tn � tð Þf tð Þdt ð8Þ

where um tnð Þ, eq tnð Þ, €us tnð Þ are the displacement, strain,
and acceleration measurements; hm tn � tð Þ, he

q tn � tð Þ,
€hs tn � tð Þ denote the unit displacement, strain, accelera-
tion impulse response functions, respectively.

The discrete form of Equations (6)–(8) can be
expressed as Zhang et al.13

um tnð Þ=
Xtn

t = 0

hm tn � tð Þf tð Þ ð9Þ

eq tnð Þ=
Xtn

t = 0

he
q tn � tð Þf tð Þ ð10Þ

€us tnð Þ=
Xtn

t = 0

€hs tn � tð Þf tð Þ ð11Þ

The relationship between the output responses and
input force can be written as

Yu = HuF, Ye = HeF, Y€u = H€uF ð12Þ

where Yu, Ye, Y€u are the assembled displacement, strain,

and acceleration measurements, Yu = yu1
, yu2

, :::, yun
½ �T ,

Ye = ye1
, ye2

, :::, yen
½ �T , Y€u = y€u1, y€u2, . . . , y

€u n

� �T
. The di-

mensions of Yu, Ye, Y€u are un3tnð Þ31, en3tnð Þ31,
€un3tnð Þ31, and un, en, €un represent the number of dis-
placement sensors, strain gauges, accelerometers. The
dimension of external excitation F is tn31.

In Equation (12), Hu = Hu1
,Hu2

, :::,Hun
½ �T , He = He1

,½
He2

, :::,Hen
�T , H€u = H€u1,H€u2, . . . ,H€un½ �T , the dimensions

of Hu, He, H€u are un3tnð Þ3tn, en3tnð Þ3tn, €un3tnð Þ3tn,
and they can be given by following equations,
respectively
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H€u =

€h€un
t0ð Þ 0 0 0 0
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t1ð Þ €h€un
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It is noted that the magnitudes of heterogeneous mea-
surements, such as displacement, strain, and accelera-
tion are very different, so rescaling coefficients are
introduced into Equation (12) as follows:
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~Yu = auYu = auHuF = ~HuF

~Ye = aeYe = aeHeF = ~HeF

~Y€u = a€uY€u = a€uH€uF = ~H€uF ð16Þ

where au, ae, a€u are the rescaling coefficients, and they
can be calculated by

au = Yuk k�1
2 , ae = Yek k�1

2 , a€u = Y€u
�1
2 ð17Þ

where k k2 represents the L2 norm of the given vector.
The heterogeneous data fusion can be achieved by

Y = HF ð18Þ

where Y = ~Y u, ~Y e, ~Y €u

� �T
, H = ~Hu, ~H e, ~H€u

� �T
, ~Hu = auHu,

~He = aeHe, ~H€u = a€uH€u.
In previous studies, response reconstruction tech-

nique has been applied into output-only structural
identification with only one type of sensor. In practice,
a multisensors monitoring system is usually installed on
the large infrastructure, thus heterogeneous measure-
ments, displacements, strains, accelerations, etc., are
available. Herein, response reconstruction with multi-
ple types of vibration data in time domain is derived.
First, heterogeneous responses can be divided into two
sets, that is, measurement set 1 Y set1

mea and set 2 Y set2
mea ,

given by

Y set1
mea = H1F

Y set2
mea = H2F

�
ð19Þ

It is noted that there is no specific rule about how to
divide the multitype responses into two sets, but the
number of sensors in the measurement set 1 should
exceed the number of unknown external excitations on
the structure.

Then, the unknown input force and dynamic
responses of the second set can be calculated using the
first set of measurements as follows:

F = H1ð Þ+Y set1
mea ð20Þ

Y set2
rec = H2 H1ð Þ+Y set1

mea ð21Þ

where ()+ means the pseudoinverse and transformation
matrix T12 = H2 H1ð Þ+.

For Equations (20) and (21), the ordinary least
squares may lead to unbounded solution especially tak-
ing the noise-polluted measurements into consider-
ation. In order to deal with the misidentified estimation
of external excitation and responses, Tikhonov regular-
ization method41 is employed

F = H1
T H1 + lI

� ��1
HT

1 Y set1
mea ð22Þ

Y set2
rec = T12Y set1

mea = H2 HT
1 H1 + lI

� ��1
HT

1 Y set1
mea ð23Þ

where l stands for the nonnegative regularization para-
meter; I means the identity matrix.

As is known, the key point of using Tikhonov regu-
larization technique lies in how to efficiently find the
optimal regularization parameter l. The L-curve
method, the generalized cross-validation method, and
the S-curve method have been adopted but suffer from
comparatively expensive computation issue for a large-
scale matrix. In addition, it may find that the L-curve
doesn’t have a distinct corner, leading to the difficulty
in determining the regularization parameter. In recent
years, Bayesian inference method has been developed
to adaptively determine the regularization parameter,
adopted in this study.

Bayesian inference method

In this section, a statistical Bayesian learning scheme is
used to reconstruct the unknown input force. The
unknown force F is modeled in the posterior probabil-
ity density function (PDF) p F,s2, t2 Yjð Þ through hier-
archical modeling as follows42:

p F,s2, t2 Yj
� �

}p Y Fj ,s2
� �

p F t2
		� �

p s2
� �

p t2
� �

ð24Þ

where p Y Fj ,s2ð Þ means the likelihood function and
p F t2

		� �
represents the prior PDF, and they can be

expressed as

p Y Fj ,s2
� �

}
1

sn0N
exp � 1

2s2
HF � Yk k2

� �
ð25Þ

p F t2
		� �

}
1

tnf N
exp � 1

2t2
Fk k2

� �
ð26Þ

where n0 means the total number of measurements
including displacements, strains, and accelerations,
that is, n0 = un + en + €un; s and t stand for the standard
deviation and scaling parameter; nf represents the
number of force.

For the hyperparameters s2 and t2, p s2ð Þ and p t2ð Þ
are their conjugate prior PDFs, modeled as the follow-
ing inverse Gamma distribution42

p s2
� �

=
b1

a1

G a1ð Þ
s�2 a1 + 1ð Þe�b1s�2

,

p t2
� �

=
b2

a2

G a2ð Þ
t�2 a2 + 1ð Þe�b2t�2

ð27Þ

where a1, b1, a2, b2 denote the nonnegative hyper-
parameters.

The posterior PDF is written as

Zhang et al. 5



p F,s2, t2 Yj
� �

}
t�2 a2 + 1ð Þ�nf N

s2 a1 + 1ð Þ+ n0N

exp � 1

2s2
HF � Yk k2 � 1

2t2
Fk k2 � b1s�2 � b2t�2

� �

ð28Þ

By the logarithm and the negative of Equation (28),
the following equation is obtained

J F,s2, t2
� �

=
1

2s2
HF � Yk k2 +

1

2t2
Fk k2 + b1s�2 + b2t�2

+ 2 a2 + 1ð Þ + nf N
� �

ln t + 2 a1 + 1ð Þ+ n0N½ � lns

ð29Þ

Setting the partial derivative of J F,s2, t2ð Þ to zero.
The optimal solutions F̂ can be obtained by

F̂ = HT H +
ŝ2

t̂2
I

� ��1

HT Y ð30Þ

The regularization parameter can be automatically
determined by l = ŝ2

t̂2 , then, the unmeasured input force
is reconstructed.

Reinforcement-aided evolutionary
algorithm

In this section, damage identification problem is trans-
formed into a nonlinear optimization-based inverse
problem. The objective function is first given, and then
a new reinforcement-aided evolutionary algorithm
QHEA is proposed to solve this optimization problem.

Optimization-based damage identification problem

As presented in Refs. 18, 21, 22, 31, and 32, structural
damage is simulated as linear reduction of flexural
stiffness and the alternation of mass matrix is directly
ignored. Assuming the target structure consists of ne
elements, the damage extent of the i-th element can be
defined as

ai =
Ei � Ed

i

Ei

, i = 1, 2, . . . ne ð31Þ

where ai denotes the i-th elemental damage extent; ne
means the number of elements; Ei and Ed

i stand for the
elasticity modulus of element i in the healthy state and
damaged state, respectively.

The damaged structural stiffness matrix Kd can be
expressed as

Kd =
Xne

i = 1

1� aið ÞKele
i , 0<ai<1 ð32Þ

where Kele
i stands for the i-th elemental stiffness matrix

under the healthy state; ne means the number of total
elements. It is noted that ai = 0 denotes the i-th element
is intact while ai = 1 implies the i-th element is com-
pletely damaged.

The acceleration responses are utilized to establish
the objective function owing to their abundant infor-
mation relevant to structural damages. In the
optimization-based damage identification problem, the
purpose is to find the best structural parameters u by
minimizing the discrepancy between the measured
responses Y set2

mea and the reconstructed responses Y set2
rec uð Þ

of the second set from the damaged structure as
follows:

obj = Y set2
mea � Y set2

rec uð Þ


 



2
ð33Þ

where obj represents the objective function to be opti-
mized; the unknown structural parameter is calculated
by ui = 1� ai within the range of [0, 1].

Q-learning hybrid evolutionary algorithm

In this section, a novel QHEA is proposed as search
tool in damage identification. A search strategy pool is
formulated based on Jaya algorithm and differential
evolution algorithm, and the best strategy will be adap-
tively selected for each individual under the guidance
of Q-learning algorithm.

Search strategy pool. DE and Jaya algorithm belong to
the population-based stochastic optimization algo-
rithms. Each individual in the population represents a
candidate solution of structural damage index vector.
The initial population can be randomly generated
within the upper and lower search limits.30

For DE or Jaya algorithm, exploration and exploi-
tation are two necessary components to guide the
direction of heuristic algorithm, while there is a para-
dox between global exploration and local exploitation.
The former refers to exploring the new regions in the
given search space, whereas the latter implies accessing
the areas around the previously visited points. If DE or
Jaya algorithm focuses on the global exploration mode
excessively, the convergence performance would be
weakened to some extent. In contrast, if much atten-
tion is paid to the local exploitation mode, the algo-
rithm might fall into local optimum. Therefore, to
achieve the trade-off between exploitation and explora-
tion, a search strategy pool including DE/rand/1 and
DE/rand/2, DE/current-to-best/1 and Jaya mutation is
developed by combining the merits of different search
strategies, given by
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Strategy pool =

Group1
DE=rand=1

DE=rand=2

�

Group2
DE=current � to� best=1

Jaya mutation

�
8>><
>>:

ð34Þ

Strategy pool represents a repository including sev-
eral different search operations. By Equation (34), the
proposed search strategy pool has two different groups,
that is, Group1 and Group2. Group1 consists of two
commonly referred mutation strategies of DE/rand/1
and DE/rand/2, denoted as exploration group, and
Group2 contains two different strategies, namely, DE/
current-to-best/1 and Jaya mutation, denoted as exploi-
tation group. Search strategy pool can be further
expressed as

Strategy pool =

Vi,G = Xr1,G + Fmu Xr2,G � Xr3,Gð Þ
Vi,G = Xr1,G + Fmu Xr2,G � Xr3,Gð Þ+ Fmu Xr4,G � Xr5,Gð Þ
Vi,G = Xi,G + Fmu Xbest,G � Xi,Gð Þ+ Fmu Xr1,G � Xr2,Gð Þ
Vi, j,G = Xi, j,G + rand13 Xbest, j,G � Xi, j,G

		 		� �
� rand23 Xworst, j,G � Xi, j,G

		 		� �

8>><
>>:

ð35Þ

where Xr1,G,Xr2,G,Xr3,G,Xr4,G,Xr5,G stand for five dif-
ferent candidate solutions randomly selected from the
current population at the G-th iteration, and it is noted
r1 6¼ r2 6¼ r3 6¼ r4 6¼ r5 6¼ i; Fmu represents the mutation
operator, set as 0.8; rand1 and rand1 are two random
numbers in the range of [0, 1]; Vi,G is the i-th mutated
individual; Xbest, j,G and Xworst, j,G mean the value of the
j-th variable for the best and the worst individuals at
the G-th iteration, respectively; Xi, j,G

		 		 denotes the
absolute value of Xi, j,G.

By Equation (34), it is found that the search strategy
pool combines the strong global exploration capacity
of Group1 and the powerful local exploitation capacity
of Group2, so the tradeoff between exploration and
exploitation can be better realized.

Q-learning algorithm. Reinforcement learning as a repre-
sentative kind of machine learning technique aims to
make the agent take the optimal action under an
unknown environment so as to get the maximum long-
term rewards. Q-learning is one of the most classical
and well-known algorithms of reinforcement learning
that recently has been widely utilized to improve the
performance of diverse heuristic algorithms, such as
simulated annealing,43 tree seeds algorithms,44 water
strider algorithm.45 There are five main components of
Q-learning algorithm, namely, learning agent, an envi-
ronment, states, actions, and rewards. More detailed
description can be found in Huynh et al.46

To implement the Q-learning algorithm, a set of
states of the environment S = s1, s2, :::, snf g and

corresponding actions A = a1, a2, :::, anf g to be per-
formed for the learning agent are considered. During
the iterative learning process, the target agent deter-
mines the probability of choosing different actions in
different states according to the Q-table. The updating
Bellman equation of Q-value is given as follows:

Qnew st, atð Þ= 1� uð ÞQ st, atð Þ+ u wt + 1 + g �maxQ st + 1, atð Þ½ �
ð36Þ

where Q st, atð Þ and Qnew st, atð Þ stand for the previous
and new Q-values; maxQ st + 1, atð Þ denotes the maxi-
mum Q-value for all actions; u means the learning rate
within [0, 1]; g represents the discount factor within [0,
1]; wt + 1 refers to the observed reward/penalty obtained
from executing action a.

The discount factor g determines the effect of the
future reward on the agent decisions, usually set as 0.8.
To make the Q-learning switch from more exploration
to exploitation mode, the learning rate u is set as
ut = 1� 0:93 Iter

Max Iter
,46 in which Iter and Max Iter are

the current iteration number and the maximum itera-
tion numbers.

Implementation of QHEA. Inspired by abundant successful
applications of Q-learning in heuristic algorithms, herein,
QHEA is proposed by integrating the search strategy
pool and the Q-learning together. Specifically, the indi-
viduals of optimization algorithms act as the learning
agent; the environment refers to the search domain of
the individuals; the states represent the current operation
of each individual, that is, DE/rand/1, DE/rand/2, DE/
current-to-best/1 and Jaya mutation; the action stands
for it changes from one state to another.

The proposed QHEA can be carried out as following
several steps. Initially, the initial population of hybrid
algorithm is randomly generated. Then, randomly pro-
duce a 4 3 4 matrix Q st, atð Þ as the initial Q-table for
each individual in the current population. The dimen-
sion of matrix Q is the number of search strategies.
Next, the individual selects the best operation on the
basis of the position of the maximum Q-value in the Q-
table as follows:

best action = Max Q current state, all actionsð Þ½ � ð37Þ

Subsequently, for the current individual, implement
the selected operation and calculate the new objective
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function. The positive reward and negative penalty are
defined according to whether the objective function is
improved

wt =
1 if obj is improved
�1 otherwise

�
ð38Þ

Update the content of Q-table with Equations (36).
Finally, repeat iteration process until termination cri-
terion is reached. The pseudocode of the proposed
QHEA is presented in Figure 1.

The proposed QHEA effectively combines the mer-
its of different search strategies, that is, DE/rand/1,
DE/rand/2, DE/current-to-best/1 and Jaya mutation in
the framework of Q-learning algorithm. For each indi-
vidual, the most suitable search strategy is adaptively
selected. To this end, the balance between the explora-
tion and exploitation of QHEA is effectively achieved.

Implementation procedures

In this section, an iterative strategy is developed to
identify the unknown structural damages with the

incomplete output-only responses, and its flowchart is
shown in Figure 2. The measured multiple types of
dynamic responses, including displacements, strains,
accelerations, are divided into two different measure-
ment sets, that is, measurement set 1 Y set1

mea and measure-
ment set 2 Y set2

mea . As presented in Figure 2, measurement
set 1 is utilized to reconstruct unmeasured input force
based on Bayesian inference regularization method
while measurement set 2 is employed to construct the
objective function to be optimized by the proposed
QHEA. The structural damages and the unknown
external excitation can be iteratively estimated by mini-
mizing the objective function defined in Equation (33)
until the termination criterion is satisfied.

Herein, more detailed implementation procedures of
the proposed method are illustrated as follows:

Step 1: Predefine parameters of QHEA including popu-
lation size NP, dimension of parameter Dim, maximum
number of iterations Max_Iter, mutation operator Fmu

and crossover operator CR; randomly produce initial
guess of structural parameters u within upper and lower
search space limits as the starting point for the optimi-
zation process.

Figure 1. The pseudocode of proposed QHEA.
QHEA: Q-learning hybrid evolutionary algorithm.
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Step 2: Acquire the dynamic heterogeneous responses
including displacements, strains, accelerations from the
damaged structure; rescale these measurements and
divide them into two different measurement sets, that
is, set 1 Y set1

mea and set 2 Y set2
mea .

Step 3: Calculate the unit impulse displacement, velo-
city, and acceleration vectors using Equation (3) and
obtain Hankel matrices Hu, He, H€u with Equations
(13)–(15); compute the rescaling coefficients au, ae, a€u

by Equation (17) and assemble the rescaled matrices

H = ~Hu, ~H e, ~H€u

� �T
in Equation (18).

Step 4: Set small hyperparameters for the Bayesian
inference-based regularization parameter a1, b1, a2, b2;
determine regularization parameter l with Bayesian
inference regularization, identify the unmeasured input
force with Equation (22), and reconstruct responses of
measurement set 2 Y set2

rec using Equation (23).
Step 5: Construct the objective function using Equation
(33) based on the measured responses Y set2

mea and the
reconstructed responses Y set2

rec of measurement set 2
from the damaged structure.
Step 6: Optimize the objective function by iteratively
updating structural parameters uiter with the proposed
QHEA.
Step 7: Repeat steps 3–6 until the maximum iteration
numbers are reached or convergence criteria is satisfied
as follows:

ui, iter + 1 � ui, iterk k2

ui, iterk k2

3100%<Tolerance ð39Þ

where Tolerance stands for the convergence tolerance
value.

Step 8: Output the identified external excitation and
structural damages.

Numerical studies

To verify the applicability and effectiveness of the pro-
posed output-only identification method, numerical
studies on a three-span beam structure are conducted
in MATLAB 2020a on the Intel(R) Core i5-13600 CPU
@ 3.50 GHz PC with 16.00 GB RAM. The statistical
results from 20 independent runs are summarized as
the final results.

The numerical model of three-span beam structure
is shown in Figure 3. It is observed that the beam struc-
ture is numerically modeled by 40 Euler–Bernoulli ele-
ments, and the length of each element is 100 mm. The
width and height of the rectangular cross-section are 50
and 6 mm, respectively. There is a pin support at the
node 11 and a roller support at the node 31. For the
steel material of the beam elements, the Young’s modu-
lus and mass density are 2.1 3 1011 N/m2 and 7860 kg/
m3, respectively. The Rayleigh damping model is
adopted, and the damping ratio is set as 1% for the
first two modes to determine the coefficients. The first
ten natural frequencies are 1.9, 3.2, 6.7, 16.7, 25.1, 28.3,
39.3, 61.5, 77.2, and 82.8 Hz. A random input excita-
tion with zero mean and unit standard deviation is ver-
tically applied at node 23. The dynamic responses of

Figure 2. Implementation procedures of proposed identification method.
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the beam structure are recorded by multitype sensors,
that is, displacement transducers, strain gauges, and
accelerometers. It is noted that vertical nodal displace-
ments and accelerations are measured by displacement
transducers and accelerometers, while the flexural
deformations are measured by strain gauges attached
to the upper surface at the middle of selected elements.

As presented in Figure 3, in case 1, all sensors are
divided into two different sets, that is, measurement set
1 and measurement set 2. The measurement set 1 con-
sists of six heterogeneous measurements, including one
displacement response (from node 41), two strain
responses (from elements 17 and 26), and three accel-
eration responses (from nodes 6, 21 and 29). The mea-
surement set 2 has five heterogeneous measurements
including one displacement response (from node 3),
two strain responses (from elements 7 and 35), and two
acceleration responses (from nodes 15 and 33). The
sampling frequency is set as 1000 Hz and sampling
duration is defined as 1 s in this example. To investi-
gate the adverse effect of measurement noise on the
identification accuracy, white Gaussian noise is consid-
ered as follows:

Ymea = Yclean + N l3Nnoise RMS Ycleanð Þ ð40Þ

where Yclean and Ymea stand for the clean and noise-
polluted signals; N l represents noise level; Nnoise implies
the standard normal distribution vector with zero
mean and unit standard deviation; RMS Ycleanð Þ denotes
the root mean square of clean response Yclean. Herein,
three levels of noise, that is, 0%, 5% and 10% are
considered.

Results of response reconstruction

In order to verify the performance of the heterogeneous
response reconstruction with Bayesian inference regu-
larization technique, the intact finite element model is

first regarded as the known. The responses from mea-
surement set 1 are utilized to reconstruct the unmea-
sured input force and the responses of measurement set
2. The relative error (RE) and Pearson correlation coef-
ficient (PCC) are used to evaluate the deviation and lin-
ear correlation degree between the measured and
reconstructed measurements as follows:

RE =
Yrec � Ymeak k2

Ymeak k2

3100% ð41Þ

PCC Ymea, Yrecð Þ=
Cov Ymea, Yrecð Þ

sYmea
sYrec

ð42Þ

where Cov stands for covariance; s means standard
deviation.

Figures 4 and 5 present the results of reconstructed
strain responses at element 7 and reconstructed accel-
eration responses at node 33, respectively. It is
observed that the reconstructed and real responses are
almost overlapping. In Figures 4(b) and 5(b), the dis-
crepancy amplitudes are 2.5 3 10216 and 3 3 10210

for noise free case, indicating the good accuracy of
response reconstruction. When contaminated with
10% noise, the PCC between the measured and recon-
structed responses of set 2, as listed in Table 1, are
0.9945, 0.9941, 0.9949, 0.9938, and 0.9938, which also
demonstrates that a good accuracy of structural
response reconstruction is achieved. In addition, the
unmeasured input force is reconstructed and presented
in Figure 6. The reconstructed force matches well with
the actual value without noise in both time domain
and frequency domain. Obvious discrepancies between
the reconstructed forces and actual value are observed
in time domain with 10% noise, while compared to the
natural frequencies of beam structure, the frequency
component of the identified force within the range of
0–100 Hz matches well with the actual value even
under 10% noise, which explains the effectiveness of
the proposed method in force reconstruction.

Figure 3. The numerical model of three-span beam structure.
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Damage identification with QHEA

In the proposed output-only identification strategy, both
external excitation and actual damages of three-span
beam structure are unknown. In case 1, it is assumed
that there are 20% and 30% stiffness reductions at the
8th and 24th elements, namely, a8 = 0:2, a24 = 0:3. For
the parameters of the proposed QHEA, population size
and maximum iteration number are set as 100 and 400,
respectively. Figure 7 shows the identified results with
the proposed QHEA under three levels of noise. Table 2
gives the calculated mean errors and maximum errors. It
can be found that pleasant identification results are
achieved with mean errors of 0.15%, 0.36%, 0.81%, as
well as the maximum errors of 1.78%, 3.22%, 4.77%
corresponding to the cases of noise free, 5% noise, and
10% noise, respectively. Besides, the effect of modeling
errors on the identification results is investigated. To
consider the modeling errors in numerical structure, 1%
uncertainty with Gaussian distributions is added into the
stiffness parameters for all elements.47 Figure 8 presents

the identified damage extents with modeling errors.
Obviously, damage locations and extents of elements 8
and 24 are successfully detected. By Table 2, 1.14%
mean error and 5.02% maximum error are identified for
10% noise case, which implies the proposed method can
accurately detect structural damages even if taking the
measurement noise and modeling errors into account.

Taking the evolutionary process of identified dam-
aged extents under 5% noise for example, Figure 9 pre-
sents the identified damage extents with iteration by
the proposed QHEA. Around 100 iterations are
needed to approach the exact values. After 400 itera-
tions, the identified damage extents are a8 = 0:1699 and
a24 = 0:3207. The estimated damage indexes agree well
with the actual values.

Comparison with other algorithms

In this section, to show the superiority of QHEA,
other three heuristic algorithms including modified

(a) (b)

(c) (d)

(e) (f)

Figure 4. Measured and reconstructed strain responses at element 7: (a) comparison without noise, (b) discrepancy without noise,
(c) comparison with 5% noise, (d) discrepancy with 5% noise, (e) comparison with 10% noise, and (f) discrepancy with 10% noise.
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differential evolution algorithm (MDE),48 Jaya algo-
rithm, improved Jaya algorithm (I-Jaya)31 are
employed to estimate a new damage case, and their
results are compared with that acquired by the pro-
posed QHEA. The common parameter settings of
MDE, Jaya, I-Jaya, QHEA, population size
NP = 100, maximum iterations Max_Iter = 400, tol-
erance Tol = 5 3 1022, total evaluations = 40,000

are used. As for the algorithm-specific parameters,
mutation rate and threshold value are 0.4 and 0.1 for
MDE, respectively. Mutation rate, crossover rate, and
discount factor are set as 0.8, 0.9, 0.8 for QHEA.

In the second damage case, it is assumed that there
are 20%, 10%, 10%, 20% stiffness reductions at the
8th, 15th, 24th, and 32th elements, namely, a8 = 0:2,
a15 = 0:1, a24 = 0:1, a32 = 0:2. As presented in Figure 10,

(a) (b)

(c) (d)

(e) (f)

Figure 5. Measured and reconstructed acceleration responses at node 33: (a) comparison without noise, (b) discrepancy without
noise, (c) comparison with 5% noise, (d) discrepancy with 5% noise, (e) comparison with 10% noise, and (f) discrepancy with 10%
noise.

Table 1. RE and PCC of measurement set 2.

Type of reconstruction 0% noise 5% noise 10% noise

RE PCC RE PCC RE PCC

Displacement response at node 3 8.17e-10 1.00 4.93 0.9988 10.47 0.9945
Strain response at element 7 4.13e-09 1.00 5.26 0.9986 10.83 0.9941
Strain response at element 35 6.34e-09 1.00 5.29 0.9986 10.04 0.9949
Acceleration response at node 15 2.91e-08 1.00 5.61 0.9984 11.15 0.9938
Acceleration response at node 33 1.07e-08 1.00 5.46 0.9985 11.17 0.9938

RE: relative error; PCC: Pearson correlation coefficient.
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case 2 consists of 11 sensors installed on the structure
with the same placement in Zhang and Xu,36 and they
can be divided into two different sets, that is, measure-
ment set 1 and measurement set 2. The measurement
set 1 has five heterogeneous measurements, including
one displacement response (from node 41), two strain
responses (from elements 11 and 31), and two accelera-
tion responses (from nodes 1 and 26). The measure-
ment set 2 contains six heterogeneous measurements,
including one displacement response (from node 1),
three strain responses (from elements 6, 21 and 35),
two acceleration responses (from nodes 16 and 41).

Figure 11 shows the evolutionary process of objec-
tive function values based on MDE, Jaya, I-Jaya,
QHEA for noise-free case. It is easily observed that
the proposed QHEA is able to achieve faster conver-
gence speed, and only 312 iterations are needed to
meet convergence criteria. The objective function val-
ues acquired by MDE, Jaya, I-Jaya, QHEA are
0.4971, 0.1711, 0.0167, and 0.0014, respectively. The

smallest value of QHEA demonstrates it can achieve
the best identification results. Figure 12 presents the
final identification results using MDE, Jaya, I-Jaya,
QHEA, and REs of damage extents are listed in
Table 3. It is clearly noticed that several large false
identifications are obtained by MDE at elements 1, 3,
33, 39, 40, and the maximum RE are 82.64% for a8.
Similar to MDE, Jaya algorithm fails in identifying
damage locations and extents accurately. Compared
with MDE and Jaya, less errors are obtained by I-
Jaya algorithm, but it still has some difficulties in
estimating the damage extents at elements 8 and 24.
In contrast, as illustrated in Figure 12 and Table 3,
the proposed QHEA provides the most satisfactory
identification results with only 3.21% maximum RE
for identified damage extents. These results imply
that the balance between global exploration and local
exploitation of the proposed QHEA is well realized
by adaptively selecting the best action from strategy
pool.

(a) (b)

(c) (d)

(e) (f)

Figure 6. Comparison of the reconstructed force with actual value: (a) time history without noise, (b) frequency spectrum
without noise, (c) time history with 5% noise, (d) frequency spectrum with 5% noise, (e) time history with 10% noise, and (f)
frequency spectrum with 10% noise.
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Figure 7. Identified damage results without modeling errors for case 1: (a) 0% noise, (b) 5% noise, and (c) 10% noise.

Figure 8. Identified results considering modeling errors for case 1: (a) 0% noise, (b) 5% noise, and (c) 10% noise.

Table 2. Identified results using QHEA for case 1 with and without initial modeling errors (%).

Cases 0% noise 5% noise 10% noise

Mean error Max error Mean error Max error Mean error Max error

Without modeling error 0.15 1.78 0.36 3.22 0.81 4.77
With modeling error 0.86 2.21 1.09 3.71 1.14 5.02

QHEA: Q-learning hybrid evolutionary algorithm.
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Experimental studies

Description of structural model

Experimental studies on a five-floor steel frame model
in the laboratory are carried out to further validate the
effectiveness of the proposed output-only strategy for
structural damage identification. Figure 13 depicts the
experimental setup and geometric dimensions of
laboratory model. The height, length, and width of the
frame structure are 1750, 300, and 400 mm, respec-
tively. In each floor, the dimensions of story slab are
300 3 400 3 15 mm, and there are four identical col-
umns with the cross-section of 40 3 4 mm. The finite
element model of the steel frame can be simplified as a
5-DOF shear-type system in consideration of the com-
paratively strong floors and weak columns. The mass
density and initial elastic modulus of steel material are
7850 kg/m3 and 2.06 3 1011 N/m2, respectively. A
vibration exciter (Modal Shop 2100E11) is anchored

on counterforce wall to provide sinewave input excita-
tion at the top floor of frame structure. A power
amplifier is employed to generate sufficient power to
actuate the vibration exciter. In order to directly mea-
sure external input excitation, as shown in Figure
14(a), a force sensor (PCB208C02) is installed between
the shaker and the frame model. By Figures 13
and 14(b), it is also observed that five model 991C
accelerometers and five displacement transducers are
used to record the horizontal acceleration and displace-
ment responses of each floor with the Quantum X data
acquisition system. According to the theory of
response reconstruction technique with multitype sen-
sors, heterogeneous measurements are divided into two
sets. The measurement set 1 consists of displacement
and acceleration responses of the first, third, fifth
floors, and the measurement set 2 contains displace-
ment and acceleration responses of the other floors. A
20 s vibration data with sampling frequency of 50 Hz
is recorded for initial model updating and damage
identification.

Based on the estimation of the geometric infor-
mation and material property, the lumped masses of
five stories including accelerometer are known, that
is, M1 = 24.99 kg, M2 = 24.94 kg, M3 = 24.93 kg,
M4 = 24.75 kg, M5 = 24.80 kg, respectively. As
listed in Table 4, the measured natural frequencies
are obtained by the peak-picking method from the
vibration measurements, and their values are 1.998,
5.988, 8.990, 11.962, 14.988 Hz. The analytical fre-
quencies using the finite element method in intact
state are 2.022, 5.856, 9.274, 11.915, 13.584 Hz.
More than 9.3% maximum RE indicates that there
are large modeling errors in the established initial
finite element model. To calibrate the finite element
model, initial model updating is conducted by
adjusting stiffness parameters with the proposed
QHEA. Regarding the parameter settings of QHEA,

Figure 9. The evolutionary process of identified damaged
extents for three-span beam structure (5% noise).

Figure 10. The placement of multitype sensors in case 2.
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population size and maximum number of iterations
are set as 40 and 200. It is observed from Table 4

that the discrepancies of model frequencies between
the numerical model after updating and the experi-
mental model are significantly decreased with less
than 2% maximum RE. Thus, the updated model
matches the experimental model well, so it can be
regarded as baseline model in the subsequent struc-
tural damage identification.

To check the accuracy of response reconstruction
with experimental data, taking the responses in the
first second, for example, Figure 15 shows the mea-
sured and reconstructed acceleration responses of the
second floor and the fourth floor. The reconstructed
responses agree well with the measured ones with the
REs of 4.74%% and 3.74%, respectively. In addition,
the mean squared error (MSE), root mean square
error (RMSE), and mean absolute error (MAE) are
also calculated to evaluate the accuracy of response
reconstruction. MSE are 0.0037 and 0.0036 for the
second floor and fourth floor, RMSE are 0.0609 and
0.0603 for the second floor and fourth floor, MAE
are 0.0497 and 0.0485 for the second floor and fourth
floor.

Figure 11. The evolutionary process of objective function
values for MDE, Jaya, I-Jaya, and QHEA.
MDE: modified differential evolution algorithm; QHEA: Q-learning

hybrid evolutionary algorithm; I-Jaya: improved Jaya algorithm.

(a) (b)

(c) (d)

Figure 12. Identified damage results in case 2 using: (a) MDE, (b) Jaya, (c) I-Jaya, and (d) QHEA.
MDE: modified differential evolution algorithm; QHEA: Q-learning hybrid evolutionary algorithm; I-Jaya: improved Jaya algorithm.
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Identification of two damages scenarios

In order to test the performance of the proposed
method in detecting, localizing, and quantifying struc-
tural damages, artificial damages are introduced into
the steel frame structure by reducing the cross-section
of columns. Two damage scenarios are considered, and
four tests are implemented in each damage scenario.
All columns in the fifth floor are replaced from original
width of 40 mm to a smaller width of 36 mm, denoted
as scenario 1, which results in 10% stiffness reduction
for element 5. In the same way, all columns in the
fourth floor are replaced from original 40 mm to more

thinner 32 mm, named as scenario 2, which leads to
20% equivalent stiffness reduction for element 4.
Herein, mass alteration can be directly neglected owing
to less than 2% slight reductions of mass in these two
damage scenarios, rendering it hard to be successfully
detected.

Table 3. Identified damage extents and their relative errors using MDE, Jaya, I-Jaya, and QHEA.

Damage
location

True
value

MDE Jaya I-Jaya QHEA
Identified Error (%) Identified Error (%) Identified Error (%) Identified Error (%)

a8 0.2 0.0347 82.64 0.1277 36.17 0.1687 15.63 0.1987 0.64
a15 0.1 0.0405 59.49 0.1233 23.33 0.1045 4.47 0.1037 3.65
a24 0.1 0.0377 62.33 0.0312 68.79 0.0714 28.60 0.0968 3.21
a32 0.2 0.1613 19.33 0.1712 14.39 0.1923 3.85 0.1972 1.39

Figure 13. The experimental setup of five-floor steel frame
structure.

Figure 14. Experimental details: (a) applying external load
(b) measurement direction.

Table 4. Measured and analytical natural frequencies of frame structure before and after updating.

Mode Measured Before updating After updating

(Hz) Analytical (Hz) Relative error (%) Analytical (Hz) Relative error (%)

1 1.998 2.033 1.752 1.992 0.300
2 5.988 5.874 1.904 5.965 0.384
3 8.990 9.246 2.848 9.041 0.567
4 11.962 11.904 0.485 12.010 0.401
5 14.988 13.594 9.301 14.689 1.995
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The measurement set 1 is used to reconstruct the
responses of the measurement set 2. Structural damages
are identified by minimizing the difference between the
measured and reconstructed responses in the second
set. In consideration of the superior performance than
MDE, Jaya, I-Jaya in section ‘‘Comparison with
other algorithms,’’ only the proposed QHEA is uti-
lized as search tool, and its parameter settings are
defined as the same values in the previous initial
model updating. Figure 16 provides the mean values

of identified damage results for scenario 1 and sce-
nario 2. In scenario 1, the identified damage extent in
the fifth floor is 11.94%. For scenario 2, the identified
damage extent in the fourth floor is 22.43%. Both
damage locations and severities can be well identified.
In addition. Figure 17 presents the convergence pro-
cess of the identified damage extents. It is clearly
observed that after around 40 iterations, the identi-
fied mean values converge to the neighborhood of the
actual damage extents. More reliable identification
results are obtained if more tests are available. The

Figure 15. Comparison of measured and reconstructed values: (a) acceleration of the second floor and (b) acceleration of the
fourth floor.

Figure 17. The convergence process of the identified damage
extents: (a) scenario 1 and (b) scenario 2.Figure 16. Identified damage results with proposed output-

only method: (a) scenario 1 and (b) scenario 2.
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experimental study demonstrates the proposed
method can be successfully applied into output-only
structural damage identification.

Discussions

The effect of data rescaling. In practice, the magnitudes of
heterogeneous measurements, such as displacements,
strains, and accelerations are very different. Under such
circumstances, data rescaling is introduced in Equations
(27)–(29). After rescaling the data, the magnitudes of the
heterogeneous responses become a similar order. In order
to investigate the effect of data rescaling on response
reconstruction, the case 2 in section ‘‘Comparison with
other algorithms’’ is employed as an example. The
responses of measurement set 2 are reconstructed with
unscaled data (rescaling coefficients au = 1, ae = 1, a€u = 1)
and rescaled data of measurement set 1, respectively.
Figure 18 shows the reconstructed displacement response

from node 1 under 5%, 10% and 20% noise cases. RE is
calculated to illustrate the accuracy of identified results.
It is observed that obvious drifts are presented in the
identified displacement response using unscaled data,
and REs are 23.22%, 27.50%, and 57.39% with 5%,
10%, and 20% noises. In contrast, the reconstructed
responses match the measured response well using
rescaled data, and smaller REs are noticed. Therefore, it
can be concluded that data rescaling is indispensable for
heterogeneous data fusion.

The effect of data fusion

To demonstrate the superiority of heterogeneous data
fusion for structural damage identification, other three
conditions using only one type of response, that is, dis-
placement, strain, or acceleration, are considered. In
case 3, assuming there are 5%, 10%, 10%, 20% stiff-
ness reductions at the 8th, 15th, 24th, and 32th

Figure 18. The reconstructed displacement response from node 1: (a) unscaled data with 5% noise, (b) rescaling data with 5%
noise, (c) unscaled data with 10% noise, (d) rescaling data with 10% noise, (e) unscaled data with 20% noise, and (f) rescaling data
with 20% noise.
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elements, namely, a8 = 0:05, a15 = 0:1, a24 = 0:1,
a32 = 0:2. As displayed in Figure 19, same sensor place-
ment configuration of case 3(a) is used as case 2. In
case 3(b), nine displacement transducers are installed
on equivalent locations (nodes 1, 7, 12, 16, 22, 26, 32,
36, 41). In case 3(c), nine strain gauges are arranged on
equivalent locations (elements 1, 6, 11, 16, 21, 26, 31,
35, 40). In case 3(d), nine accelerometers are mounted
on equivalent locations (nodes 1, 7, 12, 16, 22, 26, 32,
36, 41). The responses belonging to measurement set 1
and measurement set 2 are represented by red and
green colors, respectively.

The proposed QHEA is utilized as search tool, and
its population size and maximum iteration number
are set as 100 and 400. The results using four sensor
placement configurations are shown in Figures 20 to
22, corresponding to 0% noise case, 5% noise case,
and 10% noise case, respectively. It is noted that both
damage locations and severities are not successfully
identified with only displacement or strain responses.
Strain responses are generally sensitive to small dam-
ages but considerable strain gauges need to be
installed to obtain the point-to-point local damage
information. Instead, accelerometers can detect the
structural health state at a global level, while the
small or minor damages may not be identified. Just
as presented in Figure 20(d), the 5% damage at

element 8 is identified as intact using acceleration
responses only. In the results of 5% and 10% noise
cases, as listed in Table 5, the maximum errors for
case 3(d) are 9.50% and 10.00%. For the case 3(a),
the identification results using multitype sensors are
satisfactory. When contaminated with 10% noise, the
damage extents are still accurately identified and
errors of other elements are acceptable, which implies
the superiority of heterogeneous data fusion.

Conclusion

In this article, a novel output-only structural damage
identification approach based on reinforcement-aided
evolutionary algorithm and heterogeneous response
reconstruction with Bayesian inference regularization
is proposed. Multitype responses including displace-
ments, strains, and accelerations are fused and rescaled
for response reconstruction. Damage identification is
transformed into minimizing the difference between
the measured and reconstructed responses. In order to
solve the optimization-based inverse problem, QHEA
integrating Jaya algorithm, differential algorithm, and
Q-learning algorithm is developed. To verify the effec-
tiveness of the proposed method, numerical studies on
a three-span beam structure and a series of experimen-
tal studies on a five-floor steel frame structure are

Figure 19. Four sensor placement configurations of three-span beam structure for case 3.
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conducted. In addition, the effects of data rescaling
and data fusion are discussed. Some interesting conclu-
sions can be drawn as follows:

(1) The results of RE and PCC demonstrate a good
accuracy of structural response reconstruction is
achieved with the aid of Bayesian inference regu-
larization, while obvious drifts are presented in
the identified displacement response using
unscaled data, so data rescaling is indispensable
for heterogeneous data fusion.

(2) The proposed QHEA can accurately detect struc-
tural damages even if taking the measurement
noise and modeling errors into account, and it can
achieve faster convergence speed and more satis-
factory identification results than MDE, Jaya, I-

Jaya, since exploration and exploitation could be
better balanced.

(3) Compared with one type of responses, more
superior performance is obtained by using multi-
type responses since heterogeneous data fusion
can effectively combine the individual advantages
of displacement, strain, acceleration measure-
ments, which is more practical and suitable for
the structural health monitoring of large-scale
civil structures.

(4) By integrating reinforcement learning, heteroge-
neous response reconstruction, and Bayesian
inference regularization, the proposed approach
offers a promising direction for enhancing the
accuracy, reliability, and efficiency of output-only
damage identification methods.

(a) (b)

(c) (d)

Figure 20. Damage results with different sensor placement configurations under 0% noise: (a) case 3(a), (b) case (3b), (c) case 3(c)
and (d) case 3(d).
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The limitation of this study is the optimal sensor
placement configuration for heterogenous sensors is
not considered. The proposed method requires that the
number of sensors in the measurement set 1 exceeds
the number of unknown external excitations on the
structure, which is difficult to meet under some condi-
tions. Besides, contact dense sensor networks need to
be installed on the large-scale and complex civil

structures owing to their pointwise measurement char-
acteristic, which would be high-cost and time-
consuming. Displacement measurements are crucial to
evaluate the health state of target structure but tend to
be difficult to measure directly. Noncontact vision-
based techniques have emerged as promising tools for
remote measurement of displacement responses.
Hence, data fusion including noncontact vision-based

(a) (b)

(c) (d)

Figure 21. Damage results with different sensor placement configurations under 5% noise: (a) case 3(a), (b) case (3b), (c) case 3(c)
and (d) case 3(d).

Table 5. Identified errors with different sensor placement configurations (%).

Cases 0% noise 5% noise 10% noise

Mean error Max error Mean error Max error Mean error Max error

Case 3(a) 0.24 1.55 0.34 2.83 0.69 4.60
Case 3(b) 3.91 43.45 8.84 84.41 11.82 84.62
Case 3(c) 1.72 9.79 1.73 9.58 2.05 9.98
Case 3(d) 0.33 5.00 0.77 9.50 1.24 10.00
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displacement measurement, accelerations, strains mea-
surement from contact sensors for structural damage
identification could be investigated in the future.
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