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An innovative cable-bracing inerter system (CBIS) has been proposed and shown to be efective in mitigating the structural
response under dynamic excitation. Te CBIS comprises an inerter element, an eddy current damping element, and a pair of
tension-only cables that can transfer the story drift to rotating fywheels. To further investigate the characteristics of the CBIS,
a system identifcation approach based on an adaptive extended Kalman flter (AEKF) and a recursive least-squares (RLS)
algorithm is proposed. Depending on the CBIS model’s availability, the proposed approach uses two strategies: the AEKF
identifes the parameters of the structure and the CBIS when the model is specifc; alternatively, when the model is unspecifc, the
KF combined with an RLS algorithm identifes the restoring force generated by the CBIS as an unknown fctitious input. In
addition, the AEKF incorporates a time-variant fading factor to track the target adaptively. Te proposed approach is validated
through free vibration and shaking table tests, demonstrating the accuracy in identifying structural parameters and restoring force
provided by the CBIS. Te identifcation process involves two stages: initially, the AEKF identifes the parameters of the bare
structure without the CBIS, followed by a dual strategy using either AEKF or KF-RLS for identifying the parameters of the CBIS or
its restoring force, respectively.Te fndings also verify the feasibility and validity of the mechanical model and operating principle
of the CBIS, thereby contributing to the advancement and application of the CBIS in future studies.

1. Introduction

Vibration control systems have been extensively developed
and implemented to enhance the dynamic behavior of
structures exposed to natural hazards, such as earthquakes
[1, 2].Te efectiveness of these systems inmitigating seismic
damage has been rigorously examined through shaking table
tests [3–5]. However, there is limited research on the actual
performance and energy dissipation capacity of vibration
control systems during real earthquakes. Te Great Eastern
Japan Earthquake in 2011 provided a unique opportunity to
investigate the performance of seismic protection technol-
ogies during a catastrophic earthquake [6]. During the Great
Eastern Japan Earthquake in 2011, all the oil dampers on the

frst foor of an eight-story steel building were destroyed due
to abutment breakage [7], prompting in-depth in-
vestigations into innovative devices and the real-world
performance of vibration control systems [8, 9].

In recent years, inerter-based vibration control systems
have emerged as an efective means of augmenting damping
and magnifying mass efects in civil structures [10]. Te
concept of inerter was initially proposed by Smith [11] and
referred to a two-terminal inertial element that generates an
inertial force proportional to the relative acceleration be-
tween two terminals. Various inerter-based control systems
have been developed using distinct methods to transform
translational movement into rotational movement, in-
cluding tuned viscous mass dampers, tuned mass-damper-
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inerter systems, and tuned inerter dampers employing ball
screws, rack pinions, and hydraulics for movement con-
version, respectively [12–14].

While conventional viscous dampers primarily rely on
viscous fuids for damping, they come with challenges, such
as the cost of altering the damping coefcient and potential
oil leakage [15]. To address these issues, researchers have
turned to alternative damping mechanisms. Te eddy cur-
rent efect has emerged as a promising alternative, drawing
attention for its numerous advantages, such as the absence of
mechanical contact friction, stability at high temperatures,
and its simplistic design [16, 17]. Tis efect is produced
either by the relative motion between a nonmagnetic con-
ductive material and a magnetic feld or by the changing
intensity of a stationary magnetic feld [17, 18]. Recognizing
its potential, eddy current dampers and eddy current-based
tuned mass dampers have been proposed for engineering
structures, capitalizing on their benefts, such as adjustability
and stability [19–22].

To further enhance the efciency of inerter systems,
bracing systems have been used to convert translational
movement into rotational movement between the structure
and the inerter system [23]. Specifcally, the cable-bracing
systems have gained attention due to their tension-only and
adjustable properties [24–26]. More recently, an innovative
cable-bracing inerter system (CBIS) has been introduced
and demonstrated to be efective in mitigating structural
response through theoretical and experimental research
[27–29]. Te CBIS uses tension-only cables to convey the
story drift to rotating fywheels (conductor plates) that
function as the inerter. Additionally, the CBIS features an
eddy current damper that dissipates vibration energy in the
form of heat, resulting in a restoring force comprising the
inertia force and the eddy current damping force. Never-
theless, additional research is required to validate the me-
chanical model of the CBIS and clarify the restoring force
generated by the CBIS.

Identifying restoring forces is essential for evaluating the
actual performance and energy dissipation capacity of vi-
bration control systems. Extensive research has been con-
ducted in this area, with comprehensive literature reviews
available [30, 31]. Restoring force identifcation can be
transformed into parameter identifcation problems when
the models of the vibration control systems are specifed,
leaving only the coefcients of the model terms unspecifed.
For instance, extended Kalman flter- (EKF-) based methods
are often used to identify parameters of linear or nonlinear
hysteretic structures [32–34]. Alternatively, the restoring
force generated by the vibration control systems can be
treated as unknown fctitious input, which can be identifed
using input estimation techniques. Tis allows for the es-
timation of the model-free restoring forces without making
prior assumptions or approximations about the vibration
control systems. Recently, some KF-based methods with
unknown input have been proposed to simultaneously es-
timate the system state and unknown input [35–41]. Par-
ticularly, several EKF-based model-free approaches have
been developed to identify the restoring forces rather than
the parameters of structural control systems [42–45].

Adaptive strategies are crucial in addressing the sensi-
tivity of KF-based techniques to flter parameters. Tese
methods are essential when dealing with unknown co-
variance matrices for process and measurement noises, as
improper values can lead to estimation inaccuracies or di-
vergence [46]. Moreover, in complex civil structures where
modeling errors are inevitable, these errors can signifcantly
impact model updating and predictions. Adaptive KF
methods, categorized into Bayesian, maximum likelihood,
correlation, and covariance-matching approaches ofer
potential solutions to these challenges [47–53]. Covariance-
matching is a particularly efective method with successful
applications in signal processing [54]. In particular, a strong
tracking KF method with a time-variant fading factor based
on the orthogonality principle is proposed, optimizing the
flter’s performance in the face of evolving uncertainties and
noise [55–58].

Tis paper introduces an approach that explicitly defnes
the mechanical model and characterizes the behavior of the
innovative CBIS. Te approach incorporates an adaptive
extended Kalman flter (AEKF) with a time-variant fading
factor for estimating the structural state and the unknown
structural parameters. Moreover, the KF can be combined
with a recursive least-squares (RLS) algorithm for estimating
the restoring force generated by the CBIS. To validate the
performance of the proposed approach, free vibration tests
and shaking table tests for a single degree-of-freedom
(SDOF) structure equipped with a CBIS are conducted.
Te identifcation process initially uses the AEKF to identify
the parameters of the bare structure without the CBIS.
Following this, it engages both the AEKF and KF-RLS al-
gorithms to determine the parameters of the CBIS or its
restoring force, respectively.

2. Single Degree-of-Freedom Structure
Equipped with a CBIS

2.1. Analysis Model of the CBIS. Figure 1 shows an SDOF
structure with a CBIS, which includes a pair of tension-
only cables, a pair of conductor plates (serve as fywheels),
and a shaft. Te tension-only cables connect the shaft and
the structural frame diagonally, and when there is
interstory drift, one of the cables will shorten and drive the
shaft into rotation. Te conductor plates are fxed on the
shaft and rotate together with the shaft, acting as an
inerter. Tus, the translational movement of the structure
can be converted into a rotational motion of the inerter by
cable bracing.

Meanwhile, as shown in Figure 1(b), serval magnets with
alternating magnetic polarization are absorbed on the fxed
side plates. Eddy currents, or Foucault currents, are gen-
erated when a conductor is exposed to a varying magnetic
feld, often due to its relative motion between the conductor
and the magnetic source. Tese currents produce opposing
magnetic felds, resulting in a repulsive force which is
proportional to the relative velocity of the feld and con-
ductor, providing a damping efect [16–18]. In dynamic
systems, the continuous motion of the conductor within the
magnetic feld leads to a consistent change in magnetic fux.
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Tis induces currents that regenerate and dissipate as heat,
allowing the system to function similarly to a viscous
damper, removing energy from the system [19–22]. Te
eddy current damping force varies by adjusting the air gap
between the magnets and the conducting plate.

Terefore, the CBIS can obtain its inertance and enhance
the energy dissipation capacity via the eddy current
damping. Te efect of friction is ignored for simplicity;
therefore, there are mainly three mechanical elements of the
CBIS: an eddy current damping element, an inerter element,
and a supporting spring element (cables). Te damping
element and the inerter element are connected in parallel
and then connected in series with the spring element, as
shown in Figure 2.

Terefore, the restoring force generated by the CBIS
includes two main parts and can be calculated using the
following equation:

Fd � kbxb � md€xd + cd _xd, (1)

where Fd donates the restoring force generated by the CBIS
and kb and xb donate the stifness and the deformation of the
spring element (cables), respectively. Te frst part is the
inertial force, md€xd, where €xd donates the relative accel-
eration response of the two terminals in the CBIS. Te
second part is the eddy current damping force, cd _xd, where
cd donates the equivalent damping coefcient of the CBIS,
and _xd donates the relative velocity response of the two
terminals in the CBIS.

2.2. Equation ofMotion for an SDOF Structure Equipped with
a CBIS. Figure 3(a) shows the layout and mechanical model
of an SDOF structure equipped with a CBIS when the
structure is deformed in a horizontal direction. In Fig-
ure 3(a), m, c, and k denote the mass, damping coefcient,
and stifness of the primary structure without a CBIS,
respectively.

When the structure is in a balanced state, the prestressed
tension forces in both cables are assumed as T0. As shown in
Figure 3(b), if the structure moves to the right with a relative
horizontal displacement, the diagonal cable on the right side
drives the shaft and conductor plate rotate clockwise. θ is the
inclined angle of the diagonal cable. When the rotational
angle of the conductor plate is φ, the axial elongation of the

right cable is expressed as xb � x cos θ − φr0. Considering
the axial stifness of each cable kb0, the tension force in the
right cable is increased as T2 � T0 + kb0xb, and the tension
force in the left cable is decreased as T1 � T0 − kb0xb.
Terefore, the restoring force generated by the CBIS is the
tension force diference between two cables and can be
expressed as Fd � T2 − T1 � 2kb0xb � kbxb, where kb do-
nates the equivalent stifness of two cables.

According to the force equilibrium conditions and the
layout of the system, the equation of motion for the SDOF
structure with a CBIS can be represented as follows:

m€x + c _x + kx + Fd cos θ � f, (2)

where m, c, and k denote the mass, damping coefcient, and
stifness of the primary structure without a CBIS, re-
spectively. Moreover, €x, _x, and x denote the acceleration,
velocity, and displacement of the SDOF system, respectively.
Fd cos θ is the restoring force in the horizontal direction
generated by a CBIS, and f is the excitation force in the
horizontal direction.

Te motion equation for the CBIS, according to the
rotational equilibrium condition of the CBIS, is expressed as
follows:

Jd€φ + cI _φr
2
0 � Fdr0, (3)

where Jd is the polar moment of inertia of the inerter, which
can be calculated as Jd � mIR

2/2. mI is the physical mass of
two conductor plates and the roller, and R is the radius of
gyration. cI is the damping coefcient of the CBIS, when the
steel cables have a substantial stifness, the analytical model
of the CBIS can be simplifed.Te deformation of the cable is

(a)
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Figure 1: (a) An SDOF structure equipped with a CBIS and (b) details of the CBIS.
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Figure 2: Mechanical model of the CBIS.
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neglected, and the relationship between the axial de-
formation of the cable and the rotational angle of the roller is
given as follows:

φ �
x cos θ

r0
. (4)

Substituting equation (4) into equation (3), the re-
storing force generated by the CBIS, Fd, can be rewritten as
follows:

Fd �
Jd€φ
r0

+ cI _φr0

�
Jd cos θ

r0
2 €x + cI cos θ _x.

(5)

Terefore, the equation of motion of the SDOF structure
equipped with a CBIS can be expressed as follows:

m€x + c _x + kx + fd � f,

fd � Fd cos θ � md€x + cd _x,
􏼨 (6)

where md is the inertance of the CBIS, md � Jd cos2 θ/r20, cd

is the equivalent damping coefcient in the horizontal di-
rection of the CBIS, and cd � cI cos2 θ.

3. System Identification Based on Adaptive
Kalman Filter

Te general equation of motion of a multiple degrees-of-
freedom (MDOF) structure equipped with the CBIS under
external excitation can be expressed as follows:

M€x(t) + C _x(t) + Kx(t) + Ιdfd(t) � Ιf(t), (7)

where M denotes the mass matrix of the structure and is
assumed to be known, and C and K donate the damping
matrix and stifness matrix of the structure, respectively. €x, _x,
and x denote the acceleration, velocity, and displacement
responses of the structure, respectively. fd is the vector of the
restoring force generated by the CBIS in the horizontal
direction with an infuence matrix Id. f is the vector of the
external excitation with an infuence matrix I, which is
assumed to be available in this study. Te proposed

technique contains two diferent strategies for two cases
depending on the availability of the model of the CBIS.

3.1.Case 1:TeModel of theCBIS Is Specifc. When the model
of the CBIS is specifc, the restoring force generated by the
CBIS in the horizontal direction can be expressed as
fd � Md€x + Cd _x, whereMd and Cd denote the inertance and
damping matrices of the CBIS, respectively. Terefore, the
motion equation of an MDOF structure equipped with the
CBIS, equation (7), can be rewritten as follows:

M€x(t) + C _x(t) + Kx(t) + IdMd€x(t) + IdCd _x(t) � If(t).

(8)

3.1.1. Structure State and Measurement Equations. Te
structural extended state vector is expressed as
Z � xT, _xT, θT􏽮 􏽯

T
, where θ is the unknown structural pa-

rameters to be identifed, including the stifness and
damping coefcient of the structure and the equivalent
damping coefcient of the CBIS. Ten, equation (8) can be
transformed into a nonlinear state space as follows:

_Z �

_x,

€x,

_θ.

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

�

_x

M + IdMd( 􏼁
− 1 If − C + IdCd( 􏼁 _x − Kx􏼂 􏼃

0

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

� g(Z, f) + w,

(9)

in which w is added to present the process noise with zero
mean and a covariance matrix Q � E[wwT].

Te measurement equation can be expressed as follows:

Y � h(Z, f) + v, (10)

in which Y is an observation vector and ν is the measure-
ment noise with zero mean and a covariance matrix
R � E[vvT]. Te state and measurement equations can be
discretized over time intervals of length Δt, then equations

m

k

c kdcd

md

(a)

Δl Δl

Δθ
θ

θ

x
δ=xcosθ

δ

φ
Rr0

π -θ2

(b)

Figure 3: (a) Layout of an SDOF system equipped with a CBIS and (b) transmission mechanism of the CBIS.
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(9) and (10) can be linearized by Taylor series expansion to
the frst order at Zk−1 � 􏽢Z+

k−1 and Zk � 􏽢Z−

k as follows:

g Zk−1, fk−1( 􏼁 ≈ g 􏽢Z
+

k−1, fk−1􏼐 􏼑 + Gk−1 Zk−1 − 􏽢Z
+

k−1􏼐 􏼑,

h Zk, fk( 􏼁 ≈ h 􏽢Z
−

k , fk􏼐 􏼑 + Hk Zk − 􏽢Z
−

k􏼐 􏼑 + vk,
(11)

in which 􏽢Z+

k−1 and 􏽢Z−

k are the estimates of Zk−1 and Zk at the
time t � (k − 1)Δt, respectively, and

Gk−1 �
zg(Z, f)

zZ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌Z�􏽢Z
+

k−1

,

Hk �
zh(Z, f)

zZ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌Z�􏽢Z
−

k

.

(12)

3.1.2. Adaptive Extended Kalman Filter. When the model of
the CBIS is specifc, the Kalman flter-based techniques
can be employed for estimating the state and unknown
parameters of both the structure and the CBIS. Kalman-
type flters are efective when the prior knowledge, in-
cluding reference models, noise distribution, and initial
conditions, is accurate. If prior knowledge is not available
or inaccurate, the Kalman-type flters may sufer per-
formance degradation or instability, as the prior knowl-
edge does not match the behavior of the controlled
system. To overcome this challenge, an adaptive extended
Kalman flter (AEKF) with a time-variant fading factor is
introduced.

First, based on the model and the observations until time
t � (k − 1)Δt, the prediction of the state at the time t � kΔt
can be obtained.

􏽢Z−

k � 􏽢Z
+

k−1 + 􏽚
kΔt

(k−1)Δt
g 􏽢Zt|k−1, f􏼐 􏼑dt, (13)

􏽢P−

k � λkΦk−1
􏽢P+

k−1Φ
T
k−1 + Qk−1, (14)

where 􏽢P+

k−1 and 􏽢P−

k are the error covariance matrices of 􏽢Z
+

k−1
and 􏽢Z

−

k , respectively.Te nonlinear term in equation (13) can
be linearized by Taylor’s expansion, which is resolved using
the fourth-order Runge–Kutta method in this paper. Φk−1 is
the state transition matrix of the linearized system,
Φk−1 � exp(Gk−1Δt). As shown in equation (14), a fading
factor λk is introduced to modify the error covariance matrix
􏽢P−

k , and the determination of λk will be discussed in detail in
the next section.

Ten, using the new information provided by the ob-
servation at the time t � kΔt, the updated prediction at the
time t � kΔt can be obtained as follows:

􏽢Z+

k � 􏽢Z−

k + Kk Yk − h 􏽢Z−

k , f􏼐 􏼑􏽨 􏽩, (15)

Kk � 􏽢P−

kH
T
k Hk

􏽢P−

kH
T
k + Rk􏼐 􏼑

− 1
, (16)

􏽢P+

k � I − KkHk( 􏼁􏽢P−

k I − KkHk( 􏼁
T

+ KkRkK
T
k , (17)

where Yk is the measurement vector, 􏽢Z
+

k is the estimate of Zk

at the time t � kΔt,Kk is the Kalman gain, and 􏽢P+

k is the error
covariance matrix of 􏽢Z+

k .

3.1.3. Determination of the Fading Factor. Te de-
termination of the fading factor is detailed in this subsection.
As shown in equation (14), a fading factor λk is introduced to
modify the error covariance matrix 􏽢P−

k to amplify the Kal-
man gain. However, the fading factor λk is sensitive to noise
if the λk is small, or it will have less tracking capability if the
λk is large. Various methodologies exist for constructing and
solving adaptive factors or matrices. Mehra [47] categorized
adaptive approaches into four distinct groups: Bayesian,
maximum likelihood, correlation, and covariance matching.
In both correlation and covariance-matching techniques,
innovation sequences have played a vital role in estimating
noise covariances. Te fundamental concept underlying the
covariance-matching approach revolves around ensuring
that the actual covariance of the residual aligns with its
theoretical value.

Particularly, a strong tracking fltering was proposed to
enhance the flter’s efcacy by real-time adjustments to the
error covariance matrix and gainmatrix using a time-variant
fading factor or matrix [55–58]. To be specifc, the time-
variant fading factor λk is determined by solving the fol-
lowing optimization problem:

E Zk − 􏽢Zk􏽨 􏽩 Zk − 􏽢Zk􏽨 􏽩
T

� min ,

E εk+jε
T
k􏽨 􏽩 � 0,

(18)

where εk is the innovation residual sequence, εk � Yk − 􏽢Y−

k ,
defned as the diference between considering incoming
measurements Yk and the optimal predictions 􏽢Y−

k obtained
in the preceding step. Te cost function in equation (18) is
the optimal rule of the state estimation, and the constraint
means that the innovation residual vector should be or-
thogonal to each other at each step. Te physical meaning is
that all the meaningful information can be extracted from
the innovation residual sequence.

While obtaining an exact solution for the optimization
problem described by equation (18) is challenging, a viable
suboptimal solution can be expressed as follows:

λk �
λ0,k, λ0,k ≥ 1,

1, λ0,k < 1,
􏼨 (19)

where λk should be no less than 1, when it equals 1, the AEKF
is the conventional EKF. λ0,k can be calculated using
equation (20), with detailed derivations provided in Ap-
pendix A.

λ0,k �
tr Vk − HkQk−1H

T
k − Rk􏽨 􏽩

tr HkΦk−1P
+
k−1Φ

T
k−1H

T
k􏽨 􏽩

. (20)

Furthermore, Vk is the covariance matrix of the esti-
mated output error, Vk � E[εkεTk ]. Vk will increase as any
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parameters vary. Terefore, in order to refect the change of
Vk and the importance of the current measured data, the
weighting factor α is used to calculate the Vk as follows:

Vk �

ε1ε
T
1 , k � 1,

αVk−1 + εkε
T
k

1 + α
, k≥ 2,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(21)

in which α is a weighting factor (0< α≤ 1), indicating the
importance of the measured data near t � kΔt, and it is
commonly set as 0.95 [55–58].

3.2. Case 2: Te Model of the CBIS Is Unspecifc. When the
model of the CBIS is assumed to be unknown, and the
restoring force provided by the CBIS in the horizontal
direction can be considered as “unknown fctitious in-
put,” fd, on the bare structure without the CBIS.
Te motion equation is shown in equation (7), and the
mass, stifness, and damping parameters of the linear bare
structure are all assumed as known values. Kalman
flter (KF) and recursive least-squares (RLS) algorithm,
denoted as KF-RLS, was introduced to identify
structural states and unknown restoring force provided
by the CBIS.

3.2.1. Structure State and Measurement Equations.
Defne structural state vector by Z(t) � xT, _xT􏽮 􏽯

T
. From

equation (8), the continuous-time state equations and
measurement equations can be written as follows:

_Z �
0 I

−M− 1K −M− 1C
􏼢 􏼣

x

_x
􏼨 􏼩 +

0

M−1Ι
􏼨 􏼩f +

0

−M−1Ιd
􏼨 􏼩fd

� AZ + Bf + Bdfd.

(22)

Te state equation can be further discretized over time
intervals of length Δt and rewritten as follows:

Zk � ΦZk−1 + Γfk−1 + Γd fd,k−1 + wk−1􏼐 􏼑, (23)

in which Φ is the state transformation matrix,
Φ � exp(AΔt), Γ and Γd are the infuence matrices of fk−1
and fd,k−1, respectively, and expressed as follows:

Γd � 􏽚
(k+1)Δt

kΔt
exp A[(k + 1)Δt − τ]{ }Bddτ, (24)

in which w is added to present the process noise with zero
mean and a covariance matrix Q � E[wwT

]. Te mea-
surement equation can be expressed as follows:

Yk � HkZk + vk, (25)

in which Hk is the measurement matrix of Zk+1 and v is
added to present the measurement noise with zero mean
and a covariance matrix R � E[vvT]. It is important to note
that the covariance matrices utilized in the AEKF and
KF-RLS are diferent.

3.2.2. Kalman Filter with Recursive Least-Squares. To
identify the unknown restoring force fd generated by the
CBIS, this paper proposed a KF-RLS algorithm. First, the KF
is used to generate the innovation residual sequence. Fol-
lowing the general KF equations, the priori state estimations
of Zk without and with fd are donated as Z−

k and 􏽢Z−

k, re-
spectively, and are expressed as follows:

Z−

k � ΦZ+

k−1 + Γfk−1, (26)

􏽢Z
−

k � Φ􏽢Z
+

k−1 + Γfk−1 + Γdfd,k−1. (27)

Te error covariance matrix is expressed as follows:

􏽢P−

k � Φ􏽢P+

k−1Φ
T

+ ΓdQΓ
T
d . (28)

Ten, using the new information provided by the ob-
servation at the time t � kΔt, the updated prediction at the
time t � kΔt can be obtained as follows:

Z+

k � Z−

k + KkYk � Z−

k + Kk Yk − HkZ
−

k􏼐 􏼑, (29)

􏽢Z
+

k � 􏽢Z
−

k + KkY
⌢

k � 􏽢Z
−

k + Kk Yk − Hk
􏽢Z

−

k􏼐 􏼑, (30)

where Z+

k and 􏽢Z+

k are the posterior estimations of Zk without
and with fd,k−1, respectively. Kk is the Kalman gain calcu-
lated by equation (16). Yk and 􏽢Yk are the innovation residual
sequences without and with fd,k−1, respectively. Te re-
cursive relationshipn amongYk, 􏽢Yk, and the unknown fd can
be expressed by equation (31), with detailed derivations
provided in Appendix B.

Yk � Y
⌢

k + Bkfd,k−1, (31)

where Bk and Mk are defned as the sensitivity matrices and
expressed as follows:

Bk � Hk AMk−1 + I( 􏼁Bd, (32)

Mk � I − HkKk( 􏼁 AMk−1 + I( 􏼁. (33)

Ten, the RLS algorithm can be used to compute the
onset time histories of the unknown restoring force with the
equations as follows:

K∗k �
P∗k−1B

T
k

ρ
BkP∗k− 1B

T
k

ρ
+ Sk􏼢 􏼣

− 1

, (34)

P∗k �
1
ρ

I − K∗kBk􏼂 􏼃P∗k−1, (35)

􏽢fd,k � 􏽢fd,k−1 + K∗k Yk − h 􏽢Z−

k , f􏼐 􏼑 − Bk
􏽢fd,k−1􏽨 􏽩, (36)

where K∗k and P∗k are the correction Kalman gain and the
error covariance of the estimated restoring force vector 􏽢fd,k.
A forgetting factor ρ, 0< ρ≤ 1, utilized in this algorithm, acts
as a regulator to adjust the correction Kalman gain K∗k or
flter bandwidth for overcoming the destructive infuence of
process noise R, measurement noise Q, and input distur-
bance in the output of KF [59, 60]. Ten, this updated
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estimated value is fed into structural model to correct the
system output of the KF algorithm and, subsequently, and
optimal estimate 􏽢fd,k can be obtained.

When ρ � 1, the above algorithm reduces to that of the
conventional sequential least-squares algorithm, which is
appropriate only for a constant input estimation. In this case,
the correction Kalman gain K∗k for updating 􏽢fd in equation
(34) decreases with an increasing k. For 0< ρ< 1, K∗k has
been efectively prevented from shrinking to zero. Hence,
the corresponding algorithm can preserve its updating
ability continuously and ft for time varying input estima-
tion. However, the inherent data truncation efect due to ρ
causes variance increases in 􏽢fd attributed to noise. Tus,
a compromise must be made between rapid adaptive ca-
pability and the loss of estimation accuracy [61, 62].

3.3. Summary. In conclusion, the identifcation approach
presented in this study integrates two techniques that are the
AEKF and KF-RLS. For case 1, when the model of the CBIS is
specifc, the AEKF can be used for estimating the state and
unknown parameters of both the structure and the CBIS. Te
AEKF consists of prediction and update stages, which can be
summarized as follows: (1) the structure state and mea-
surement equations is calculated using equations (9) and (10);
(2) in the prediction stage, the AEKF uses the state estimate
from the previous timestep to generate an estimate of the state
at the current timestep, calculated using equations (13) and
(14); (3) in the update stage, the residual diference between
the current prediction and the current observation in-
formation is combined to refne the state estimate, calculated
using equations (15)–(17); and (4) the adaptive fading factor is
calculated using equations (19)–(21).

For case 2, when the model of the vibration control
system is unspecifc, the KF-RLS can be used for estimating
the state and unknown restoring force generated by the
CBIS. Te KF-RLS consists of two stages, which can be
summarized as follows: (1) the structure state and mea-
surement equations are calculated using equations
(22)–(24); (2) the KF can frst be utilized to obtain a recursive
relationship between the innovation residual sequences and
the unknown restoring fd, using equations (31)–(33); (3)
fnally, the RLS algorithm with the forgetting factor is ap-
plied to calculate the unknown force 􏽢fd using equations
(34)–(36).

In this study, either structural acceleration or dis-
placement can be chosen as observations. Using only the
structural acceleration responses as observations can
sometimes result in low-frequency drift in the identifcation
results [36, 63]. However, these results can be signifcantly
enhanced when the observations incorporate partial struc-
tural displacement or strain measurements [41, 64, 65]. For
Case 1, we use AEKF and use only acceleration responses as
observations. For case 2, we utilize KF-RLS and rely solely on
displacement responses. Nonetheless, for optimal identif-
cation results, especially in the presence of noisy observa-
tions, it is recommended to include both structural
acceleration and displacement (or strain) in the observation
vector.

4. Numerical Simulation

To illustrate the efectiveness and accuracy of the proposed
approach in estimating unknown structural parameters and
restoring forces generated by CBIS, numerical experiments
of a four-degree-of-freedom dynamic system are analyzed
(Figure 4).

Te equation of motion of the MDOF structure
equipped with CBIS is expressed in equation (7). Te system
is subjected to the El Centro earthquake ground excitation
with a peak ground acceleration of 0.2 g (g is the acceleration
due to gravity). Te mass, story stifness, and damping
coefcients of each story are assumed to be mi � 300 kg,
ki � 15000N/m, C � αM + βK with α � 0.3, and β � 0.0025,
respectively.Te building is equipped with the CBIS for each
story. Te equivalent damping coefcient and inertance of
the CBIS for each story is cdi � 20N/m/s and mdi � 100 kg,
respectively. Two case studies are presented depending on
the availability of the model of the CBIS, which correspond
with the two diferent approaches, respectively.

4.1.Case 1:TeModel of theCBIS Is Specifc. In the frst case, it
is assumed that the model of the CBIS and the inertance of the
CBIS, mdi, for each story are known. Additionally, the mass of
each story, mi, is also assumed to be known. Te inputs for the
identifcation problem are the acceleration responses for all the
foors. Te goal is to estimate the full states of the structure and
the unknown parameters of the structure and CBIS, including
ki, cdi, α, and β, using the AEKF. Te extended state vector is
expressed as Z � [x1, · · · , x4, _x1, · · · , _x4, cd1, · · · , cd4, k1, · · · ,

k4, α, β]T. Te parameters used in the AEKF are given as
follows: zero initial conditions, sampling interval Δt � 0.02 s,
and the initial error covariance matrix P � 103I18×18.Te initial
values of the unknown parameters were all chosen to be 50% of
the corresponding actual ones. Once the parameters of the CBIS
are identifed using the AEKF, the restoring forces by the CBIS
can then be calculated using the equation of fd � Md€x + Cd _x.

Te accurate determination of the covariance matrices R
andQ is critical for the performance and convergence of the
Kalman flter estimation process [47, 66, 67]. Tese matrices
are typically estimated by analyzing the statistical properties
of the measurement and process noise, informed by ex-
tensive experimentations [68]. For instance, the authors in
references [36, 69] suggested that these matrices should be
determined based on the accuracy of the sensors and the
order of magnitude of the state vector, respectively.

Te R matrix refects the confdence in sensor mea-
surements, with a smaller R value indicating greater trust in
the observed data [69]. In this study, the noisy measured
responses, donated as Y, are simulated using the Newmark
beta method and contaminated with zero-mean Gaussian
white noise at a 5% root-mean-square (RMS) level, which
informs the calibration of the R matrix to
R � (5% × RMS(Y))2 [67–70]. Consequently, with an RMS
value of measured accelerations being RMS(Y) ≈ 0.64, R is
calculated as R � 10− 3I4×4.

Conversely, the Q matrix reveals the confdence in the
systemmodel, and a smallerQ value implies a more accurate
model. Discretization errors, which are a signifcant source
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of process noise, diminish with smaller timestep intervals,
allowingQ to be set to a minimal value [51, 70]. Even though
for systems with static parameters, the process noise co-
variance could theoretically be zero, a slight but nonzero Q
value is recommended to enhance the speed of parameter
convergence [71]. Terefore, in the simulations where the
model deployed in the algorithms is assumed to be accurate,
the process noise is set to a small value of Q � 10− 8I18×18. It
has been observed through case studies that a Q value lesser
thanQ � 10− 5I18×18 did not signifcantly degrade the quality
of estimation, thus attesting to the robustness of the method.

Table 1 presents the comparison of the identifed pa-
rameters ki, α, and β for the structure, along with cdi for the
CBIS for each story, using both AEKF and EKF approaches.
Te comparison results illustrate that the conventional EKF,
with Q � 10− 8I18×18, can identify the ki and α with high
accuracy. However, it fails to estimate the exact values of β
and cdi. Figure 5 illustrates the calculated adaptive fading
factor used in the AEKF, varying between 1 and 1.4 over
time. As shown in Table 1, the proposed AEKF with the
adaptive fading factor can identify all the parameters in
a high accuracy when the Q value is lesser than
Q � 10− 5I18×18.

Figures 6(a)–6(f) show the convergence processes of the
parameters using AEKF and EKF, with a focus on the second
and fourth foors due to the limitation of paper length. Te
estimated responses and restoring forces are presented in
Figures 7(a)–7(f).Te comparison of the estimations and the
ground truth suggests that the tracking capability of the
proposed technique is plausible.

4.2. Case 2:TeModel of theCBIS IsUnspecifc. In the second
case, the model of the damper is assumed to be unknown,
and the restoring force provided by the damper is treated as
unknown fctitious input. Te inputs for the restoring force

identifcation problem are defection responses for all the
foors in this case. Te goal is to estimate the full states of the
structure and the unknown restoring force provide by the
CBIS, fd, using the KF-RLS. Te parameters used in the
KF-RLS are given as follows: zero initial conditions, sam-
pling interval Δt � 0.02 s, and the initial values of the ma-
trices are Pk,0 � 1010I8×8, P∗k,0 � 1010I4×4, and Mk,0 � 08×8,
respectively.

In these simulations, the defection responses were
calculated using the Newmark beta method and were
contaminated with zero-mean Gaussian white noise at a 5%
RMS level. Consequently, the R matrix is calculated as
R � (5% × RMS(Y))2 ≈ 10− 8I4×4. It is essential to distin-
guish between the Q matrix used in the KF-RLS and the Q
matrix in the AEKF. As specifed in equations (23) and (28),
the equivalent covariance matrix is formulated as ΓdQΓTd ,
where Γd represents the infuence matrix associated with the
unknown restoring force, fd, from the CBIS. In these
simulations, theQmatrix is set toQ � 102I4×4, which results
in an equivalent covariance matrix ΓdQΓTd with an order of
magnitude of 10− 6.

Te forgetting factor ρ, 0< ρ≤ 1, is determined through
trial-and-error to ensure the convergence of both the esti-
mated responses and unknown restoring forces. Te sim-
ulation results indicate that a ρ value in the range of 0.1 to 0.7
enables the KF-RLS to accurately estimate these quantities.
Figures 7(a)–7(f) show the estimations for the second and
fourth foors, as determined by AEKF (Case 1) and KF-RLS
(Case 2). Te results, when compared with the ground truth,
validate the strong tracking performance of both the AEKF
and KF-RLS algorithms.

5. System Identification of a Steel Frame
Equipped with a CBIS

In this section, a series of experiments are conducted, in-
cluding free vibration tests and shaking table tests. Ten, the
proposed technique is utilized for system identifcation and
parameter analysis of the SDOF structure equipped with
a CBIS.

5.1. Experimental Equipment. Te experimental model
consists of an SDOF steel frame as the primary structure and
the CBIS. Tree types of sensors are installed to measure
structural responses. As illustrated in Figure 8(a), an ac-
celerometer is installed on the top foor of the steel frame to
measure the foor’s acceleration. A displacement meter is
used to measure the displacement of the top foor. Fur-
thermore, two force sensors are installed in the steel cables to
measure the tension of these cables.

Te total height of the SDOF structure is 1m. Te top
plate consists of steel plates (Q245) with plane dimensions of
0.834 × 0.39m and a thickness of 0.01m. Diferent di-
mensions of columns are adopted, respectively, in the cases
of free vibration tests and shaking table tests. For the free
vibration tests, the columns consist of steel plates
(Q245) with height×width× thickness dimensions of
1 × 0.15 × 0.003m.Te total mass of the primary structure is

cd4

md4

cd3

md3

cd2

md2

cd1

md1

k4

k3

k2

k1

m4

m3

m2

m1

CBIS

Figure 4: Analysis model of an MDOF structure with CBIS.
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Table 1: Comparison of identifed parameters using AEKF and EKF.

Parameters Actual
AEKF EKF

Identifed Error (%) Identifed Error (%)

Stifness of the structure (N/m)

k1 15000 14972 0.19 15026 0.17
k2 15000 14970 0.20 14973 0.18
k3 15000 14970 0.20 14941 0.39
k4 15000 14976 0.16 14924 0.51

Damping of the structure α 0.3 0.3047 0.47 0.3009 0.30
β 0.0025 0.0024 4.00 0.008 220.0

Damping of the CBIS (N/m/s)

cd1 20 20.83 4.15 −68.17 440.9
cd2 20 21.53 7.65 −60.54 402.7
cd3 20 20.46 2.30 −59.04 395.2
cd4 20 21.88 9.40 −62.42 412.1
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Figure 5: Time-variant fading factor in the AEKF.
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Figure 6: Continued.
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Figure 6: Comparison of the ground truth with estimated parameters from AEKF and EKF: (a) α, (b) β, (c) k2, (d) k4, (e) cd2, and (f) cd4.
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Figure 7: Continued.
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23.0 kg, and the frst natural frequency of the primary
structure is adjusted to approximately 1Hz. For the shaking
table tests, a substantial reinforcement of the test frame is
used to efectively simulate real-world seismic conditions.
Tis led to increasing the column thickness from 3mm to
5mm, with the total mass being augmented to 26.6 kg. As
a result, the natural frequency was tuned to approximately
2Hz to ensure a resilient response to the higher intensity
excitations envisaged in these tests. Tis adjustment was
primarily to prevent plastic deformation under the rigorous
demands of seismic wave excitations.

Figure 8(b) illustrates the details of the CBIS. Copper
with high electrical conductivity is selected as the material
for the rotating conducting plate. Te supporting roller shaft
is fabricated from steel, primarily serving a structural role by
providing stability and support to the copper conducting
plate. Although steel can engage in the electromagnetic
dynamics of the system to a smaller extent, its use here is
fundamentally for mechanical strength rather than for en-
hancing the eddy current efect. Tese magnets that are
absorbed on the fxed side plates are cylindrical neodymium
alloy (NdFeB) permanent magnets, each having a diameter
of 25mm and a thickness of 20mm. It is worth noting that
the magnetic poles are staggered according to the principle
of opposite poles being present in adjacent magnets, ad-
hering to a precise arrangement to maintain the function-
ality and efcacy of the system.

Various test conditions are designed to evaluate the
performance of the CBIS, which can be seen in Table 2. Te
thickness of the rotating conducting plate of the CBIS is set
as 5, 10, or 20mm. If there are no magnets on the fxed side
plates, the system can only function as an inerter without
eddy current efects. In this case, the test conditions are
labeled as “Md5,” “Md10,” or “Md20,” corresponding to the
thickness of the rotating conducting plate. However, if
magnets are present on the fxed side plates, eddy currents
can be generated when relative motion occurs between the
rotating conductor plates and the magnets. Te damping
force induced by the eddy current efect varies by adjusting
the air gap between the magnets and the conducting plate.
For instance, the test condition is donated as “Md5-Cd10”
when the thickness of the rotating conducting plate is 5mm,
and the air gap between the magnets and the conducting
plate is set as 10mm.

5.2. Free Vibration Tests. During the free vibration tests, the
initial displacement of the top foor of the steel frame is set to
50mm. Te free vibration tests for the primary structure are
frst tested without a CBIS, followed by the tests with a CBIS.

5.2.1. Parameters Identifcation of the SDOF Structure
without a CBIS. Te equation of motion of the SDOF
structure without a CBIS under free vibration can be
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Figure 7: Comparison of the ground truth and the estimated response using AEKF (case 1) and KF-RLS (case 2): (a, b) defection, (c, d)
velocity, (e, f ) acceleration, and (g, h) restoring force generated by the CBIS of second and fourth foors.
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Figure 8: (a) Confguration of the test specimen and (b) details of CBIS.
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expressed as m€x + c _x + kx � 0, where m � 23 kg, the k and c

denote the shear stifness and damping coefcient of the
primary structure without a CBIS, respectively.Te goal is to
identify the unknown parameters k and c, using the ac-
celeration of the top foor from the accelerometer as the
input. Te displacement response of the top foor both in the
time and frequency domains can be seen in Figures 9(a) and
9(b), respectively.

Te damping ratio ξ can be calculated using the loga-
rithmic decrement method:

ξ �
1

2πn
ln

xk

xk+n

, (37)

where xk and xk+n are displacement response amplitudes
within n cycle intervals. From Figure 9(a), the damping ratio
is calculated as ξ � 0.33%. From Figure 9(b), the natural
frequency of the structure can be calculated as 0.915Hz by
using the fast Fourier transform.

To identify the parameters and responses, the extended
state vector can be represented as follows:

_z �

_x

€x

_c

_k

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

�

_x

m
− 1

(−c _x − kx)

0

0

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

.

(38)

Te initial values used in the AEKF are given as follows:
sampling interval Δt � 0.001 s, the initial state vector
z � 0 0 1 1000􏼈 􏼉

T, and the initial error covariance matrix
P � 106I4×4. In laboratory tests, noise levels are typically
more variable than in the controlled environment of nu-
merical simulations, which are preset at a 5% level. Tis
variability stems from factors such as environmental con-
ditions, equipment quality, and operational precision.

Consequently, a 5% noise level in the measurements is as-
sumed, and the covariance matrix of measurement noise is
derived as R � (5% × RMS(Y))2 ≈ 10− 2.

Regarding the Q matrix, values smaller than 10− 5 have
been found to yield satisfactory results within numerical
simulations that maintain controlled noise levels. In con-
trast, laboratory conditions characterized by less defned
noise levels and potential data discrepancies require the
adoption of smaller Q values for laboratory experiments.
When defection is used as the measurement input for
AEKF, a Q value smaller than 10− 5 is found to provide
satisfactory results. However, for acceleration measure-
ments, which are typically noisier and less smooth, a much
smaller Q value of 10− 11 is selected when the acceleration is
used as the measurement input for AEKF to obtain more
accurate estimations despite the presence of higher noise
levels.

As shown in Figures 10(a) and 10(b), the shear stifness k
and damping coefcient c of the primary structure without
a CBIS are estimated as k � 756.57N/m and c � 0.903Ns/m,
respectively, and the corresponding estimated natural fre-
quency and damping ratio are calculated as 0.913Hz and
0.34%, respectively. Te estimations based on AEKF are
comparatively consistent with the calculated natural fre-
quency and damping ratio. Figures 11(a) and 11(b) show the
comparison results of the measured and estimated accel-
eration and defection of the top foor, respectively. Te
estimated and measured results are in good agreement,
suggesting the proposed technique can accurately estimate
the unknown parameters and responses.

5.2.2. Identifcation of the Restoring Force Generated by the
CBIS. After identifying the parameters of the primary
structure without a CBIS, the free vibration test of the SDOF
structure with a CBIS is then conducted. Te equation of
motion of the SDOF structure with a CBIS is expressed as
equation (6). Te experimental restoring force generated by
the CBIS is calculated as the tension force diference between
measurements of the two steel cables’ tension. In order to
identify the restoring force generated by the CBIS, two case

Table 2: Test conditions of the SDOF structure equipped with a CBIS.

Test conditions

Description

Tickness of rotating
conducting plate (mm)

Air gap between
the magnets and

rotating conducting plate
(mm)

Free vibration tests

Md5 5 No magnets
Md5-Cd10 5 10
Md5-Cd20 5 20
Md5-Cd30 5 30
Md5-Cd40 5 40

Md10 10 No magnets
Md10-Cd10 10 10

Shaking table tests

Md5 5 No magnets
Md5-Cd10 5 10

Md20 20 No magnets
Md20-Cd10 20 10
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studies are presented depending on the availability of the
model of the CBIS.

For the frst case in which the model of the CBIS is
specifc, the equivalent eddy current damping coefcient cd

of the CBIS is identifed using the AEKF. Te input for the
identifcation is the acceleration response of the top foor.
Te initial values used in the AEKF are given as follows:
sampling interval Δt � 0.001 s, the covariance matrix
of measurement noise is assumed as R �

(5% × RMS(Y))2 ≈ 10− 2, the covariance matrix of process

noise Q � 10− 11I3×3, the initial state vector z � 0 0 10􏼈 􏼉
T,

and the initial error covariance matrix P � 106I3×3. Te
calculated md and the identifed cd are summarized in Ta-
ble 3. Ten, the restoring force generated by the CBIS is
calculated by fd � md€x + cd _x.

For the second case in which the model of CBIS is as-
sumed to be unspecifc, thus the restoring force generated by
the CBIS is identifed by KF-RLS. Te input for the iden-
tifcation is the displacement response of the top foor. Te
initial values used in the KF-RLS are given as follows:
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Figure 9: Displacement response at the roof of the frame without a CBIS: (a) time domain and (b) frequency domain.
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Figure 10: Parameter estimation of the frame without a CBIS (free vibration tests): (a) stifness and (b) damping coefcient.
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Figure 11: Response estimation at the roof of the frame without a CBIS (free vibration tests): (a) displacement and (b) acceleration.
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sampling interval Δt � 0.001 s, the covariance matrix
of measurement noise is assumed as R �

(5% × RMS(Y))2 � 10− 8, the covariance matrix of process
noise Q � 1, the equivalent covariance matrix ΓdQΓTd has
a magnitude of 10− 8, the forgetting factor ρ � 0.9, and the
initial values of the matrices are Pk,0 � 1010, P∗k,0 � 1010, and
Mk,0 � 02×2, respectively.

Figures 12(a) and 12(b) show the comparison results of
the measured responses (blue solid line) and estimated
responses (red dotted line) of displacement and acceleration
of the top foor using two diferent strategies, respectively. It
can be seen that the proposed technique efectively tracks the
ground truth, as demonstrated by the close match between
the estimations and measurements.

In addition, increasing the thickness of the rotating
conductor plates increases from 5mm (Md5) to 10mm
(Md10) which enhances the inertial and the damping ef-
fects provided by the CBIS increase, resulting in faster
vibration attenuation. Likewise, reducing the air gap be-
tween the rotating conducting plate and the magnets from
40mm (Cd40) to 10mm (Cd10) improves the CBIS’s
damping efects, facilitating quicker dissipation of the vi-
brational energy. Tese observations indicate that the CBIS
efectively bolsters the damping capability of the structure,
minimizing vibrations and optimizing overall structural
performance.

Te comparison of the estimation and measurement of
restoring force time history is plotted in Figure 13. As can be
seen from the above plots, the restoring force generated by
the CBIS can be identifed with high accuracy for both cases
using AEKF or KF-RLS.

5.3.ShakingTableTests. For shaking table tests, three ground
motions are utilized: EI Centro (1940, NS), Japan 311 wave
(2011, NS), and Shanghai artifcial wave (SHW, 1996). Each
type of seismic wave acts along only one direction, and the
peak value of the acceleration increases gradually from 0.1 to
0.3 g.

5.3.1. Parameters Identifcation of the SDOF Structure
without a CBIS. Te equation of motion for the SDOF
structure without a CBIS under shaking table tests can be
expressed as m€x + c _x + kx � −mag, where m � 26.6 kg, ag is
the acceleration of the ground motion. Te unknown pa-
rameters to be identifed are k and c. Te input for the
identifcation here is the acceleration of the top foor from
the accelerometer.

To identify the parameters and responses, the extended
state vector can be represented as follows:

_z �

_x

€x

_c

_k

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

�

_x

−m
− 1

(c _x + kx) − ag

0

0

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

.

(39)

Te initial values used in the AEKF are given as follows:
sampling interval Δt � 0.001 s, the covariance matrix
of measurement noise is assumed as R �

(5% × RMS(Y))2 ≈ 10− 2, the covariance matrix of process
noise Q � 10− 11I4×4, the initial state vector
z � 0 0 1 1000􏼈 􏼉

T, and the initial error covariance matrix
P � 106I4×4.

Based on the assessment, the estimated parameters of the
primary frame without a CBIS under diferent conditions are
summarized in Table 4. Te estimated stifness is stable at
around 4800N/m, while the estimated damping coefcient
ranges from 0.16% to 0.38% with an average of 0.25%.
However, the standard extended Kalman flter without
adaptive fading factors cannot identify the structural pa-
rameters and responses based on the experimental data from
shaking table tests.

Figures 14 and 15 show the estimation of unknown
parameters and responses of the SDOF structure without
a CBIS under the SHW seismic excitation with a peak
ground acceleration of 0.3 g. As shown in these fgures, after
an initial two-second period of fuctuation while searching
for the true values, the estimated structural parameters and
responses converge accurately to stable estimated values and
measured structural responses, respectively. Tis demon-
strates the efectiveness of the estimation method in de-
termining the parameters and responses of the SDOF
structure without a CBIS under seismic excitation.

5.3.2. Identifcation of the Restoring Force Generated by the
CBIS. After identifying the parameters of the primary
structure without a CBIS, shaking table tests of the SDOF
structure with a CBIS were conducted. In line with the free
vibration tests, two case studies are presented to identify the
restoring force generated by the CBIS. For the frst case,
utilizing a specifc CBIS model, the md of the CBIS is cal-
culated and the cd of the CBIS is identifed using the AEKF.
Te input for the identifcation is the acceleration response
of the top foor.Te initial values used in the AEKF are given

Table 3: Calculated inertance and identifed equivalent damping coefcient of the CBIS (free vibration tests).

Parameter Md5-Cd40 Md5-Cd30 Md5-Cd20 Md5-Cd10 Md10-Cd10
md (kg) 11.73 11.73 11.73 11.73 23.45
cd (Ns/m) 30.81 33.88 39.45 48.20 74.54
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Figure 12: Response estimations of the frame with a CBIS: (a) displacement and (b) acceleration.
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as follows: sampling interval Δt � 0.001 s, the covariance
matrix of measurement noise R � (5% × RMS(Y))2 ≈ 10− 2,
the covariance matrix of process noise Q � 10− 11I4×4, the
initial state vector z � 0 0 1000􏼈 􏼉

T, and the initial error
covariance matrix P � 106I3×3. Te calculated md and
identifed cd are summarized in Table 5. Te restoring force
by the CBIS is calculated by fd � md€x + cd _x.

For the second case that the CBISmodel is unspecifc, the
restoring force generated by the CBIS is identifed by the KF-
RSL. Te input for the identifcation is the displacement
response of the top foor. Te initial values used in the
KF-RSL are given as follows: sampling interval Δt � 0.001 s,

the covariance matrix of measurement noise
R � (5% × RMS(Y))2 � 10− 8, the covariance matrix of
process noiseQ � 1, the equivalent covariancematrix ΓdQΓTd
has a magnitude of 10− 8, the forgetting factor ρ � 0.9, and
the initial values of the matrices are Pk,0 � 1010, P∗k,0 � 1010,
and Mk,0 � 02×2, respectively. Utilizing the proposed tech-
nique, the structural response and the restoring force
generated by the CBIS were then identifed.

For instance, Figures 16 and 17 illustrate the estimated
responses of the SDOF structure equipped with a CBIS
(Md5) and the restoring force generated by the CBIS (Md5),
respectively, under SHW seismic excitation with a peak
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Figure 13: Comparison of the ground truth and the estimated restoring forces (free vibration tests) generated by the CBIS using AEKF
(case 1) and KF-RLS (case 2), respectively.

Table 4: Parameter estimation of the primary frame without a CBIS (shaking table tests).

Seismic input Stifness (N/m) Natural frequency (Hz) Damping coefcient (Ns/m) Damping ratio (%)

EI centro
0.1 g 4791.4 2.1360 1.5527 0.22
0.2 g 4836.3 2.1460 2.2452 0.31
0.3 g 4897.2 2.1595 2.7326 0.38

Japan 311
0.1 g 4822.7 2.1430 1.1643 0.16
0.2 g 4811.4 2.1405 1.5321 0.21
0.3 g 4780.0 2.1335 1.8370 0.26

SHW
0.1 g 4802.3 2.1385 1.6613 0.23
0.2 g 4795.6 2.1370 1.8090 0.25
0.3 g 4798.5 2.1376 2.0279 0.28
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ground acceleration of 0.3 g for both cases. Te estimated
responses of the top foor are in good agreement with the
measured responses, as shown in Figures 16(a) and 16(b).
Due to the intense vibration of steel cables during the
shaking table tests, the force sensors in the steel cables have
not obtained reliable data. Consequently, the estimated
restoring forces provided by the CBIS under various seismic
waves in two cases are presented in Figure 17.Te results for

two diferent cases align well with each other; however, they
could not be validated through comparison with measure-
ments in this paper.

5.4. Characteristics of the CBIS. Te restoring force gener-
ated by the CBIS includes the inertia force and the eddy
current damping force.Tis section aims to further study the
characteristics of the CBIS and verify the feasibility of the
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Figure 14: Parameter estimation of the frame without a CBIS (shaking table tests: SH-0.3 g): (a) stifness and (b) damping coefcient.
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Figure 15: Response estimation at the roof of the frame without a CBIS using AEKF (shaking table tests: SH-0.3 g): (a) defection and (b)
acceleration.
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mechanical model. Te calculated inertance and identifed
equivalent damping coefcient of the CBIS for free vibration
and shaking table tests are summarized in Tables 3 and 5,
respectively. Te air gap between the rotating conductor
plates and magnets is a crucial parameter that infuences the
cd of the CBIS. To examine the infuence of the air gap on the
damping performance of the CBIS, adjustments were made
to the air gap while keeping the md constant. As shown in
Table 3 and Figure 18, when the air gap increases from

10mm to 40mm, the cd decreases from 48.20 to 30.81Ns/m.
Tis fnding highlights the signifcance of the air gap in
determining the damping performance of the CBIS.

Te thickness of the rotating conductor plates plays
a critical role in infuencing both the inertial and the
damping efect of the CBIS. As shown in Table 3, when the
thickness of the rotating conductor plates increases from
5mm to 10mm, while maintaining the air gap at 10mm, the
md of the CBIS increases from 11.73 to 23.45 kg, and the cd

Table 5: Calculated inertance and identifed equivalent damping coefcient of the CBIS (shaking table tests).

Seismic input Md5-Cd10 Md20-Cd10
md (kg) cd (Ns/m) md (kg) cd (Ns/m)

EI centro
0.1 g 11.73 215.45 46.91 386.14
0.2 g 11.73 199.86 46.91 394.99
0.3 g 11.73 193.19 46.91 389.29

Japan 311
0.1 g 11.73 210.92 46.91 393.98
0.2 g 11.73 185.64 46.91 395.64
0.3 g 11.73 177.41 46.91 396.31

SHW
0.1 g 11.73 229.37 46.91 384.30
0.2 g 11.73 208.63 46.91 386.80
0.3 g 11.73 201.25 46.91 388.80
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Figure 16: Response estimation at the roof of the frame with a CBIS using KF-RLS (shaking table tests: SH-0.3 g-Md5): (a) defection and (b)
acceleration.

18 Structural Control and Health Monitoring



increases from 48.20 to 74.54Ns/m. Table 5 shows the results
for shaking table tests, the cd for Md5-Cd10 andMd20-Cd10
are almost 200Ns/m and 400Ns/m, respectively, for dif-
ferent types and amplitude levels of seismic waves. Again,
the rotating conductor plate of the CBIS with a larger
thickness will have a larger md and cd. Moreover, the values
of cd of CBIS in shaking table tests are higher than those in
free vibration tests. A possible explanation is that the steel
frame equipped with a CBIS, when subjected to the seismic
excitations in shaking table tests, experiences longer con-
stant vibration. Tis allows the eddy current damping efect
of the CBIS be fully realized, leading to a larger cd value.

6. Conclusions

In this study, a comprehensive experimental program was
conducted to evaluate the characteristics of an innovative
cable-bracing inerter system (CBIS) by performing free
vibration and shaking table tests on a one-story steel frame.
A system identifcation approach, based on the adaptive
extended Kalman flter (AEKF) and a recursive least-squares
(RLS) algorithm, was developed and demonstrated to be
highly accurate in identifying the structural parameters and
the restoring force generated by the CBIS.

Te results show that the CBIS provides substantial
inertial and damping forces, thereby improving the dynamic
performance of the steel frame. It was observed that the mass

of the rotating conductor plates had a signifcant impact on
the inertial and damping efects, with an increase in iner-
tance and eddy current efect as the thickness of the plates
increased. Furthermore, the study verifed the infuence of
the air gap between the rotating conductor plates and
magnets on the damping efect, with larger air gaps resulting
in reduced damping efects in terms of the eddy current
efect.

Tese fndings not only validate the governing laws of the
CBIS behavior in accordance with the proposed mechanical
model but also highlight its efectiveness in achieving its
intended functions. While additional research is needed to
further investigate the operating principles and validate the
estimated parameters of the CBIS, the CBIS has been proven
to possess a robust and efcient energy dissipation mech-
anism and can provide substantial inertial and damping
force. As a result, the CBIS holds immense potential for
a wide range of applications in vibration control of buildings
in civil engineering.

Appendix

A. Time-Variant Fading Factor

Te time-variant fading factor λk is determined by solving
anoptimization problem, equation (18). One sufcient
condition of equation (18) is the covariance of innovation
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residual sequences E[εk+jεT
k ] � 0. To obtain an exact solu-

tion is challenging; however, it has been proved that [55, 56],
if O(|εk|2)⨆O(|εk|), the covariance of residual error

sequences E[εk+jεT
k ] diferent times can be approximately

expressed as:

E εk+jε
T
k􏽨 􏽩 ≈ Hk+jϕk+j−1 I − Kk+j−1Hk+j−1􏼐 􏼑 · · ·ϕk+1 I − Kk+1Hk+1( 􏼁ϕk

􏽢P−

kH
T
k − KkVk􏼐 􏼑, (A.1)

where Vk is the covariance matrix of the estimated output
error, Vk � E[εkεT

k ]. Terefore, the sufcient condition of
the orthogonality is as follows:

􏽢P−

kH
T
k − KkVk � 0. (A.2)

Substituting the Kalman gain equation (18) into equation
(A.2),

􏽢P−

kH
T
k I − Hk

􏽢P−

kH
T
k + Rk􏼐 􏼑

− 1
Vk􏼔 􏼕 � 0. (A.3)

Terefore, the sufcient condition of equation (A.3) is as
follows:

Hk
􏽢P−

kH
T
k + Rk � Vk. (A.4)

Substituting the error covariance matrix equation (14)
into equation (A.4),

Hk λkϕk−1
􏽢P+

k−1ϕ
T
k−1􏼐 􏼑HT

k + Rk � Vk. (A.5)

Taking the trace on both sides of equation (A.5), a simple
approximate solution for λk can be obtained and expressed
as follows:

λ0,k �
tr Vk − HkQk−1H

T
k − Rk􏽨 􏽩

tr HkΦk−1P
+
k−1Φ

T
k−1H

T
k􏽨 􏽩

. (A.6)

As λk should be no less than 1, a fnal expression for λk

can be obtained as follows:

λk �
λ0,k, λ0,k ≥ 1,

1, λ0,k < 1.
􏼨 (A.7)

B. Recursive Relationship between Innovation
Residual Sequences and the Unknown
Restoring Force

As shown in equations (29) and (30), the posterior esti-
mations of Zk without and with fd are donated as Z

+

k and 􏽢Z+

k ,
respectively. ΔZk is the diference between Z+

k and 􏽢Z
+

k , which
can be calculated as follows:

ΔZk � 􏽢Z
+

k − Z+

k � 􏽢Z
−

k − Z−

k + HkKk Z−

k − 􏽢Z
−

k􏼐 􏼑

� 1 − HkKk( 􏼁 􏽢Z−

k − Z−

k􏼐 􏼑.
(B.1)

Substituting equations (27) and (28) into equation (B.1),

ΔZk � I − HkKk( 􏼁 􏽢Z
−

k − Z−

k􏼐 􏼑

� I − HkKk( 􏼁 A􏽢Z
+

k−1 + Bfk−1 + Bdfd,k−1 − AZ+

k−1 − Bfk−1􏼐 􏼑

� 1 − HkKk( 􏼁 AΔZk−1 + Bdfd,k−1􏼐 􏼑.

(B.2)

Let ΔZk � MkBdfd,k−1 and substituting it into equation
(B.2), assuming that fd is a constant over the certain interval,
then Mk can be expressed as follows (or equation (33)):

Mk � I − HkKk( 􏼁 AMk−1 + I( 􏼁. (B.3)

Yk and 􏽢Yk are the innovation residual sequences without
or with fd, respectively.ΔYk is the diference between Yk and
􏽢Yk, which can be expressed as follows:

ΔYk � Yk − 􏽢Yk � Yk − HkZ
−

k􏼐 􏼑 − Yk − Hk
􏽢Z−

k􏼐 􏼑

� Hk
􏽢Z

−

k − Z−

k􏼐 􏼑.
(B.4)

Substituting equations (25) and (26) and
ΔZk � MkBdfd,k−1 into equation (B.4),

ΔYk � Yk − 􏽢Yk � Hk
􏽢Z−

k − Z−

k􏼐 􏼑 � Hk AΔZk−1 + Bdfd,k−1􏼐 􏼑

� Hk AMk−1Bdfd,k−2 + Bdfd,k−1􏼐 􏼑

� Hk AMk−1 + I( 􏼁Bdfd,k−1.

(B.5)

Terefore, the recursive relationship betweenYk, 􏽢Yk, and
the unknown fd can expressed as follows (or equation (31)):

Yk � Y
⌢

k + Bkfd,k−1, (B.6)

where Bk is defned as the sensitivity matrix and calculated
by the following equation (or equation (32)):

Bk � Hk AMk−1 + I( 􏼁Bd. (B.7)
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