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A B S T R A C T   

This paper introduces a novel approach, the physics-informed long short-term memory (PI-LSTM) model, to 
address the forward and inverse problems of the frame structure equipped with the base isolation-fluid inerter 
system (FS-BIFI). Validation of the PI-LSTM model’s effectiveness is demonstrated through a numerical case 
study of a single-story FS-BIFI. Employing this approach, the PI-LSTM model accurately predicted displacement 
and acceleration responses of a three-story FS-BIFI. Moreover, it conducts an evaluation of unknown damping- 
related parameters (β1, β2) and a stiffness-related parameter (μ) of the fluid inerter mounted on the FS-BIFI. The 
model demonstrates a robust confidence value of 96.68% in predicting response error values within the range of 
[− 10%, 10%]. Notably, the relative errors in estimating unknown parameters (β1, β2, μ) stand at 12.760%, 
8.857%, and 3.750%, respectively. The results show that the PI-LSTM model has great potential for response 
prediction and parameter inversion of complex structural systems.   

1. Introduction 

Earthquakes are sudden and destructive natural disasters. The safety 
and performance of structures under seismic forces constitute a crucial 
topic in the field of earthquake engineering, directly impacting human 
safety, property loss, and societal stability [1,2]. Therefore, it is very 
important to monitor the health status of the structure under excitation, 
and the structural response is one of the most commonly used indicators. 
In order to mitigate the extent of structural damage under seismic ef
fects, engineering practices often employ seismic isolation devices or 
vibration reduction devices, such as hydraulic dampers and friction 
isolators. The inerter, serving as a novel seismic device, is progressively 
being utilized in conjunction with other devices (such as isolators) in the 
realm of earthquake engineering [3,4]. The structures equipped with 
vibration reduction or isolation devices exhibit strong nonlinear char
acteristics in response to external loads. This nonlinear behavior con
stitutes a substantial threat to structural stability and reliability. 
Therefore, conducting comprehensive analyses and assessments of these 
nonlinear traits stands as an imperative [5,6]. 

A large number of scholars have conducted a large number of studies 
on the vibration characteristics of structures under earthquake action 

[7–9]. Li et al. [10] investigated the reduced model and seismic response 
of inter-story isolated buildings by establishing equations of motion 
utilizing modal displacements of linear lower and upper structures. 
Xiong et al. [11] investigated the nonlinear stochastic dynamic nature of 
submerged floating tunnels (SFT) under seismic excitation, deriving 
their differential equations and assessing their seismic performance 
through dynamic reliability analysis. Malik et al. [12] investigated the 
dynamic characteristic of a viscously damped outrigger system in a 
60-story tall building under seismic and wind loads. Dynamic response 
analysis of structures stands as a pivotal component in seismic engi
neering. With increasingly complex application scenarios, the structural 
response triggered by earthquakes exhibits diverse and intricate char
acteristics, hence the continued in-depth exploration in related studies. 

Benefiting from the advancements in experimental methodologies, 
sensor technologies, and numerical techniques, a vast amount of data is 
being generated, collected, and processed. Data-driven methods have 
also developed rapidly in structural response modeling. Traditional 
data-driven deep learning (DL), such as convolutional neural networks 
(CNN), long short-term memory (LSTM) neural networks, utilizes al
gorithms to parse data, learning hidden information and physical 
knowledge from the data, subsequently making decisions or predictions 
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[13–15]. Recent research has also confirmed that optimizing standard 
neural network architectures for compositional skills can achieve a level 
of systematicity similar to that of humans [16]. However, this method 
relies on extensive labeled data to maintain the model’s generalization 
ability and high-performance output, resulting in poor generalization 
and interpretability of the model. 

In order to overcome the limitations of the aforementioned methods, 
a physics-driven deep learning (PDDL) paradigm, which combines data- 
driven DL models with physics-driven computational mechanics models, 
has been proposed [17–20]. Subsequently, PDDL paradigm has been 
further optimized [21–25] and has been extensively applied in fields 
including structural engineering, ocean engineering, and seismic engi
neering [26–29]. 

As a concrete form of PIDL paradigm, by embedding physical 
equations into traditional LSTM as regularization terms, the PI-LSTM 
model can be effectively applied to the predictions of complex dy
namic systems [30]. Liu et al. [31] applied the PI-LSTM model to 
response modeling of the SDOF system and six-story building. Shi et al. 
[32] used PI-LSTM to model degradation trends of lithium-ion batteries 
and predict their remaining useful life, taking into account battery 
health and operating conditions. The fusion of data and physics effec
tively enhances the interpretability of the PI-LSTM model while 
reducing its reliance on labeled data [33]. In addition, PI-LSTM model 
also has unique advantages in dealing with inverse problems. It has great 
potential in the problems of parameter inversion and function inversion. 

In this paper, a PI-LSTM model was constructed to address the for
ward and inverse problems of the frame structure equipped with the 
base isolation-fluid inerter system (FS-BIFI), and the damping-related 
parameters β1, β2 and a stiffness-related parameter μ of the fluid 
inerter are unknown. The structure and main contents of this paper are 
as follows: In Section 2, the fundamental structure and principle of the 
PI-LSTM model were provided. In Section 3, the reliability of the PI- 
LSTM model was validated by using a numerical case study of a 
single-story FS-BIFI. In Section 4, the PI-LSTM model was applied to a 
three-story FS-BIFI, achieving response prediction and parameters esti
mation. Finally, the primary conclusions of this paper were presented in 
Section 5. 

2. PI-LSTM model for the FS-BIFI 

Recurrent neural network (RNN) is a type of neural network utilized 
for processing sequential data. Among these, LSTM is a specific type of 

RNN designed primarily to address the vanishing and exploding gradient 
problems encountered during the training of long sequences. By 
embedding the equations of motion into a standard LSTM model, the PI- 
LSTM model is established for response prediction and parameters 
estimation of a complex structure. 

For a complex structural vibration problem, the physical equations 
can be represented as: 
⎧
⎨

⎩

N(f ; λ) = 0
BC(f ; λ) = 0
IC(f ; λ) = 0

(1)  

Here, f(x, λ) represents the implicit solution of the equations (structural 
response), and x = (x1, x2, …, xn) is the input excitation. N(⋅; λ) is a 
nonlinear operator dependent on λ, while BC(⋅; λ) and IC(⋅; λ) denote the 
boundary and initial conditions, respectively. 

The PI-LSTM model for the response prediction and parameters 
estimation for the aforementioned complex structural system depicted 
in Fig. 1. The PI-LSTM model mainly comprises two major components: 
a standard LSTM model and physical regularization terms. The LSTM 
model, serving as continuously differentiable approximation functions, 
are employed to establish the mapping relationship between input and 
output variables. The physical regularization term is utilized to analyze 
whether the input and output of the LSTM model adhere to the equations 
of motion. The automatic differentiation (AD) algorithm is used to 
compute the residuals of the equations of motion. The loss function of PI- 
LSTM model is composed of residuals from both data and physical 
equations, as depicted in Eq. (2). If there are unknown parameters λ in 
the equations, they are used as the parameters to be trained in the neural 
network. TensorFlow-Adam Optimizer [34] is employed to achieve 

Fig. 1. The schematic diagram of PI-LSTM.  

Table 1 
The training algorithm of the PI-LSTM model.  

The training algorithm 
Input: I = [äg, u]

Initalize: w, b, λ 
for i = 1 to iterations do  

ũ = PI LSTM(äg)

Loss= Lossphy+ Lossdata 

(w, b, λ)∗ = arg min
(w,b,λ)

(Loss)

end 
Save: (w, b, λ)∗

Output: ũ  
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automatic gradient descent during the training process of PI-LSTM 
model. It rapidly updates the weight matrix (w), bias coefficients (b), 
and unknown parameters λ until minimizing the loss function. The 
training algorithm of the PI-LSTM model is shown in Table 1. 

Ltotal = Ldata + Lphy

= ‖f̃ − f‖ + ‖N(̃f , λ)‖ + ‖BC(̃f , λ)‖ + ‖IC(̃f , λ)‖
(2)  

Here, f̃ represents the output of the LSTM model, while Ldata and Lphy 
denote the residuals originating from the label data and the physical 
equations, respectively. 

3. Model validation based on numerical case 

To validate the effectiveness of the established PI-LSTM model, this 
section conducts response prediction and parameters estimation for a 
single-story FS-BIFI. 

3.1. The model of a single-story FS-BIFI 

As shown in Fig. 2, the base isolation-fluid inerter hybrid control 
structural system consists of three components: superstructure (see 
Fig. 2(a), subscript s), isolation layer (see Fig. 2(b), subscript b) and fluid 
inerter (see Fig. 2(c), subscript d). Wherein, the mechanical model of the 
fluid inerter can be simplified as depicted in Fig. 2(c), and its equation of 
motion can be represented as: 

bü+ c1u̇2 + c2u̇1.75 + kdu = 0 (3)  

Here, u is the displacement, b represents the inertance, c1 and c2 are 
nonlinear damping coefficients, and kd is the equivalent bulk modulus, 
and can be obtained as following: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b =
ρlA2

1

A2

kd =
1

1
Kliquid

+
1

100
1

Kair

(
1

L/2 − x
+

1
L/2 + x

)

A1

c1 = 0.0160
ρl

R0.5
A3

1

A2.25
2

c2 = 0.1376ν0.25ρ0.75l
A2.75

1

A2.375
2

(4)  

Where, A1 is the working area of the cylinder, A2 is the working area of 
the helical tube, l is the total length of the helical tube, R is the rotation 
radius of helical tube, L is the effective length of cylinder, v and ρ are the 

viscosity coefficient and density of liquid, Kliquid and Kair are the bulk 
modulus of liquid and air. 

For the single-story FS-BIFI, its normalized equations of motion can 
be expressed as: 

üs + α1
(
u̇s − u̇b

)
+ α2

(
us − ub

)
+ äg = 0

üb + α3u̇b + α4ub −
[
α5
(
u̇s − u̇b

)
+ α6

(
us − ub

)]
− α7

(
ud − ub

)
+ äg = 0

üd + β1|u̇d|
2sgn(u̇d) + β2|u̇d|

1.75sgn(u̇d) + μ
(

ud − ub

)
= 0

(5)  

Where, [α1, α2]= ms
− 1[cs, ks], [α3, α4, α5, α6, α7]= mb

− 1[cb, kb, cs, ks, kd], 
[β1, β2, μ]= b− 1[c1, c2, kd]. m, u, c, and k are the mass, displacement, 
damping and stiffness respectively, ξ is the damping ratio of the struc
ture, and subscripts s, b and d are superstructure, isolation layer and 
fluid inerter respectively. The relevant parameters of the structural 
model and the fluid inerter adopted in this section are shown in Tables 2 
and 3. 

To generate labeled data for training PI-LSTM model, it is necessary 
to compute the structural response under various seismic excitations, 
simulating sparse data collected by sensors in real engineering scenarios. 
The Newmark-β method is employed to solve the structural response, and 
β = 0.5, γ = 1/6, the time step is 0.02 s. For further details, please refer 
to [35]. 

Fig. 2. The single-story FS-BIFI. (a) The superstructure; (b) The isolation layer; (c) The fluid inerter.  

Table 2 
The relevant parameters of the structural model.  

Physical variables Value 

ms (103 kg)  3300 
ks (MN/m)  521.192 
ξ  0.05 
mb (103 kg)  613 
kb (MN/m)  17.142 
cb (106 N•s/m)  1.63  

Table 3 
The relevant parameters of the fluid inerter.  

Physical variables Value 

L (m)  1.0 
l (m)  28.7 
R (m)  0.618 
A1 (m2)  0.718 
A2 (m2)  0.005 
ρ (kg/m3)  1000 
ν (cm2/s)  0.001  
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3.2. PI-LSTM model construction and training 

3.2.1. Model construction 
Constructing a PI-LSTM model for response prediction and parame

ters estimation of the single-story FS-BIFI (as shown in Fig. 3). The 
calculation of the physical loss function requires displacement, velocity 
and acceleration responses (see Eq. (5)). In order to reduce the data 
burden, take any two indicators of displacement, velocity and acceler
ation, and use Newmark-β to get another indicator. In this case, the input 

of the LSTM model is the seismic acceleration äg = [ä1
g , ä

2
g ,…, än

g ], and its 
output is the structural displacement and velocity response [us, u̇s, ub, u̇b,

ud, u̇d] and the unknown parameters λ = [β1, β2, μ] of the fluid inerter. To 
ensure training convergence, the PI-LSTM model is composed of a single 
LSTM layer followed by 2 fully connected layers. The number of hidden 
nodes and the batch size are set as variable hyperparameters. The loss 
function consists of both physical residual and data residual, calculated 

using L2 regularization, as depicted in Eqs. (6) and (7). The learning rate 
is set to 0.01, the forget rate is set to 0.06, the gradient threshold is set to 
1, and iterations is set to 500, as shown in Table 4. 

Ldata =
∑N

i

( ⃦
⃦ũi

s − ui
s

⃦
⃦+

⃦
⃦ũi

b − ui
b

⃦
⃦+

⃦
⃦ũi

d − ui
d

⃦
⃦+

⃦
⃦̃̇u

i
s − u̇i

s

⃦
⃦+

⃦
⃦̃̇u

i
b − u̇i

b

⃦
⃦

+
⃦
⃦̃̇u

i
d − u̇i

d

⃦
⃦
)

(6)  

Where the superscript (~) denotes the model’s output, d̃u̇
i

s
dt , d̃u̇

i

b
dt , d̃u

i
s

dt , 
d̃u

i
s

dt ,d̃u
i
b

dt ,d̃u
i
d

dt are obtained through the Newmark-β method. 

3.2.2. Model training 
The seismic accelerations (60 original seismic accelerations + 582 

seismic accelerations from incremental dynamic analysis) and 

Fig. 3. The PI-LSTM model for analyzing the single-story FS-BIFI.  

Table 4 
The hyperparameters of the PI-LSTM model.  

Hyper parameter Value Hyper parameter Value 

LSTM layers 1 Gradient threshold 1 
Number of hidden nodes {50,100,200} Learning rate 0.01 
FCNN layers 2 Optimizer Adam 
Neurons in FCNN layers 100 β1 0.9 
Batch size {1,2,4,8,16,48} β2 0.999 
Forgetting rate 0.06 ε 1.00E-7  

Table 5 
Configuration of platform for model training.  

Configuration Performance indicators 

System Windows 10 64-bit 
CPU Intel® Core™ i7-10875 H 2.35 GHz 
GPU NVIDIA GeForce RTX 2060 Max-Q 6 GB 
RAM 64 G 
Python 3.8.5 
Tensorflow 1.6.0  

Lphy =
∑N

i

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⃦
⃦
⃦
⃦

d̃̇u
i
s

dt
+ α1

(

̃̇u
i
s −
̃̇u

i
b

)

+ α2

(

ũi
s − ũi

b

)

+ ̃̈a
i
g

⃦
⃦
⃦
⃦

+

⃦
⃦
⃦
⃦

d̃̇u
i
b

dt
+ α3̃̇u

i
b + α4ũi

b −

[

α5

(

̃̇u
i
s −
̃̇u

i
b

)

+ α6

(

ũi
s − ũi

b

)]

− α7

(

ũi
d − ũi

b

)

+ ̃̈a
i
g

⃦
⃦
⃦
⃦

+

⃦
⃦
⃦
⃦

d̃̇u
i
d

dt
+ β1

⃒
⃒̃̇u

i
d

⃒
⃒

2
sgn
(
̃̇u

i
d

)
+ β2

⃒
⃒̃̇u

i
d

⃒
⃒

1.75
sgn
(
̃̇u

i
d

)
+ μ
(

ũi
d − ũi

b

)⃦
⃦
⃦
⃦

+

⃦
⃦
⃦
⃦

dũi
s

dt
− ̃̇u

i
s

⃦
⃦
⃦
⃦+

⃦
⃦
⃦
⃦

dũi
b

dt
− ̃̇u

i
b

⃦
⃦
⃦
⃦+

⃦
⃦
⃦
⃦

dũi
d
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⎞
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⎟
⎠

(7)   

Y. Liao et al.                                                                                                                                                                                                                                     



Engineering Structures 309 (2024) 118077

5

corresponding structural response from were selected in Ref. [35] as 
data sets. Based on the time series k-means algorithm (TSkmeans), the 
original seismic accelerations and incremental seismic accelerations are 
divided into three clusters, respectively. 80% of the three clusters of 
original seismic accelerations-structural response are randomly selected 
as the training set, a total of 48 groups of seismic accelerations-structural 
response. The rest of the data serves as the test set. The server platform 
and environment configuration used for all model training in this paper 
are shown in Table 5. 

Fig. 4 demonstrates the effects of different training batch sizes and 
various numbers of hidden layer nodes on both the loss function and 
training time. As can be seen from Fig. 4, the number of hidden nodes 
and batch size have a great impact on the time and accuracy of model 
training. To balance computational efficiency and accuracy, this study 
employed a parameter configuration of n = 100 and a batch size of 2 to 
train the PI-LSTM model. The training iteration process of the model is 
shown in Fig. 5. It can be observed that at the conclusion of iterations, 
the data residual Ldata and the physical residual Lphy are recorded as 
1.01E-4 and 4.23E-4, respectively, which are within the same order of 
magnitude. This indicates that the PI-LSTM model is subject to a mutual 
constraint imposed by both physical equations and label data. 

3.3. Response prediction and parameters estimation 

3.3.1. Response prediction 
The probability density function (PDF) Pi is used to analyze the error 

of prediction results of three clusters test sets. The Pi is calculated as 
follows: 

Pi = PDF
{

(yi − y⌢i)

max|(y1, y2,…, yn)|

}

(8)  

Where ŷi and yi represent the predicted and numerical values, respec
tively. The weighted mean absolute percentage error (WMAPE) EWMAPE 
and peak percentage error (PPE) EPEAK are selected as evaluation in
dexes. The calculation formula is as follows: 

EWMAPE =
1

m × n

∑m

j=1

∑n

i=1

|yi − y⌢i|

max|(y1, y2,…, yn)|
× 100% (9)  

EPEAK =

⃒
⃒
⃒
⃒
⃒

ypeak − y⌢peak

ypeak

⃒
⃒
⃒
⃒
⃒
× 100% (10)  

Where ypeak is the numerical peak value of the time history response, 
y⌢peak is the predicted peak value of the time history response. 

Fig. 6 shows the error distribution of prediction results by the PI- 
LSTM model. Table 6 shows the error values for displacement and ve
locity. As shown in Fig. 6(a), the errors of predicted result by using a test 
dataset comprising three clusters of seismic acceleration records, are 
mainly distributed within the range of ± 10%. It’s evident that the PI- 
LSTM exhibits reliable feature learning abilities across diverse clusters 
of seismic motions, with confidence values of 96.58%, 95.74%, and 
98.64%. Compared with data-driven LSTM model (90.2%, 86.7%, and 
95.8% [35]), PI-LSTM model has improved the prediction accuracy of 
structural response under various clusters seismic excitation. ud, u̇d, ub, 
u̇b, us, u̇s have confidence values within a range of ± 10% prediction 
error, which are 97.03%, 96.27%, 99.78%, 98.18%, 96.09%, and 
99.55%, respectively (see Fig. 6(b)). Overall, the PI-LSTM model ex
hibits high predictive accuracy, with maximum WMAPE and PPE values 
of 5.101% and 5.245%, respectively (see Table 6). 

Fig. 7 presents the predicted displacement and velocity time-history 
response of the superstructure, isolation layer and fluid inerter under the 
effect of a single seismic acceleration. The predicted responses for the 
superstructure, isolation layer and fluid inerter closely match the nu
merical results. This indicates that the PI-LSTM model exhibits 
outstanding accuracy in predicting vibration response of the single-story 
FS-BIFI, matching well with numerical results in both overall trends and 
local features. The PI-LSTM model can accurately capture the relation
ship between non-stationary segments of seismic excitations and the 
response characteristics of the single-story FS-BIFI. 

3.3.2. Parameters estimation 
During the completion of the aforementioned PI-LSTM model 

training process, the unknown parameters within the equations were 
concurrently estimated. Fig. 8 illustrates the trends of damping-related 
parameters β1, β2, and stiffness-related parameter μ during the 
training of the PI-LSTM model. It can be observed that the three curves 
show an initial increase followed by a decrease trend during the model 
training, eventually stabilizing at specific values. Ultimately, the esti
mated unknown parameter values are β1 = 11.343, β2 = 5.154 and 
μ = 10.021. Based on the design parameters in Table 3, the actual 
damping-related parameters can be computed as β1 = 10.991, β2 
= 4.950, and the stiffness-related parameter as μ = 9.706. The relative 
errors are 3.202%, 4.121%, and 3.245%, respectively. 

Fig. 4. The loss function and training time of the model with 
different parameters. 

Fig. 5. The training iteration process of the PI-LSTM model.  
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4. PI-LSTM for a frame structure model 

4.1. Shaking table experiment of a three-story FS-BIFI 

The superstructure is a three-story frame structure, and the column 
feet and frame joints are connected with angle steel or angle beam to 
ensure rigid connection. The rigid plates with a thickness of 20 mm are 
employed in each layer to ensure the superstructure exhibits significant 
lateral displacement and substantial out-of-plane stiffness. The di
mensions of the floor slab are 1040 mm × 1040 mm × 20 mm, with a 
layer height of 950 mm, resulting in a total height of 2850 mm, as 
depicted in Fig. 9(a). Between the superstructure and the shaking table, 
a hybrid control system combining fluid inerter and anti-toppling rolling 
isolation is implemented, as depicted in Fig. 9(b). The data sampling 
frequency is 1000 Hz. The acquired data includes the shaking table 
displacement u0, the absolute acceleration üb abs and the absolute 
displacement ub abs of the isolation layer, the absolute acceleration üsj abs 

and the absolute displacement usj absof each layer of the superstructure 
(i = 1, 2, 3), the output force of the fluid inerter, and the pressure of the 
helical tube. The relative acceleration and the relative displacement of 
the isolation layer can be obtained as üb = üb abs − äg and ub = ub abs −

u0. The relative acceleration and the relative displacement of the su
perstructure are üsj = üsj abs − äg and usj = usj abs − u0.The fluid inerter is 
consolidated on the side of the supporting site of the isolation layer. The 
relative acceleration and the relative displacement of the fluid inerter 
are üd = üb and ud = ub. 

Based on the principle of mechanical equilibrium, the equations of 
motion for the three-layered framework structure with the isolation 
layer and the fluid inerter under the seismic excitation can be formu
lated as follows: 

ms1üs1+cs1
(
u̇s1 − u̇s2

)
+ks1

(
us1 − us2

)
=− ms1äg

ms2üs2+cs2
(
u̇s2 − u̇s3

)
+ks2

(
us2 − us3

)
− cs1

(
u̇s1 − u̇s2

)
− ks1

(
us1 − us2

)
=− ms2äg

ms3üs3+cs3
(
u̇s3 − u̇b

)
+ks3

(
us3 − ub

)
− cs2

(
u̇s2 − u̇s3

)
− ks2

(
us2 − us3

)
=− ms3äg

mbüb+kbub+Fs+Fb −
[
cs3
(
us3 − u̇b

)
+ks3

(
us3 − ub

)]
− kd

(
ud − ub

)
=− mbäg

büd +c1|u̇d|
2sgn(u̇d)+c2|u̇d|

1.75sgn(u̇d)+kd

(
ud − ub

)
=0

(11)  

Where the subscripts s1, s2, and s3 represent the top, second, and bottom 
layers of the framework structure. Fs and Fb denote the frictional 
damping of the rolling isolation and the isolation damping due to 
interaction forces between components, respectively. By employing the 
statistical linearization method, the equivalent damping coefficient ceq 
of the rolling isolation can be derived as Fs + Fb = cequ̇b. Therefore, the 
equations of motion can be rewritten in the following form: 

üs1 + α1
(
u̇s1 − u̇s2

)
+ α2

(
us1 − us2

)
= − äg

üs2 + α3
(
u̇s2 − u̇s3

)
+ α4

(
us2 − us3

)
− α5

(
u̇s1 − u̇s2

)
− α6

(
us1 − us2

)
= − äg

üs3 + α7
(
u̇s3 − u̇b

)
+ α8

(
us3 − ub

)
− α9

(
u̇s2 − u̇s3

)
− α10

(
us2 − us3

)
= − äg

üb + α11u̇b + α12ub − α13
(
u̇s3 − u̇b

)
− α14

(
us3 − ub

)
− α15

(
ud − ub

)
= − äg

üd + β1|u̇d|
2sgn(u̇d) + β2|u̇d|

1.75sgn(u̇d) + μ
(

ud − ub

)
= 0

(12) 

Among them, α = [α1, α2,…,α15] represent the normalized damping- 
related parameters and stiffness-related parameters, which can be ob
tained by calculating the parameters in Table 7. The design parameters 
of the fluid inerter are shown in Table 8. The damping-related param
eters β1 and β2, as well as the stiffness-related parameter μ, of the fluid 
inerter are unknown parameters to be estimated and outputted through 
the PI-LSTM model. 

4.2. PI-LSTM model construction and training 

Establishing a PI-LSTM model for predicting response and evaluating 
parameters of the frame structure model based on the framework out

Fig. 6. The error distribution of prediction results by PI-LSTM mode. (a) Diverse clusters of seismic accelerations; (b) Diverse response metrics.  

Table 6 
The predicted error of the PI-LSTM model.    

ud u̇d ub u̇b us u̇s 

Cluster 1 EPEAK/%  1.344  1.667  1.981  2.094  1.279  1.555 
EWMAPE/%  2.727  1.818  2.242  1.287  1.967  1.800 

Cluster 2 EPEAK/%  1.565  2.378  2.094  2.899  2.543  1.822 
EWMAPE/%  4.149  4.313  5.101  3.652  5.245  3.473 

Cluster 3 EPEAK/%  0.900  1.235  1.011  0.879  0.992  1.376 
EWMAPE/%  1.464  0.746  0.999  1.756  2.461  1.131  
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lined in Fig. 1. Different from the model in Section 3.2.1, the input of the 
PI-LSTM model is seismic excitation äg = [ä1

g , ä
2
g ,…, än

g ] and the output is 
displacement and acceleration response [us1, üs1,us2, üs2,us3, üs3,ub, üb,ud,

üd]. Due to differences in the structural equations of motion and the 
types of collected data, the loss function of the model can be represented 
as:  

Ldata =
∑N

i

(
∑3

j=1

(⃦
⃦
⃦ũi

sj − ui
sj

⃦
⃦
⃦+

⃦
⃦
⃦̃̈u

i
sj − üi

sj

⃦
⃦
⃦

)
+
⃦
⃦ũi

b − ui
b

⃦
⃦+

⃦
⃦̃̈u

i
b − üi

b

⃦
⃦
⃦
⃦ũi

d

− ui
d

⃦
⃦+ +

⃦
⃦̃̈u

i
d − üi

d

⃦
⃦

)

(14)  

Where， d̃ud
dt , d

2 ũd
dt2 ,d̃ub

dt ,d
2 ũb
dt2 and d̃u

i
sj

dt , d
2 ũ

i
sj

dt2 (j = 1, 2, 3) are obtained through 
the Newmark-β method. 

The training set and test set are 21 groups of seismic excitation- 
structural response, as shown in Table 9. The classification criteria for 
near-field and far-field seismic waves are based on a fault displacement 
of 20 km. The data sampling interval is 0.001 s, with a duration of 50 s 

The computing platform and environment configuration are sum
marized in Table 5. The hyperparameters specific to the PI-LSTM model 
are presented in Table 4. The number of iterations is 500. The model 
training duration was 3h52m27s. The loss functions associated with the 
model training are illustrated in Fig. 10. Ldata converges to 4.239E-4, Lphy 
ultimately converges to 4.537E-3, resulting in a total loss value of 
4.961E-3. 

4.3. Response prediction and parameters estimation 

4.3.1. Response prediction 
In order to evaluate the predictive accuracy of the PI-LSTM model, 

the results obtained from the Newmark-β method will be included for 
comparative analysis. The error distribution between the responses 
predicted by the PI-LSTM and Newmark-β methods and the actual 
experimental responses is shown in Fig. 11. Table 10 displays the 
WMAPE and PPE of predicted acceleration and displacement responses. 
Within the confidence interval [− 10%, 10%], the confidence values of 
the predicted error by the PI-LSTM model and Newmark-β method are 
96.68% and 77.53%, respectively. The PPE in the prediction results by 
the PI-LSTM model is within 7%, demonstrating a high level of 

predictive accuracy, whereas the numerical simulation results exhibit 
PPE exceeding 50%. This result suggests that compared to Newmark-β 
method, PI-LSTM can more accurately capture the vibrational charac
teristics of the three-story FS-BIFI. 

A subset of experimental results and corresponding predicted out
comes for the seismic excitation Loma Prieta-0.01 g are selected for 
comparative analysis, depicted in Fig. 12. It’s observable that the PI- 

LSTM model exhibits a good fit to the experimental data, accurately 
predicting structural response waveform characteristics even during the 
non-stationary phases of vibration. However, when predicting 
displacement response, its accuracy is inferior to that of the acceleration 
response, resulting in an overall waveform shift. This is due to residual 
displacements in the structural model from prior experiments, which did 
not fully return to the ideal initial position before the current test. 

Fig. 13 (a), (d) and (g) illustrate the acceleration responses of the top 
layer, isolation layer and fluid inerter under a single seismic excitation 
obtained from experimental testing, Newmark-β method, and the PI- 
LSTM model. Based on the experimental results, the relative errors of 
the results obtained by PI-LSTM model and Newmark-β method are 
calculated. The calculated relative error value is shown in Fig. 13 (b), (e) 
and (h). Additionally, for further illustration of the prediction results’ 
effectiveness, detailed local plots are provided in Fig. 13 (c), (f) and (i). 
It can be observed that the structural response obtained using the 
Newmark-β method, while showing a similar overall trend to the 
experimental results, exhibits considerable errors and neglects certain 
local minor high-frequency vibration characteristics. However, the PI- 
LSTM model, integrating structural equations of motion and experi
mental data, captures the minor high-frequency characteristics of 
structural vibrations. Hence, the results from the PI-LSTM model exhibit 
a high level of consistency with the experimental results. 

4.3.2. Parameters estimation 
Based on the design parameters in Table 8, the theoretical damping- 

related parameters β1 and β2 of the fluid inerter are 35.310 and 25.303, 
and the theoretical stiffness-related parameter μ is 419.95. The estima
tion β1, β2 and μ of the fluid inerter are 39.81567, 27.54401, and 
404.23368, with corresponding relative errors of 12.760%, 8.857%, and 
3.750% respectively (as shown in Fig. 14). The error in the damping- 
related parameter β1 is comparatively larger than that of the damping- 
related parameter β2 and the stiffness-related parameter μ. The main 
reason lies in the theoretical modeling overlooking factors such as 
frictional damping between the piston rod and the cylinder wall, pres
sure drops at the inlet and outlet, as well as machining errors. 

Lphy =
∑N

i

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

‖̃̈us1 + α1

(
dũs1

dt
−

dũs2

dt

)

+ α2

(

ũs1 − ũs2

)

+ äg‖

+‖̃̈us2 + α3

(
dũs2

dt
−

dũs3

dt

)

+ α4

(

ũs2 − ũs3

)

− α5

(
dũs1

dt
−

dũs2

dt

)

− α6

(

ũs1 − ũs2

)

+ äg‖

+‖̃̈us3 + α7

(
dũs3

dt
−

dũb

dt

)

+ α8

(

ũs3 − ũb

)

− α9

(
dũs2

dt
−

dũs3

dt

)

− α10

(

ũs2 − ũs3

)

+ äg‖

+‖̃̈ub + α11
dũb

dt
+ α12ũb − α13

(
dũs3

dt
−

dũb

dt

)

− α14

(

ũs3 − ũb

)

− α15

(

ũd − ũb

)

+ äg‖

+‖̃̈ud + β1|
dũd

dt
|
2sgn

(
dũd

dt

)

+ β2|
dũd

dt
|
1.75sgn

(
dũd

dt

)

+ μ
(

ũd − ũb

)

‖

+
∑3

j=1
‖

d2ũsj

dt2 − ̃̈u
i
sj‖ + ‖

d2ũb

dt2 − ̃̈u
i
b‖ + ‖

d2ũd

dt2 − ̃̈u
i
d‖

⎞

⎟
⎟
⎟
⎟
⎟
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⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
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⎟
⎟
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(13)   
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Fig. 7. The comparison between predicted and numerical results. (a) The displacement ub; (b) The velocity u̇b; (c) The displacement ud; (d) The velocity u̇d;(e) The 
displacement us; (f) The velocity u̇s. 
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Fig. 8. The estimation results of unknown parameters of the fluid inerter. (a) The damping-related parameters β1; (b) The damping-related parameters β2; (c) The 
stiffness-related parameter μ. 

Fig. 9. The shaking table experiment of a three-story FS-BIFI. (a) The FS-BIFI; (b) The shaking table experiment.  

Table 7 
The parameters of the structural model.  

Physical variables Value Physical variables Value 

ms1 (kg)  300 ms3 (kg)  300 
ks1 (kN/m)  466.740 ks3 (kN/m)  466.740 
cs1 (N⋅s/m)  2659 cs3 (N⋅s/m)  5318 
ms2 (kg)  300 mb (kg)  950 
ks2 (kN/m)  466.740 kb (kN/m)  476.900 
cs2 (N⋅s/m)  2659 ceq (kN/m)  1937  

Table 8 
The relevant parameters of the fluid inerter.  

Physical variables Value 

L (m) 0.6 
l (m) 4 
R (m) 0.0365 
A1 (m2) 3.117E-3 
A2 (m2) 7.854E-5 
ρ (kg/m3) 1000 
ν (cm2/s) 0.001  
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In summary, as numerical methods solely address the structural 
equations of motion without considering influential factors like material 
properties and temperature existed in experiments, the computed results 
demonstrate substantial discrepancies from experimental results. 
Conversely, the PI-LSTM model, integrating structural equations of 

motion with experimental response data, exhibits a remarkably close 
alignment with experimental results in both overall trends and specific 
local details. 

5. Conclusion 

In this paper, the PI-LSTM model is used to predict response and 
estimate unknown parameters of the FS-BIFI. The applicability of PI- 
LSTM model to response prediction and parameters estimation is veri
fied based on a numerical case study of a single-story FS-BIFI. Then, the 
response of a three-story FS-BIFI in the shaking table is predicted, and 
the unknown parameters of the fluid inerter are estimated. The main 
conclusions are obtained as follows:  

(1) The PI-LSTM model, designed for the response prediction and 
parameters evaluation of the complex structure, is developed by 
embedding the structural equations of motion as a regularization 
term within the LSTM model. The applicability of the PI-LSTM 
model is validated based on a numerical case study of a single- 
story FS-BIFI. The predicted responses ud, u̇d, ub, u̇b, us, and u̇s 
have confidence values within a range of ± 10% prediction error, 
which are 97.03%, 96.27%, 99.78%, 98.18%, 96.09%, and 
99.55%, respectively. The evaluation unknown parameter values 
are β1 = 11.343, β2 = 5.154 and μ = 10.021, and the corre
sponding relative errors are 3.202%, 4.121% and 3.245%, 
respectively. 

Table 9 
Training set and test set.  

Data set No. Seismic excitation Type Amplitude (g) 

Training set  1 EL-Centro near-field  0.05  
2 Chi-Chi near-field  0.05  
3 Loma Prieta near-field  0.05  
4 San Fernando far-field  0.05  
5 White Noise-01 white noise  0.05  
6 EL-Centro near-field  0.10  
7 Livermore-01 far-field  0.10  
8 Tabas, Iran far-field  0.10  
9 San Fernando far-field  0.10  

10 White Noise-02 white noise  0.05  
11 Chi-Chi near-field  0.20  
12 Loma Prieta near-field  0.20  
13 Tabas, Iran far-field  0.20  
14 Livermore-01 far-field  0.20 

Test set  1 Livermore-01 far-field  0.05  
2 Tabas, Iran far-field  0.05  
3 Chi-Chi near-field  0.10  
4 Loma Prieta near-field  0.10  
5 EL-Centro near-field  0.20  
6 San Fernando far-field  0.20  
7 White Noise-03 white noise  0.05  

Fig. 11. The error distribution of prediction results by PI-LSTM model and Newmark-β method.  

Fig. 10. The training iteration process of the PI-LSTM model.  
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(2) The PI-LSTM model is employed to predict the response of a 
three-story FS-BIFI situated on the shaking table. Within the 
confidence interval [− 10%, 10%], the confidence values of the 
predicted error by the PI-LSTM model and Newmark-β method are 
96.68% and 77.53%, respectively. The PPE of the prediction re
sults by the PI-LSTM model is within 7%, demonstrating a high 
level of predictive accuracy, whereas the numerical simulation 
results exhibit PPE exceeding 50%.  

(3) The PI-LSTM model is employed to estimate unknown parameters 
of the fluid inerter mounted on the FS-BIFI. The evaluation 
damping-related parameters β1 and β2 of the fluid inerter are 
39.81567 and 27.54401, and the evaluation stiffness-related 
parameter μ is 404.23368. The corresponding relative errors 
are 12.760%, 8.857%, and 3.750% respectively. 

The current research employs a data- and physics-driven LSTM 
model to predict the nonlinear time history response of complex 

Fig. 12. The experimental results and corresponding predicted outcomes for the seismic excitation Loma Prieta-0.01 g. (a) The displacement us3; (b) The acceleration 
üs3; (c) The displacement ub; (d) The acceleration üb; (e) The displacement ud; (f) The acceleration üd. 

Table 10 
The error of the PI-LSTM model and Newmark-β method.    

üb üd üs1 ub ud us1 

PI-LSTM EPEAK/%  2.722  3.094  6.368  4.113  2.498  8.544 
EWMAPE/%  1.484  1.491  1.084  0.979  0.977  4.424 

Newmark-β EPEAK/%  59.426  57.609  63.685  56.668  57.102  70.125 
EWMAPE/%  6.029  7.523  14.360  4.925  4.899  23.701  
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Fig. 13. The comparison of structural responses calculated by different methods. (a) The acceleration üs3; (b) The relative error of üs3; (c) The local detailed diagram 
of üs3; (d) The acceleration üb; (e) The relative error of üb; (f) The local detailed diagram of üb; (g) The acceleration üd; (h) The relative error of üb; (i) The local 
detailed diagram of üb. 
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structures with unknown parameters under seismic excitation. Simul
taneously, it accurately achieved the evaluation of these unknown pa
rameters. However, different structural models exhibit distinct temporal 
memory characteristics, corresponding to specific forms of equations-of- 
motion. This directly impacts the applicability of the PI-LSTM model. 
Therefore, in subsequent research, including the identification and 
prediction of other complex models, will be crucial. In addition, the 
weight ratio between the physical loss function and the data loss func
tion of the PI-LSTM model is crucial. In order to further improve the 
generalization and stability of the model, the self-adaptive weight 
method should be adopted [25]. 
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