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1. Introduction 

 
During the long-term service period, continuous health 

monitoring and early damage detection for civil structures 
are necessary to assess their performance, arrange 
maintenance and predict future service life etc. Sudden 
failure of structures, especially for large-scale and major 
infrastructure, would result in great casualties and property 
loss. Therefore, in the last decades, considerable structural 
damage identification methods have been proposed and 
investigated in the frequency domain or the time domain to 
evaluate the health status of a structure (Doebling et al. 
1998). 

Frequency domain methods can identify structural 
damages based on the change of modal information, such as 
natural frequencies (Wang et al. 2001), mode shapes (Dinh-
Cong et al. 2021), frequency response functions (Esfandiari 
et al. 2020), modal strain energy (Daneshvar et al. 2022), 
modal flexibility (Yan and Ren 2014) without excitation 
measurements. However, modal characteristics may be 
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insufficient to determine the existence, locations, and 
severities of structural damages. Frequencies are more 
likely affected by temperature variation than damages 
(Farrar and Doebling 1997). Besides, from a practical point 
of view, lower modes are insufficiently sensitive to minor or 
local damages. Higher modes are beneficial to improve 
identification accuracy but difficult to be accurately 
acquired because of their susceptibility to noise (Perry and 
Koh 2008). For time domain methods, like the least squares 
estimation (Caravani et al. 1977), the Kalman filter (Gao 
and Lu 2006), the particle filter (Xue et al. 2009), the 
dynamic response sensitivity-based model updating method 
(Li et al. 2015), etc., have been proposed and validated in 
many examples, while they generally require a good initial 
estimation of structural parameters and gradient 
information. 

Structural damage identification in the time domain can 
be formulated as an optimization process in which the 
objective function is defined as the discrepancy between the 
measured responses from the real structure and the 
simulated values from the finite element model. The inverse 
identification could be addressed by minimizing the 
objective function using heuristic algorithms. A variety of 
state-of-the-art heuristic algorithms, such as particle swarm 
optimization (PSO) (Das and Dhang 2020), differential 
evolution (DE) (Seyedpoor et al. 2018), artificial bee 
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colony algorithm (ABC) (Sun et al. 2013), butterfly 
optimization algorithm (BOA) (Zhou et al. 2021), pigeon 
colony algorithm (Yi et al. 2016), monkey algorithm (Yi et 
al. 2015), tree seeds algorithm (Ding et al. 2019), charged 
system search algorithm (Kaveh and Zolghadr 2015, Kaveh 
and Maniat 2015), simplified dolphin echolocation 
algorithm (Kaveh et al. 2016), cyclical parthenogenesis 
algorithm (Kaveh and Zolghadr 2017), enhanced heat 
transfer optimization algorithm (Kaveh and Dadras 2018), 
shuffled shepherd optimization algorithm (Kaveh et al. 
2021a), have been widely developed, and fruitful research 
results on damage identification have been achieved. For 
example, Silva et al. (2016) constructed a novel 
unsupervised and nonparametric genetic algorithm to 
efficiently identify damages of Z-24 bridge and the Tamar 
bridge. Feng et al. (2021) used a kNN algorithm to detect 
stiffness loss of bridges. Nevertheless, most of these 
approaches require input excitation to predict structural 
responses. In many practical situations, input forces applied 
to structure, for example, wind load, seismic load and traffic 
load, are difficult or impossible to be directly measured, 
which limits the real-world applications of time domain 
methods to some extent. 

To deal with the absence of force measurements, some 
studies have been attempted by approximating the input 
excitation as a stationary Gaussian white noise. For 
instance, Wang et al. (2020) and Zhang et al. (2022a) 
proposed an output-only identification method based on 
acceleration correlation functions and heuristic algorithms 
assuming the excitation in terms of white noise. Lei et al. 
(2018) utilized cross-correlation functions of acceleration 
responses and the extended Kalman filter for the structural 
damage identification on the ASCE benchmark building 
subject to ambient excitation. However, it may be not valid 
for the assumption of white noise random process in some 
cases. Different from these approaches, various force 
identification techniques have been developed, treating the 
unmeasured input force as unknowns to be identified. The 
inverse problem of force identification is typically ill-
conditioned, and it can be solved by Tikhonov 
regularization method (Tang et al. 2022). The location and 
magnitude of impact force are identified by deconvolution 
and Tikhonov regularization (Kalhori et al. 2018). A novel 
fractional Tikhonov regularization method based on the 
improved super-memory gradient was developed to 
properly address force identification problems (Wang et al. 
2018). Genetic algorithm (GA) and Latin hypercube 
sampling were combined with an improved L-curve method 
to reconstruct distributed loads applied to uncertain 
structures (Zhao et al. 2021). However, most of these 
investigations assume that the parameters of structural 
systems are known a priori, which might be unreasonable 
considering the material degradation, fatigue and 
deterioration effects. 

In recent years, many researchers have attempted to 
simultaneously identify the unknown structural parameters 
and unmeasured external input force (Feng et al. 2015, Liu 
et al. 2016, Ni et al. 2022). In their methods, the 
measurement of external force is not required. For example, 
Xu et al. (2012) developed a weighted adaptive iterative 

least-squares estimation technique and its performance was 
validated by experimental tests on a four-story frame 
structure. Lu et al. (2011) presented acceleration response 
sensitivity-based finite element model updating method to 
identify both the input excitation and local damages. Sun et 
al. (2015) adopted an output-only method to iteratively 
identify structural parameter and input force using the 
damped Gauss-Newton method and Bayesian inference-
based regularization. Jayalakshmi and Rao (2017) modified 
Tikhonov regularization method by combining Tikhonov 
regularization with truncated singular value decomposition 
for force identification. Subsequently, Jayalakshmi et al. 
(2018) compared two different time-domain algorithms to 
reconstruct the input excitation force acting on the structure 
and found that the inverse force identification algorithms 
based on the modified regularization technique can perform 
better performance than direct method. In this method, L-
curve method was employed to select optimal regularization 
parameter. However, there are some limitations for classical 
L-curve method. The selection of regularization parameter 
has randomness in the first step, and a proper search range 
of optimal regularization parameter is needed. To deal with 
these issues, in this study, B-spline function is utilized to 
interpolate L-curve. The optimal regularization parameter is 
determined by the curvature values of B-spline curve. 

Computational intelligence techniques have been 
extensively developed over the past two decades. Apart 
from abovementioned heuristic algorithms, PSO, DE, ABC, 
BOA, etc., a novel swarm intelligence algorithm named 
Jaya algorithm, inspired by the concept of moving toward 
the optimal solution and away from the worst solution, was 
proposed by Rao in 2016 for solving the constrained or 
unconstrained optimization problems (Rao 2016). Jaya 
algorithm has the advantage of simple structure, high 
stability and easy operation owing to it does need any 
algorithm-specific parameter. Therefore, Jaya algorithm has 
been successfully utilized in diverse optimization problems 
(Zitar et al. 2021), such as cost optimization of building 
(Aslay and Dede 2022), sizing optimization of skeletal 
structures (Kaveh et al. 2021b), parameters identification of 
airfoil systems (Ding et al. 2022), damage identification for 
the Guangzhou new TV tower (Ding et al. 2020), nonlinear 
system identification (Zhang et al. 2022a). The 
effectiveness of the Jaya algorithm over other existing 
heuristic algorithm was reported in Ref (Yu et al. 2017), 
while as an emerging population-based stochastic 
optimization algorithm, Jaya algorithm also suffers from 
premature convergence and is easy to be trapped into the 
local optimum. To improve the performance of exploration 
and exploitation, modified Jaya algorithm (M-Jaya) is 
proposed by integrating probabilistic clustering learning 
technique and nonlinear updating equation into the standard 
Jaya algorithm. Probabilistic clustering learning technique 
is introduced to effectively utilize current population 
information and accelerate the algorithm’s convergence 
speed. Nonlinear updating equation is implemented to 
further improve the exploration capacity by randomly 
searching around the best solution. 

In the present paper, the main contribution is that an 
output-only strategy is proposed to simultaneously identify 
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unknown stiffness parameters and excitation force based on 
the modified Jaya algorithm and Tikhonov regularization 
method. Different from the traditional Tikhonov 
regularization, an improved L-curve method based on B-
spline interpolation function is developed to select the 
appropriate regularization parameters. In each iteration of 
the strategy, Tikhonov regularization method is employed to 
identify the unknown external input forces in state space 
while structural parameters are updated with the proposed 
M-Jaya. The stiffness parameters and excitation force are 
iteratively identified by using different sets of dynamic 
acceleration response until convergence condition is 
satisfied. It is assumed that the acting point of unknown 
force and structural mass distribution are known. The 
effectiveness and applicability of the proposed strategy in 
identifying structural damages with partial output-only 
measurements is validated by not only numerical 
simulations on a truss structure but also experimental tests 
on a laboratory five-floor steel frame structure in the 
laboratory. 

 
 

2. Force identification method 
 
2.1 State-space representation 
 
The equation of motion for a damped linear MDOF 

structural system can be written as follows 
 𝑀𝑢ሷ (𝑡) + 𝐶𝑢ሶ (𝑡) + 𝐾𝑢(𝑡) = 𝐿𝑓(𝑡) (1)
 

where M, C, K stand for the mass, damping and stiffness 
matrices; 𝑢(𝑡) , 𝑢ሶ (𝑡) , 𝑢ሷ (𝑡)  mean the displacement, 
velocity and acceleration vectors under the external 
excitation 𝑓(𝑡), respectively; L denotes the input location 
matrix. Dynamic time history responses in Eq. (1) can be 
obtained by Newmark constant average acceleration 
method. Rayleigh damping model is employed, expressed 
as follows 

 𝐶 = 𝑎𝑀 + 𝑏𝐾, 𝜁௥ = 𝑎2𝜔௥ + 𝑏𝜔௥2  (2)

 
where a and b are two constant coefficients; 𝜁௥ and 𝜔௥ 
represent the damping ratio and natural frequency 
corresponding to the r-th modes (r = 1, 2), respectively. 

It is reasonable to assume that the system mass is known 
a priori since it can be acquired from material properties 
and geometries of structural members in the design 
drawings. The damaged stiffness matrix 𝐾ௗ௔௠ is given as 

 𝐾ௗ௔௠ = ෍(1 − 𝛼௜)ோ
௜ୀଵ 𝐾௜ele (3)

 
where 𝐾௜ele  indicates the i-th intact elemental stiffness 
matrix; NE denotes number of unknown stiffness 
parameters; 𝛼௜  is stiffness reduction index for the i-th 
element. Stiffness parameter is 𝜃௜ = ሼ(1 − 𝛼ଵ), (1 −𝛼ଶ), . . . , (1 − 𝛼ோ)ሽ. 

The representation of Eq. (1) in the state-space form can 
be described as 

𝑧ሶ(𝑡) = 𝐴௖𝑧(𝑡) + 𝐵௖𝑓(𝑡) (4)
where state vector 𝑧(𝑡) = ሾ𝑢(𝑡)𝑢ሶ (𝑡)ሿ்; Continuous system 
matrix Ac and input matrix Bc are given as follows 

 𝐴௖ = ቂ 0 𝐼−𝑀ିଵ𝐾 −𝑀ିଵ𝐶ቃ ,     𝐵௖ = ቂ 0𝑀ିଵ𝐿ቃ (5)
 

where I means the identity matrix. 
When partial acceleration responses are recorded, the 

output vector can be stated as 𝑦(𝑡) = 𝑅𝑢ሷ (𝑡). R is output 
influence matrix related to the location of sensors. Herein, 
the structural output 𝑦(𝑡) can be shown as 

 𝑦(𝑡) = 𝐶௖𝑧(𝑡) + 𝐷௖𝑓(𝑡) (6)
 

where Cc is continuous output matrix 𝐶௖ = ሾ−𝑅𝑀ିଵ𝐾− 𝑅𝑀ିଵ𝐶ሿ; Dc is feedthrough matrix 𝐷௖ = 𝑅𝑀ିଵ𝐿. 
The discrete time form of Eq. (4) and Eq. (6) can be 

expressed as follows 
 𝑧(𝑙 + 1) = 𝐴ௗ𝑧(𝑙) + 𝐵ௗ𝑓(𝑙) (7)
 𝑦(𝑙) = 𝐶ௗ𝑧(𝑙) + 𝐷ௗ𝑓(𝑙) (8)
 

where 𝑧(𝑙), 𝑓(𝑙), 𝑦(𝑙) stand for the discrete vectors at 𝑡 = 𝑙 × 𝛥𝑡(𝑙 = 0,1,2, . . . , 𝑍). Z and 𝛥𝑡 denote the number 
of time step and the time interval, respectively. 

Discrete system state space matrices Ad, Bd, Cd, Dd are 
stated as 

 𝐴ௗ = 𝑒𝑥𝑝(𝐴௖𝛥𝑡) , 𝐵ௗ = 𝐴௖ିଵ(𝐴ௗ − 𝐼)𝐵௖,𝐶ௗ = 𝐶௖, 𝐷ௗ = 𝐷௖ (9)

 
Assuming the structural system is initially at rest state. 

Subsequently, substituting Eq. (7) into Eq. (8), the relation 
between output responses Y and input excitation F can be 
written as 

 𝑌 = 𝐻𝐹 (10)
 

where 𝑌 = ሾ𝑦(0)𝑦(1)𝑦(2). . . 𝑦(𝑍 − 1)𝑦(𝑍)ሿ் ; 𝐹 =ሾ𝑓(0)𝑓(1)𝑓(2). . . 𝑓(𝑍 − 1)𝑓(𝑍)ሿ் ; the matrix H is 
calculated as (Sun et al. 2015) 

 

𝐻 = ⎣⎢⎢
⎢⎡ 𝐷ௗ 0 0 ⋯ 0𝐶ௗ𝐵ௗ 𝐷ௗ 0 ⋯ 0𝐶ௗ𝐴ௗ𝐵ௗ 𝐶ௗ𝐵ௗ 𝐷ௗ ⋯ 0⋮ ⋮ ⋮ ⋱ ⋮𝐶ௗ𝐴ௗேିଵ𝐵ௗ 𝐶ௗ𝐴ௗேିଶ𝐵ௗ ⋯ 𝐶ௗ𝐵ௗ 𝐷ௗ⎦⎥⎥

⎥⎤ (11)

 
where H is lower block triangular Hankel matrix. 

Force identification problem, as shown in Eq. (10), 
generally cannot be directly addressed owing to its ill-
conditioned nature. Tikhonov regularization method is an 
effective method to solve the ill-posed inverse problem by 
minimizing the following equation 

 𝑚𝑖𝑛 𝐽 (𝑥) = 𝑚𝑖𝑛(‖𝐻𝐹 − 𝑌‖ଶଶ + 𝜆‖𝐼(𝐹 − 𝐹଴)‖ଶଶ) (12)
 

where λ is regularization parameter. 
If I is an identity matrix and F0 is equal to zero, the Eq. 
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(12) can be simplified as 
 𝑚𝑖𝑛 𝐽 (𝑥) = 𝑚𝑖𝑛(‖𝐻𝐹 − 𝑌‖ଶଶ + 𝜆‖𝐹‖ଶଶ) (13)
 
Then, the input excitation F can be identified by solving 

following equation (Xu et al. 2016) 
 𝐹 = (𝐻்𝐻 + 𝜆𝐼)ିଵ𝐻்𝑌 (14)
 
2.2 Improved L-curve method 
 
To accurately identify unmeasured external force, it is 

essential to choose the proper regularization parameters λ, 
which is exactly the difficulty in using the Tikhonov 
regularization technique. In fact, the identified solution may 
be over-smoothened if setting a large regularization 
parameter, while it may lose stability if selecting a small 
regularization parameter. The L-curve method is a popular 
and effective method to determine the regularization 
parameter. At the corner of L-curve, the norm of regularized 
solution ‖𝐹‖ଶ and the norm of the corresponding residual ‖𝐻𝐹 − 𝑌‖ଶ  are well balanced. The specific curvature 
equation of L-curve can be given as 

 𝐿_𝐶(𝜆) = ห𝜌′𝜂″ − 𝜌″𝜂′ห((𝜌′)ଶ + (𝜂′)ଶ)ଷ/ଶ (15)

 
where 𝜂 = 𝑙𝑜𝑔(‖𝐹‖ଶ), 𝜌 = 𝑙𝑜𝑔(‖𝐻𝐹 − 𝑌‖ଶ). 

The optimal regularization parameter 𝜆௢௣  is 
determined through the following condition of maximum 
curvature in the L-curve method (Hansen and O’Leary 
1993) 𝐿_𝐶൫𝜆௢௣൯ = 𝑚𝑎𝑥ఒவ଴ 𝐿_𝐶(𝜆) (16)

 
However, there are some limitations of the classical L-

curve method. First, the selection of regularization 
parameter has randomness in the first step, which may 
cause the most potential value to be omitted. Besides, an 
approximate search range of optimal regularization 
parameter 𝜆௢௣ should be provided in advance. Otherwise, 
the computational cost may be too high or the L-curve plot 
has difficulty in the selection of regularization parameter. 
To alleviate these issues, the improved L-curve method 
based on B-spline interpolation function is utilized, and its 
implementation procedures can be roughly divided into 
three steps. The L-curve is initially plotted according to the 
traditional L-curve method. Then, the region near the L-
corner is selected for B-spline interpolation. Finally, the 
optimal regularization parameter is determined by the 
curvature of node points in this area. 

The equation of curve 𝑆(ℎ) with B-spline interpolation 
can be expressed as follows 

 𝑆(ℎ) = ෍ 𝑁௜,௣(ℎ)𝑃௜ேಳିଵ
௜ୀ଴ , 0 ≤ ℎ ≤ 1 (17)

 
where 𝑁௜,௣(ℎ)  represents the p-degree B-spline basis 
function; h stands for the node; 𝑃௜ means the i-th control 
point; NB denotes the number of coordinates at the 

inflection point of L-curve. 
The Cox-de Boor equation for the calculation of 𝑁௜,௣(ℎ) 

can be described as (Yang and Xu 2019) 
 𝑁௜,଴(ℎ) = ቄ1𝑖𝑓ℎ௜ ≤ ℎ ≤ ℎ௜ାଵ0𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (18)
 𝑁௜,௣(ℎ) = ℎ− ℎ௜

ℎ௜ା௣ − ℎ௜ 𝑁௜,௣ିଵ(ℎ) + ℎ௜ା௣ାଵ − ℎ
ℎ௜ା௣ାଵ − ℎ௜ାଵ 𝑁௜ାଵ,௣ିଵ(ℎ) 

(19)

 
After interpolation operation, the curvature calculation 

of original L-curve is replaced by computing that of the B-
spline curve. Obviously, less computing resources would be 
consumed. The first derivative of p-degree B-spline curve 𝑆′(ℎ) can be given as 

 𝑆′(ℎ) = 𝑝 ෍ 𝑁௜,௣ିଵ(ℎ) 𝑃௜ାଵ − 𝑃௜
ℎ௜ା௣ାଵ − ℎ௜ାଵ

ேಳିଶ
௜ୀ଴= ෍ 𝑁௜,௣ିଵ(ℎ)𝑄௜ேಳିଶ

௜ୀ଴  

(20)

 

where 𝑄௜ = 𝑝 ௉೔శభି௉೔
ℎ೔శ೛శభିℎ೔శభ.  

It can be observed by comparing Eqs. (17) and (20) that 
the first derivative of p-degree B-spline curve is the (p-1)-
degree B-spline curve. Accordingly, the second derivative 
of p-degree B-spline curve 𝑆ᇳ(ℎ)  is equal to the first 
derivative of 𝑆′(ℎ) 

 𝑆″(ℎ) = (𝑝 − 1) ෍ 𝑁௜,௣ିଶ(ℎ) 𝑄௜ାଵ − 𝑄௜
ℎ௜ା௣ − ℎ௜ାଵ

ேಳିଷ
௜ୀ଴  (21)

 𝑆 ′(ℎ)  and 𝑆ᇳ(ℎ)  are corresponding to coordinates (𝑚′, 𝑛′) and (𝑚ᇳ, 𝑛ᇳ), respectively. The curvature of L-
curve can be calculated by 𝐿_𝐶(𝜆) = ห௠ᇲ௡ᇴି௠ᇴ௡ᇲห((௠ᇲ)మା(௡ᇲ)మ)య/మ (Zhao 
et al. 2021). The maximum curvature point of the curve is 
the optimal regularization parameter 𝜆௢௣ 

 𝐿_𝐶൫𝜆௢௣൯ = 𝑚𝑎𝑥 𝐿 _𝐶(𝜆) (22)
 
Substituting regularization parameter 𝜆௢௣ into Eq. (14), 

the unmeasured force F can be inversely identified. 
 
 

3. Structural identification methods 
 
3.1 Jaya algorithm 
 
A novel population-based swarm intelligence algorithm 

was recently proposed by Rao in 2016, named Jaya 
algorithm, to solve the constrained or the unconstrained 
optimization problems. The main idea of Jaya algorithm is 
to get closer to success by moving toward the optimal 
solution and avoid failure by escaping from the worst 
solution. Different from other popular heuristic algorithms, 
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Algorithm 1 The pseudo-code of Jaya algorithm 

Step 1. Initialization 
Define the population size NP, number of parameters 
NE and maximum number of iterations MaxG 
initialize population by Eq. (23) 

Step 2. Individual updating 
While maximum number of iteration MaxG is not 
reached do 

Calculate fitness function and sort the 
population 
For individual i = 1 to NP do 
  For variable j=1 to NE do 

Obtain two random numbers within [0, 1] 
Produce offspring by Eq. (24) 

  End for 
End for 

Step 3. Greedy selection 
Keep better solution with Eq. (25) 

End while 

Step 4. Result output 
Output the optimal solution and value 

 

Fig. 1 The pseudo-code of Jaya algorithm
 
 

algorithm-specific control parameters, such as crossover 
rate and mutation rate for DE, inertia weight and learning 
factors for PSO, sensor modality and power exponent for 
BOA, are not required for Jaya algorithm. There are four 
main steps, namely, initialization, individual updating, 
greedy selection and result output, as presented in Fig. 1. 

The initial population of Jaya algorithm is randomly 
generated in the predefined lower and upper search space 
limits ൣ𝐿𝐵௜,௝, 𝑈𝐵௜,௝൧ as follows 

 𝑋௜,௝ = 𝐿𝐵௜,௝ + 𝑟𝑎𝑛𝑑(0,1) × ൫𝑈𝐵௜,௝ − 𝐿𝐵௜,௝൯ (23)
 

where 𝑋௜,௝ denotes the j-th variable of the i-th candidate 
solution; 𝑖 ∈ (1,2, . . . , 𝑁𝑃), 𝑗 ∈ (1,2, . . . , 𝑁𝐸), NP and NE 
represent the number of solutions and unknown parameters, 
respectively; 𝑟𝑎𝑛𝑑(0,1)  stands for a random number 
generated within the range of [0, 1]. 

Then, evaluate the fitness function of all candidate 
solutions and determine the best solution 𝑋௕௘௦௧  and the 
worst solution 𝑋௪௢௥௦௧  based on their fitness function 
values. The updating equation for a candidate 𝑋௜ can be 
expressed as 

 𝑋௜,௝,ீ′ = 𝑋௜,௝,ீ + 𝑟𝑎𝑛𝑑ଵ × ൫𝑋௕௘௦௧,௝,ீ − ห𝑋௜,௝,ீห൯− 𝑟𝑎𝑛𝑑ଶ × ൫𝑋௪௢௥௦௧,௝,ீ − ห𝑋௜,௝,ீห൯ 
(24)

 
where 𝑋௜,௝,ீ means the j-th variable of i-th solution at the 
G-th iteration; 𝑋௜,௝,ீ′  and ห𝑋௜,௝,ீห are the updated value and 
absolute value of 𝑋௜,௝,ீ, respectively; rand1 and rand2 are 
two random numbers from the uniform distribution interval 
of [0, 1]. 𝑟𝑎𝑛𝑑ଵ × ൫𝑋௕௘௦௧,௝,ீ − ห𝑋௜,௝,ீห൯  and 𝑟𝑎𝑛𝑑ଶ ×൫𝑋௪௢௥௦௧,௝,ீ − ห𝑋௜,௝,ீห൯  represent the tendency of 𝑋௜,௝,ீ 
towards the best solution and away from the worst solution. 

In the step of greedy selection, the fitness function 

values of current solution 𝑓𝑖𝑡(𝑋௜,ீ)  and new solution 𝑓𝑖𝑡(𝑋௜,ீ′ ) are compared. The candidate solution with better 
fitness value will survive to next iteration. 

 𝑋௜,ீାଵ = ቊ𝑋௜,ீ′ 𝑖𝑓𝑓𝑖𝑡(𝑋௜,ீ′ ) ≥ 𝑓𝑖𝑡(𝑋௜,ீ)𝑋௜,ீ𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (25)

 
Jaya algorithm would repeat step 2 and step 3 until the 

maximum number of iterations MaxG is reached. Finally, 
the optimal solution and value are output. 

 
3.2 Modified Jaya algorithm 
 
The performance of swarm intelligence algorithm 

depends on the balance between exploring the new regions 
of search space and exploiting those regions close to 
previously visited. It is reported that Jaya algorithm has the 
disadvantages of slow convergence speed and easy to be 
trapped into local optimal solution due to its relatively weak 
global search capacity. To deal with this issue, probabilistic 
clustering learning technique and nonlinear updating 
equation are introduced into Jaya algorithm. 

 
3.2.1 Probabilistic clustering learning technique 
K-means clustering technique is an effective method to 

utilize the population information and improve the 
convergence rate, which has been employed in Refs (Zhou 
et al. 2021, Ding et al. 2019). However, the classification 
results of K-means clustering may be different due to the 
random selection of initial clustering centers. A probabilistic 
clustering mechanism is proposed to automatically 
determine the appropriate clustering centers by making the 
distance between the different initial clustering centers as 
far as possible. The brief steps of the proposed probabilistic 
clustering mechanism are presented as follows 

Step 1: randomly select a sample from the current 
colony ൣ𝑥ଵ, 𝑥ଶ, . . . , 𝑥௡௣൧ as initial clustering center c1. 

Step 2: calculate the shortest distance between each 
sample 𝑥௜  and the existed clustering center 𝑐௝ , i.e., the 
distance to the nearest clustering center, with following 
equation 

𝐷𝑖𝑠(𝑥௜) = ฮ𝑥௜ − 𝑐௝ฮ = ඩ෍൫𝑥௜,ఛ − 𝑐௝,ఛ൯ଶௗ௜௠
ఛୀଵ  (26)

 
where Dis means the Euclidean distance. dim is the 
dimension of solution. Higher probability of being selected 
as the clustering center for sample 𝑥௜ with large value of 
Euclidean distance. Then, calculate the probability value 𝑃𝑉(𝑥௜) that each sample is selected as the next clustering 
center by following roulette wheel selection operation 

 𝑃𝑉(𝑥௜) = 𝐷𝑖𝑠(𝑥௜)ଶ∑ 𝐷𝑖𝑠൫𝑥௝൯ଶ௡௣௝ୀଵ  (27)

 
Calculate the cumulative probability of sample 𝑥௜ 
 𝑞௜ = ෍ 𝑃𝑉൫𝑥௝൯௡௣

௝ୀଵ  (28)

233



 
Guangcai Zhang, Chunfeng Wan, Liyu Xie and Songtao Xue 

where 𝑞௜ represents the cumulative probability. 
Step 3: repeat step 2 until k (𝑘 = 0.1𝑛𝑝) clustering 

centers are selected. 
Step 4: calculate the Euclidean distance between each 

individual and clustering center 𝑐௝(𝑗 = 1,2, . . . , 𝑔)  and 
assign the remaining sample 𝑥௜  to the cluster 𝐶௝  if the 
condition ‖𝑥௜ − 𝑐௝ฮ ≤ ‖𝑥௜ − 𝑐௚ฮ  (cg means any other 
clustering centers) is satisfied. 

Step 5: update the new clustering centers 𝑐௝′(𝑗 =1,2, . . . , 𝑔) 
 𝑐௝, = 1𝑛௜ ෍ 𝑥௜௫೔∈஼ೕ , 𝑗 = 1,2, ⋯ , 𝑔 (29)

 
where 𝑛௜ stands for the number of samples belonging to 
the cluster 𝐶௝. 

A new learning equation is proposed for an individual 𝑋௟ீ  
 𝑋௟ீ ାଵ = 𝑋௟ீ + 𝑟𝑎𝑛𝑑(0,1) × ൫𝑐௜’ − 𝑋௟ீ ൯ (30)
 

where 𝑐௜’ is the new clustering center and it denotes the 
mean population information. 

Probabilistic clustering learning technique is proposed 
based on the above-mentioned probabilistic clustering 
mechanism and learning equation. It would be a promising 
technique to enhance the performance of Jaya algorithm. 

 
3.2.2 Nonlinear updating equation 
It can be observed from Eq. (24) that the new candidate 

solutions are generated related to the best solution 𝑋௕௘௦௧. In 
other words, the best solution would play a significant role 
during the searching process because it is capable of 
guiding and drawing other individuals to its own location. 
However, the identified best-so-far solution may be trapped 
into local optimal region under the adverse circumstance of 
solving complex multimodal optimization problems. Other 
individuals in the current population would be easily 
attracted to the region where the local best solution lies and 
result in premature convergence owing to falling into local 
optimum. To deal with this issue, a new nonlinear updating 
equation is introduced to refine the quality of the best 
solution as follows 

 𝑋௕௘௦௧,௝,ீ′ = 𝑋௕௘௦௧,௝,ீ + 𝛾ீ𝜑௜,௝ × ൫𝑋௕௘௦௧,௝,ீ − 𝑋௤,௝,ீ൯ (31)
 
where 𝑋௕௘௦௧,௝,ீ  means the j-th variable of the best 

solution at the G-th iteration; 𝑋௕௘௦௧,௝,ீᇱ  is the offspring of 𝑋௕௘௦௧,௝,ீ; 𝜑௜,௝ stands for a random number within the range 
of [-1, 1]; 𝑋௤,௝,ீ represents the j-th variable of a randomly 
selected q-th individual 𝑞 = 1,2, . . . , 𝑛𝑝 ; 𝛾ீ  denotes a 
nonlinear factor, given as follows 

 𝛾ீ = 1 − ฬ𝐺 − 𝛿𝑀𝑎𝑥𝐺ฬ௩
 (32)

 
where G and MaxG indicate the current iteration and the 
maximum number of iterations; δ is an integer and v means 
the power exponent. 

Fig. 2 The variation curves of nonlinear factor for different 
power exponents

 
 
The values of δ and v determine the variation curve of 

the nonlinear factor 𝛾ீ . If MaxG = 200, δ = 20, the 
behavior of nonlinear factor is presented in Fig. 2 for 
different power exponents v. It can be noticed from Fig. 2 
that the nonlinear factor 𝛾ீ has a large value in the initial 
stage, which is helpful to escape from the local optimal 
solution. Gradually, the nonlinear factor decreases its value 
as the iteration numbers increase with the result of 
converging to the final optimal solution. 

 
3.2.3 Framework of modified Jaya algorithm 
A modified Jaya algorithm (M-Jaya) is proposed by 

introducing two modifications, i.e., probabilistic clustering 
learning technique and nonlinear updating equation. 
Probabilistic clustering learning technique is implemented 
to effectively utilize the colony information and accelerate 
the convergence speed. Nonlinear updating equation is 
adopted to refine the quality of the best solution by 
randomly searching around it. The flowchart of modified 
Jaya algorithm is presented in Fig. 3. The proposed M-Jaya 
algorithm has simple structure and clear framework, so it is 
easy to operate. 

 
3.3 Identification procedures 
 
Most previous studies on force identification, structural 

parameters are assumed to be known a priori. Nevertheless, 
it may be difficult to directly determine structural stiffness 
parameters owing to damages possibly induced by 
earthquakes, aging or environmental corrosion, which 
would limit practical implementations of these approaches. 
In this section, an iterative approach is proposed to 
simultaneously identify the unmeasured input excitation 
using the force identification formulation described in 
Section 2 and the unknown structural stiffness using the 
proposed M-Jaya algorithm. The locations of external force 
and structural mass distribution are assumed to be known. 
The flowchart of the proposed identification strategy is 
illustrated in Fig. 4. The measured structural responses are 
grouped into measurement set 1 and set 2. As presented in 
Fig. 4, measurement set 1 is utilized to identify unmeasured 
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dynamic input time histories with Tikhonov regularization 
method while measurement set 2 is used to identify 
unknown structural parameters with optimization algorithm. 
It is noted that measurement set 1 and set 2 may have some 
common data but they cannot be the same with the purpose 
of iteratively updating excitation forces and structural 
parameters. 

In addition, the proposed iterative identification 
procedures are further explained as follows: 

Step 1: predefine parameters and randomly generate 
initial structural parameters in the given upper and lower 
search space limits. 

Step 2: calculate Ad, Bd, Cd, Dd with Eq. (9) after 
constructing Ac, Bc, Cc, Dc, and compute the lower block 
triangular Hankel matrix H by Eq. (11). 

Step 3: determine the proper regularization parameter λ 
with the proposed improved L-curve method. 

Step 4: identify the unmeasured input excitation F 
applied to structure with Tikhonov regularization method 
using the responses of measurement set 1. 

Step 5: calculate the structural responses Rest with the 
identified dynamic input time histories and update structural 
stiffness parameters with M-Jaya algorithm by minimizing 
the difference between Rest and the measured responses Rmea 
of set 2 as follows 

 𝑓𝑖𝑡 = 1𝑟 + ∑ ∑ |ோ೐ೞ೟(௜,௝)ିோ೘೐ೌ(௜,௝)|మாቀோ೘೐ೌమ (௜)ቁ௦௝ୀଵ௘௜ୀଵ  (33)

 
where fit means the fitness function value; r is a constant to 
avoid a potential zero denominator, whose value is set as 
0.01, so the maximum fitness value is 100; e and s stand for 
the number of sensors used in measurement set 2 and time 
steps, respectively. 

Step 6: repeat step 2 to step 5 until the maximum 
number of iterations MaxG is reached or the following 
convergence criteria is satisfied 

 

𝑒𝑟𝑟𝑜𝑟ீ = ∑ ቚ௄೔ಸି௄೔ಸషభቚ௄೔ಸோ௜ୀଵ 𝑁𝐸 × 100% ≤ 𝑇𝑜𝑙 (34)

 
where 𝑒𝑟𝑟𝑜𝑟ீ represents the mean absolute error at the G-
th iteration; 𝐾௜ீ  and 𝐾௜ீ ିଵ are the identified i-th variable 
at the G-th and (G-1)-th iteration; NE means number of 
unknown parameters to be identified; Tol denotes the 
tolerance condition. 

 
 

4. Numerical studies 
 
Tikhonov regularization technique based on the 

improved L-curve method is utilized in synergy with 
modified Jaya algorithm to identify unmeasured external 
excitations so as to achieve output-only damage 
identification in the time domain. Numerical studies on a 
planar truss structure are implemented to validate the 
applicability and effectiveness of the proposed method in 
MATLAB 2018a on the Intel(R) Core i5-11320 CPU @ 
3.20 GHz PC with 16.00 GB RAM. To solve parameter 
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Table 1 The parameter settings of GA, GBABC, Jaya, M-
Jaya 

Parameters GA GBABC Jaya M-Jaya
Population size NP 100 100 100 100 

Maximum iterations MaxG 200 200 200 200 
Tolerance condition Tol 0.001 0.001 0.001 0.001

Mutation rate 0.05    
Crossover rate 0.95    

Search tendency  0.3   
Integer δ    20 

Power exponent v    4 
 

 
 

identification problem, four different heuristic algorithms 
including GA (Zhang et al. 2010), Gaussian bare-bones 
artificial bee colony (GBABC) (Zhou et al. 2016), Jaya, M-
Jaya are employed for comparisons, and their parameter 
settings are listed in Table 1. 

As presented in Fig. 5, a 21-bar planar truss structure is 
adopted as a numerical example. The length of horizontal 
and vertical members is 2 m, and the cross‐sectional area of 
each bar is 0.0009 m2. The mass density and young’s 
modulus of steel material are 7.8 × 103 kg /m3 and 2.1 × 
1011 N/m2, respectively. Intermediate node has two degrees 
of freedom, while the boundary connections of simply-
supported truss are modeled as a pin joint at node 1 and a 
roller joint at node 12. There is an unknown random 
excitation vertically applied at node 4 with the magnitude of 
200 N, zero mean and unit standard deviation. Five 
accelerometers, as highlighted in Fig. 5, are installed on the 
structure to record dynamic acceleration responses for 
duration of 5 s with sampling rate of 200 samples/s. The 
acceleration measurements at nodes 3, 5, 9 are named as set 
1 while those at nodes 5, 7, 11 are denoted as set 2. 

Assuming there are 20% stiffness reduction in the 6th 
element and 30% stiffness reduction in the 15th element, 
namely, 𝛼଺ = 0.2, 𝛼ଵହ = 0.3. To account for the adverse 
effect of noise on the identification of structural parameters 
and input excitation, Gaussian zero-mean white noise 
sequences are added into clean measurements 𝑢ሷ clean  as 
follows 
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algorithms

 
 𝑢ሷ mea=uሷ clean+N௟𝑁noiseRMS(𝑢ሷ clean) (35)
 

where 𝑢ሷ mea  means the noisy measurements; 𝑁௟  denotes 
the level of noise; 𝑁noise  represents the randomly 
generated noise vector with zero mean and unit standard 
deviation in Gaussian distribution; RMS(𝑢ሷ clean) stands for 
the root-mean-square (RMS) of the noise free acceleration 
response. Three different noise levels, i.e., 0%, 5%, 10%, 
are considered in this numerical study. The average values 
of five independent Monte Carlo simulations are adopted as 
the final identification results. 

The evolutionary process of the fitness function values 
with GA, GBABC, Jaya, M-Jaya algorithms are presented 
in Fig. 6. It is easily observed that the proposed M-Jaya 
algorithm achieves much fast convergence speed than other 
three algorithms. The final fitness value of GA, GBABC, 
Jaya and M-Jaya are 1.77, 7.62, 16.26 and 82.85, 
respectively. The identified result by M-Jaya is closest to 
the predefined maximum fitness function value, which 
means the proposed M-Jaya can provide more satisfactory 
identification results than GA, GBABC and Jaya. 

Fig. 7 and Table 2 present the identified stiffness 
damages and errors using four heuristic algorithms under 
three levels of noise. In the noise free case, damage 

2×6 m

1
2 

m

3 5 7 9 11 12

2 4 6 8 10

Force

1

2

3

4

6

8 12 16

10 14 18 21

11 13 15 17 19 205 7 9

Accelerometer Damaged element  
Fig. 5 The numerical model of a plane truss structure
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locations and extents are successfully identified by 
GA,while it fails to provide correct results of element 6 
under10% noise. Some large false identifications are clearly 
observed at the 9th, 20th and 21st elements for GBABC and 

 
 

 
 

 
 
Jaya, and moderate results are obtained with maximum 
error of 10.47% and 8.78% under 5% noise, 15.59% 
and10.87% under 10% noise, respectively. On the contrary, 
the proposed M-Jaya algorithm can not only accurately 
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Fig. 7 Identified results of simply supported truss with four heuristic algorithms: 

(a) 0% noise; (b) 5% noise; (c) 10% noise

Table 2 The final identified errors of stiffness for 21-bar truss under three levels of noise (%) 

Methods 
0% noise 5% noise 10% noise 

Mean error Max error Mean error Max error Mean error Max error 
GA 7.66 22.70 8.89 25.35 9.51 23.64 

GBABC 5.10 10.44 5.18 10.47 5.43 15.59 
Jaya 2.98 8.33 3.74 8.78 4.23 10.87 

M-Jaya 0.84 2.01 1.22 3.01 1.80 3.43 
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Fig. 8 The identified force time histories of truss structure for noise free case: 

(a) 0.5-1.5 s; (b) 3.0-4.0 s
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locate and quantify the damages, i.e., 𝛼଺ = 0.2, 𝛼ଵହ = 0.3, 
but also show superior robustness to noise, with less than 
3.5% maximum error even for 10% noise case. These 
identification results indicate that the proposed strategy is 
able to accurately identify structural damages even with 
output-only noise-polluted measurements. 

As presented in Fig. 8, the identified force time histories 
of 21-bar truss structure are compared with the actual input 
excitation. The zoomed view of input force from 0.5 s to 1.5 
s and from 3.0 s to 4.0 s clearly shows that the identified 
force has excellent agreement with the exact white noise 
excitation. Fig. 9 shows the comparison between identified 
and actual input forces with 5% and 10% noisy responses. 

To further evaluate the accuracy of force identification, 
two indicators of relative error (RE) and root mean square 
error (RMSE) are employed as follows 

 
 

 
 𝑅𝐸 = ‖𝐹௠௘௔ − 𝐹௘௦௧‖ଶ‖𝐹௠௘௔‖ଶ × 100% (36)
 

𝑅𝑀𝑆𝐸(𝐹௠௘௔, 𝐹௘௦௧) = ඩ1𝑠 ෍൫𝐹௠௘௔(𝑡௜) − 𝐹௘௦௧(𝑡௜)൯ଶ௦ିଵ
௜ୀ଴  (37)

 
where 𝐹௠௘௔ and 𝐹௘௦௧ are the real and predicted dynamic 
force time histories; s means the number of sampling points. 

Herein, the underlying reason why the proposed method 
can achieve pleasant performance is illustrated. The 
identified errors of elemental damages and input excitation 
by the proposed M-Jaya algorithm and force identification 
method with noise free, 5% and 10% noise-polluted 
measurements after 1st, 50th, 100th and 200th iterations are 
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Fig. 9 The comparison between the identified and true force: (a) 5% noise; (b) 10% noise 

Table 3 Identified errors of stiffness and force by M-Jaya with respect to noise level and iteration 
number 

Noise 
level 

Iteration 
number 

Stiffness Force 
Mean error (%) Max error (%) RE (%) RMSE (N) 

0% noise 

1 20.36 42.15 25.27 56.85 
50 6.48 16.75 4.06 14.26 

100 2.46 6.52 2.44 4.59 
200 0.84 2.01 1.02 1.99 

5% noise 

1 18.76 43.61 30.46 62.51 
50 7.85 18.56 16.74 30.46 

100 3.12 8.44 10.59 23.85 
200 1.22 3.01 6.98 14.28 

10% noise 

1 16.46 36.86 40.48 83.39 
50 8.26 18.28 26.76 51.48 

100 4.97 8.75 19.27 36.72 
200 1.80 3.43 14.11 28.98 
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listed in Table 3. For noise free case, after the 1st iteration, a 
large difference between the identified and actual 
parameters is observed with mean error of 20.36% and 
maximum error of 42.15% for stiffness, relative error of 
25.27% and RMS error of 56.85 N for input force, due to 
the initially estimated parameters are randomly generated. 

Subsequently, identified errors of structural damages 
and input force are iteratively decreased. After 200 
iterations, the unmeasured input excitation and the unknown 
structural parameters approach their exact values. Similarly, 
the identification results are still good when 5% and 10% 
noise cases are considered. The predicted structural 
acceleration response is calculated using the identified 
stiffness and input excitation. Fig. 10 shows the comparison 
of identified and measured acceleration responses at node 7 
under 0%, 5% and 10% noise levels. By Fig. 10, good 
agreements can be easily observed. 

In summary, by numerical studies on the truss structure, 
iterative strategy for identification of structural damage and 
the external excitation based on the proposed M-Jaya 
algorithm and Tikhonov regularization method is 
successfully validated. 

 
 

5. Experimental verification 
 
Considering the superior performance of the proposed 

M-Jaya over other three algorithms, only M-Jaya algorithm 
is utilized in the following investigations. A series of 
experimental tests on a five-story steel frame structure are 
implemented to further verify the applicability and 
effectiveness of the proposed output-only strategy for the 
simultaneous identification of structural damages and 
external force. 

 
5.1 Experimental setup 
 
The experimental setup and detailed dimensions of the 
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Fig. 11 Experimental tests on a five-story steel frame model
 
 

frame model are presented in Fig. 11. The total height, 
length and width of the frame structure are 1750 mm, 300 
mm, 400 mm, respectively. Four identical bars with the 
dimension of 350 mm × 40 mm × 4 mm are utilized as 
columns, and the thickness of each story plate is 15 mm. All 
joints in this experiment are connected with bolts. The 
initial elastic modulus and mass density of steel material are 
estimated as 2.06 × 1011 N/m2 and 7850 kg/m3, respectively. 
Accordingly, the mass of the structural element can be 
calculated. The lumped mass of each floor including 
accelerometer is M1 = 24.99 kg, M2 = 24.94 kg, M3 = 24.93 kg, 
M4 = 24.75 kg, M5 = 24.80 kg. 

A sinusoidal excitation is horizontally applied at the top 
floor of steel frame model, induced by the dynamic 
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Fig. 10 The measured and predicted acceleration at node 7 under noise level: (a) 0%; (b) 5%; (c) 10%
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vibration exciter (Modal Shop 2100E11), and its typical 
time history is shown in Fig. 12. The shaker is tightly fixed 
on counterforce wall to provide expected load time 
histories. A power amplifier is used to produce sufficient 
power to actuate the vibration exciter and a force transducer 
(PCB208C02) is installed between the shaker and the frame 
to directly record external input excitation. The 
corresponding acceleration and displacement responses of 
all floors are measured by five model 991C accelerometers 
and five displacement transducers, respectively. These 
signals are recorded by the Quantum X data acquisition 
system with the sampling frequency of 100 Hz and 
sampling duration of 50 s. The acceleration measurements 
at floors 1, 3, 5 are regarded as set 1 while those on the 2nd, 
3rd, 4th floors are denoted as set 2, and they are adopted in 
the identification of structural parameters and the input 
force, respectively. The measured displacements are only 
used for the comparison with the predicted responses based 
on the estimated structural parameters and input force, so as 
to evaluate the performance of the proposed strategy. 

 
5.2 Initial model updating 
 
The frame shown in Fig. 11 can be simplified as a 5-

DOF shear-type system due to the comparatively strong 
floors and weak columns, while it would inevitably result in 
modeling errors considering the deviations of boundary 
condition, physical dimensions and material properties. 

Hence, it is necessary to update initial model for the 
purpose of reducing the adverse effect of modeling errors 
on the identification of both structural damages and the 
unknown input excitation. Initial model updating is 
implemented by adjusting structural stiffness parameters so 
as to make the numerical model as close to the experimental 
model as possible. The objective function is established 
based on the discrepancy between the measured natural 
frequencies from the physical tests and the calculated ones 
from the finite element model as follows 

 𝑜𝑏𝑗(𝜃) = ෍ |𝑤௜௖(𝜃) − 𝑤௜௠|𝑤௜௠
ହ

௜ୀଵ  (38)
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Fig. 13 The measured and updated natural frequencies of 
five-floor frame model 

 
 

where θ stands for stiffness parameters to be updated; 𝑤௜௖ 
and 𝑤௜௠  represent the calculated and measured natural 
frequencies under intact state, respectively. 

Initial model updating can be transformed into an 
optimization problem to be solved by the proposed M-Jaya 
algorithm. The natural frequencies of steel frame structure 
before and after updating are shown in Fig. 13. There is a 
large difference between the measured and analytical 
natural frequencies before updating, and the maximum 
relative error is more than 9%. After model updating, as 
listed in Table 4, less than 2.5% relative error implies that 
the updated structural model is in good agreement with the 
real structure, so it can be considered as baseline for the 
following identification. 

 
5.3 Identification results using output-only 

responses 
 

There are two damage cases are considered in this 
experimental study. As presented in Fig. 14, damage case 1 
is achieved by reducing the cross-section area of four 
columns at the 5th floor from the 40 mm × 4 mm to 36 mm 
× 4 mm. In the same way, damage case 2 is realized by 
reducing the cross-section area of four columns at the 4th 
floor from the 40 mm × 4 mm to 32 mm × 4 mm. As a 
result, equivalent stiffness of the 4th and 5th floors are 
reduced 20% and 10%, respectively. The alterations of the 
mass caused by these damages are directly neglected. The 
same parameter settings of M-Jaya algorithm in Table 1 are 
used, and the corresponding damage identification results 
with unknown external force are shown in Fig. 15. 

In case 1, the identified damage extent at the 5th floor is 
11.99%, which agrees well with the exact value of 10%. In 
case 2, the identified reduction of stiffness in the 4th floor is 
22.41%, which matches well with the true value of 20%. In 
addition, less than 3% false identifications of elemental 
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Fig. 14 Two damage cases of steel frame model
 
 

stiffness are observed in Fig. 15, which indicates the 
proposed method can accurately identify both damage 
locations and severities with output-only acceleration 
responses. Furthermore, the identified external input force 
applied at the top floor in case 2, taking the force time 
histories from 10 to 20 s for example, is presented in Fig. 
16, and it is compared with the corresponding measured 
excitation. It can be noticed that the identified forces have 
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Fig. 16 Comparison of measured and identified input 
excitation from 10 to 20 s in damage case 2

 
 
a good match with the measured values with small relative 
error of 2.89% and root mean square error of 2.04 N. 
Therefore, the proposed iterative strategy can simul-
taneously identify the structural damages and external 
excitation force. 

The predicted time histories of acceleration responses in 
damage case 2 are calculated based on the estimated 

Table 4 Measured and analytical natural frequencies of frame structure before and after updating 

Mode 
Measured Before updating After updating 

(Hz) Analytical (Hz) Relative error (%) Analytical (Hz) Relative error (%)
1 1.997 2.026 1.452 1.990 0.351 
2 5.989 5.863 2.104 5.977 0.200 
3 8.986 9.259 3.038 9.043 0.634 
4 11.967 11.920 0.393 12.010 0.359 
5 14.993 13.574 9.464 14.637 2.374 
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structural parameters and input excitation. Then, they are 
compared with measured responses. For clarity, only the 
results from 10 s to 20 s are presented in Fig. 17. Good 
agreement is observed between the identified and measured 
accelerations responses, with the relative errors of 7.27%, 
4.73%, 3.45%, 3.75%, 7.32% for identified acceleration 
from the first floor to the fifth floor, which demonstrates the 
structural responses (displacement, velocity, acceleration, 
strain, etc.) could be accurately predicted. It is attractive and 
meaningful to acquire dynamic responses of large-scale or 
complex structures where sensors are difficult to be 
installed. 

From the identified results of experimental studies on a 
five-floor frame structure, the proposed iterative strategy 
based on the modified Jaya algorithm and Tikhonov 
regularization method is able to accurately identify 
structural damages without force measurement. 

 
 

6. Conclusions 
 
In this paper, an iterative strategy, combining Tikhonov 

regularization method for force identification and modified 
Jaya algorithm for parameter identification, is proposed to 
identify structural damages without force measurements. To 
enhance the performance of Jaya algorithm, probabilistic 
clustering learning technique and nonlinear updating 

 
 

equation are introduced. An improved L-curve method 
based on B-spline interpolation function is presented to deal 
with the difficulty in selecting the proper regularization 
parameters for traditional Tikhonov regularization. 
Numerical studies on a simply-supported truss structure and 
experimental studies on a five-story steel frame model are 
conducted to validate the accuracy and effectiveness of the 
proposed approach in solving inverse output-only 
identification problem. Some interesting conclusions can be 
drawn as follows: 

 
• Compared with GA, GBABC and Jaya algorithm, 

the proposed M-Jaya algorithm can achieve more 
favorable identification results owing to introducing 
probabilistic clustering learning technique to 
improve the convergence performance and nonlinear 
updating equation to refine the quality of the best 
solution. 

• Different from the traditional Tikhonov 
regularization, an improved L-curve method based 
on B-spline interpolation function is developed and 
it successfully alleviates the ill-posedness problem 
of the force identification. The optimal 
regularization parameter could be easily determined 
by calculating the maximum curvature value of the 
B-spline curve. 

• Numerical and experimental studies demonstrate that 
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the proposed iterative strategy can accurately 
identify structural damages and unknown input 
excitation simultaneously with limited output-only 
acceleration responses, and it has good robustness to 
measurement noise. 

• Structural responses can be accurately predicted 
based on the estimated stiffness parameters and 
excitation force, which is meaningful to monitor the 
dynamic responses of large-scale or complex 
structures at locations where sensors are unavailable. 

• It should be noted that some aspects are not 
considered in this paper, such as uncertainties in the 
temperature variation, boundary stiffness alternation, 
and modeling error. More investigations including 
using the proposed approach for the parameter 
identification of m substructure or nonlinear 
structure subjected to unknown ambient or moving 
load in real-life applications would be carried out in 
the future. 
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