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A B S T R A C T   

The availability of complete data is essential for accurately assessing structural stability and condition in 
structural health monitoring (SHM) systems. Unfortunately, data missing is a common occurrence in daily 
monitoring operations, which hinders real-time analysis and evaluation of structural conditions. Although 
considerable research has been conducted to efficiently recover missing data, the implementation of these re
covery methods often encounters issues such as serious mode collapse and gradient vanishing. To address these 
challenges, this paper proposes a missing data imputation framework called WGAIN-GP based on Wasserstein 
Generative Adversarial Network with Gradient Penalty. This framework aims to enhance the stability and 
convergence rate of the network during the missing data recovery process. The effectiveness and robustness of 
the proposed method are extensively evaluated using measured acceleration data from a long-span highway- 
railway dual-purpose bridge. The results of the implementation demonstrate that the proposed method achieves 
superior recovery performance even under various missing data conditions, including high missing rates of up to 
90%. Furthermore, the generality of the method is validated by successfully recovering data from different 
missing sensors. Additionally, the recovered data is utilized for modal analysis of the bridge’s structural state, 
further verifying the reliability of the recovery method. The proposed recovery method offers several advantages, 
with its stability and robustness being particularly noteworthy. By significantly enhancing the reliability of the 
recovered data, this method contributes to improving the overall accuracy and effectiveness of structural health 
monitoring systems.   

1. Introduction 

In recent years, the safety and reliability of large infrastructures have 
become paramount concerns, garnering significant attention from so
ciety [1–5]. To effectively assess and monitor the health condition of 
such infrastructures in real-time, the deployment of structural health 
monitoring systems (SHMSs) has become crucial, particularly for large- 
scale structures [6]. The evaluation of structural behavior relies heavily 
on the integrity and quality of the extensive data provided by these 
SHMSs. Unfortunately, the occurrence of continuous and random data 
missing poses an inevitable challenge in SHMSs due to factors like 
transmitting interference, communication outages, and sensor faults. 
This missing data can significantly impact the accuracy of data analysis 

techniques, such as wavelet transform, and severely distort the proba
bility distribution of the data. Consequently, data recovery plays a vital 
role in ensuring the integrity of the structural analysis process, enabling 
the identification of unstable and abnormal states of structures. 

Over the past few decades, extensive research has been undertaken 
to address the challenge of missing data recovery in the context of 
structural assessment. Generally, two prominent categories, namely 
model-driven and data-driven methods, have emerged as popular ap
proaches for tackling this issue. While some FEM-based methods have 
been proposed to recover missing data, their effectiveness is hindered by 
the demanding requirement of highly accurate models, limiting their 
practical applicability. Subsequently, data-driven methods have gained 
prevalence in the field, primarily due to their high efficiency in 
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recovering missing data across various scenarios. These methods have 
proven to be effective in addressing the challenges associated with 
missing data, offering notable advantages over the model-driven 
approaches. 

Currently, data-driven recovery methods can be broadly categorized 
into two main types: discriminative methods and generative methods. 
These two methods adopt different analysis approaches. Discriminative 
models aim to establish a discriminative function with limited samples 
and directly focus on prediction models without considering sample 
generation. Shallow discriminative models, such as MissForest and 
Matrix Completion [7]., have been proposed for missing data recovery. 
However, their limited ability to handle large datasets hampers their 
practical application. With the rapid advancement of deep learning, 
deep discriminative models, including Convolutional Neural Networks 
(CNN) [8], deep Stacking Networks (DSN) [9], Recurrent Neural Net
works (RNN), and Long Short-Term Memory networks (LSTM) [10], 
have gained popularity in the field of missing data recovery. However, 
complete datasets are essential for training discriminative models. 
Similarly, generative models can be classified into shallow generative 
models and deep generative models. The fundamental idea is to estab
lish a joint probability density model of samples, infer the posterior 
probability, and then generate the model. Generative models capture the 
data distribution from a statistical perspective, enabling the reflection of 
data similarity. Generative recovery methods are widely used nowadays 
due to their faster learning convergence. Shallow generative models, 
such as Expectation-Maximization (EM) [11], Denoising Autoencoders 
(DAE) [12], and multiple imputations by Chained Equations (MICE) 
[13], have been proposed. Deep generative models incorporate tech
niques like Restricted Boltzmann Machine (RBM) [14], Autoencoders 
(AE), Deep Belief Networks (DBN) [15], Sum-Product Networks (SPN) 
[16], Bayesian networks [17], and Hidden Markov Models (HMM) [18]. 

In the field of data recovery, three main types of methods can be 
identified: statistical methods, machine learning methods, and deep 
learning methods. Statistical methods, such as mean imputation, mul
tiple imputation, and Maximum Likelihood and least-squares estimation 
with polynomial equations, have been widely used to recover missing 
data in various structures and have achieved considerable success [19]. 
However, statistical learning methods have limitations when it comes to 
recovering continuous missing data. 

In recent decades, machine learning has emerged as a promising 
approach to address the aforementioned challenges. For instance, Ni 
et al. [20] proposed a recovery method based on Back-Propagation 
Neural Network (BPNN) and generalized Regression Neural Network 
(GRNN). Li et al. [21] utilized multi-task Gaussian Process Regression 
(mGPR) to reconstruct displacement and temperature data affected by 
ambient and load excitation. Nevertheless, the method is primarily 
suitable for recovering short-term data located at the beginning or end of 
the dataset. Additionally, Bayesian Dynamic Linear Models (BDLM) 
[12], Log-Quantile-Density (LQD), and Reproducing Kernel Hilbert 
Space (RKHS) methods [22] have been demonstrated to effectively 
recover lost bridge monitoring data. Ren et al.[23] further extended 
Bayesian and Tensor analysis techniques to reconstruct random missing 
strain and temperature data of concrete bridges by representing the 
missing data as second or third-order tensors and extracting reliable 
underlying characteristics. In addition, Wan et al applied Bayesian 
learning method to explore the suitable methodology for structural 
health monitoring data recovery [24–26]. 

In recent years, deep learning-based methods have gained significant 
attention for missing data recovery. For example, Li et al. [27] employed 
Empirical Mode Decomposition (EMD) and Long Short-Term Memory 
networks (LSTM) to recover acceleration data from cable-stayed bridges 
by extracting correlation relationships among the data. However, the 
proposed recovery model’s stability and accuracy were limited by the 
absence of noise-free vibration responses. To address this limitation, Xia 
et al. [28] utilized Convolutional Generative Adversarial Networks to 
reconstruct signals by learning features from low to high frequencies. 

Furthermore, Fan et al. [29] demonstrated the effectiveness of Dense
nets for recovering acceleration data from the Guangzhou tower. 
Additionally, the SegGan architecture, incorporating skip connections 
and dense blocks, was proposed to reconstruct acceleration data in nu
merical simulations and steel frames [30]. In the context of continuous 
missing strain data, Jiang et al. [31] utilized Generative Adversarial 
Networks (GANs) for reconstruction. Hou [32] introduced an advanced 
imputation method based on GANs and data augmentation for multi- 
sensor missing states in SHMSs. Moreover, Jiang [33] proposed the 
use of U-NET, integrating advanced techniques such as dense connec
tions, skip connections, residual connections, and a perceptual loss 
function to effectively capture data loss patterns. Chen et al. [34] pro
posed a hybrid deep-learning and autoregressive model with attention 
mechanism (DL-AR-ATT) framework to accurately reconstruct struc
tural responses considering data correlations. While recent deep 
learning-based methods have achieved notable success in recovering 
missing data for large-scale and long-term datasets, challenges related to 
model stability still persist. 

Generative Adversarial Network (GAN), as a prominent deep 
generative model, finds widespread applications in various fields [35]. 
However, the conventional GAN algorithm has limitations in loss 
calculation during training and interpretation. To meet specific appli
cation requirements, many researchers have made substantial im
provements to the classic GAN. For example, Wasserstein GAN with 
weight clipping and gradient penalty has been proposed to enhance the 
state-of-the-art performance [36]. Ian Goodfellow initially introduced a 
Generative Adversarial Network with JS Divergence [37], while Arjov
sky [38] proposed Wasserstein GAN with Wasserstein distance to 
improve model stability. However, these approaches are not perfect, as 
weight clipping leads to issues with enforcing a Lipschitz constraint, 
resulting in problems such as unstable training, slow convergence, and 
vanishing gradients. To address these limitations, Gulrajani [39] pro
posed Wasserstein GAN with Gradient Penalty (WGAIN-GP) to enforce 
the Lipschitz constraint effectively, mitigating the problems of mode 
collapse and vanishing gradients. Leveraging the powerful generative 
capabilities of GAN, several scholars have developed data missing 
imputation frameworks based on GAN models [31,32,40,41]. However, 
mode collapse and gradient vanishing issues, similar to those encoun
tered in the original GAN, have hampered the stability and effectiveness 
of missing data imputation methods. 

In this study, a missing data imputation framework is proposed based 
on Wasserstein GAN with Gradient Penalty (WGAIN-GP) to enhance the 
robustness and efficiency. The gradient penalty mechanism is intro
duced to address the challenges of mode collapse and gradient vanish
ing. This framework not only captures features from the spatiotemporal 
correlations of sensors but also leverages non-missing data to improve 
the accuracy of the imputation model. Furthermore, the proposed 
missing data imputation method has been utilized on a highway-railway 
dual-purpose bridge to verify high efficiency and effectiveness. The 
generality of the proposed method is also demonstrated on different 
missing sensors, and the recovered data are utilized for operational 
modal analysis. 

2. Methodology 

2.1. Problem definition 

In classic GAN, generator and discriminator are two vital constitu
tions, and the desirable results are achieved by multiple adversarial of 
two segments. The input of generator is a random distribution, and the 
output is an arbitrary distribution. The inputs of discriminator include 
the real distribution and the generated distribution by the generator, 
and the outputs are the scores, with the high score for the real distri
bution and a low score for the distribution generated by generator. In 
adversarial process, firstly, the parameters of generator are fixed and the 
parameters of discriminator are updated; then, the parameters of 
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discriminator are fixed and generator are updated. And so on, the 
adversarial process will be stopped until the divergence between the 
output distribution of generator and the real distribution is minimized 
and discriminator gives a high score to the generated distribution [37]. 
The distribution divergence is toughly calculated in GAN, and can be 
expressed on equation (1) and (2). Numerous scholars introduced 
different divergence to settle out the difficulty of calculation, namely JS 
divergence and KL divergence, etc. [42]. However, the calculation 
process is rather complicated, and have difficulties in integrating to 
calculate the distance. In addition, the overlapping area of the distri
bution of PG and Pdata is relatively small, so JS Divergence cannot meet 
the requirement to update the better result. Moreover, it is possible to 
achieve high accuracy with poor results. Therefore, a new distance 
(Wasserstein distance) is deliberately considered to measure this dis
tance, and the formulation is shown in equation (3). The Wasserstein 
distance has a tough limitation (1-Lipschitz) yet, and the training of 
discriminator must be forced to smooth D(x) from − ∞ to ∞. Later, 
gradient penalty is proposed to improve the training and interpretation 
process, which keep the gradient between PG and Pdata being close to 1. 

G* = argmin
G

Div(PG,Pdata) (1)  

V(G,D) = Ey∼Pdata [logD(y)↑] +Ey∼PG [log(1 − D(y))↓] (2)  

max
D∈1− Lipschitz

{
Ex∼Pdata [D(x)]↑ − Ex∼PG [D(x)]↓

}
(3)  

2.2. Detailed configuration of the network 

In this paper, to overcome the mode collapse and gradient vanishing 
in the network training process, Wasserstein Generative adversarial 
network with gradient penalty is introduced to recover missing data in 
the structural health system (SHM). It absorbs the generative ability of 
classical GAN and the stable capability of gradient penalty[43]. GAN is a 
typical generative model to generate the missing data depending on data 
correlation and self-creativity. The configuration of the network is 
shown in Fig. 1. The backbone network contains two main blocks, the 
generator network, and the critic network. The generator is designed as 
a generative network to generate the missing data corresponding to real 
data. The critic is similar to the classifier, being identical to the 
discriminator of classic GAN. The data from the generator and real data 
are inputted in critic to distinguish them as real and fake. The proposed 
architecture is derived from classical GAN and general form of GAIN 
[43–44]. However, the architecture of WGAIN-GP is evidently more 
compact, both generator and discriminator are modeled as two fully 
connected neural nets. These significantly improve the implemented 
time and feature extraction capability of the network, making the 
network more efficient without sacrificing accuracy. 

The purpose of WGAIN-GP is to estimate unobserved values in each 
dataset. Based on the available data, the generator produces imputed 
values, which include both the missing and non-missing parts. After 
generating these imputed values, the discriminator assesses them as 
either ’real’ or ’fake.’ The imputation process continues only when the 
imputed data closely resembles ’real’ data or when the network iden
tifies the imputed data as ’real.’ 

Improving the accuracy of imputed values for missing parts involves 
comparing the imputed values for non-missing parts with the original 
true values to determine if they are a ’real’ match. However, for the 
missing parts (with values as 0), there are no original reference values 
available for assessment (’real’ or ’fake’). In such cases, the discrimi
nator can evaluate whether the imputed values for non-missing parts are 
’real’ or not. 

If the discriminator judges the non-missing part’s imputed data as 
’fake,’ it prompts the generator to continue generating imputed values. 
This process repeats multiple times until the discriminator determines 
that the imputed data is ’real.’ Conversely, if the discriminator 

determines that the imputed data is ’real,’ the imputation process for all 
data concludes, retaining only the imputed values for the missing parts, 
while discarding the imputed values for the non-missing parts. The 
original data values are preserved. 

2.3. Generator 

As the critical element in the WGAIN-GP framework, the generator 
used in the missing data generation is shown in Fig. 2. The incomplete 
data matrix, generated mask matrix and noise matrix with simple dis
tribution are imported to the generator, which is demonstrated on 
equation (4). In addition, in an adversarial process, the missing data are 
recovered with compact network and the imputed data are deemed to 
the exported element in generator, which is denoted as equation (5). 
After the training and inference, the final generated data matrix is 
composed of non-missing data and the estimated missing data, which 
can be expressed in equation (6). This means that the network is much 
easier to be trained than the traditional GAN. The activation functions 
are selected to decide whether a neuron should be activated or not, and 
the Rectified Linear Unit (ReLU) activation function and hyperbolic 
tangent (Tanh) activation function are separately utilized to activate the 
two fully connected layers. The former can be regarded as a non-linear 
function or piecewise linear function that will output the input directly if 
it is positive, otherwise, it will output zero. It is simpler and more 
effective in the common application, making the network easier to be 
trained, which is mathematically formed in equation (7). The latter 
(tanh) is also expressed as sigmoidal (s-shaped) and is shown in equation 

Fig. 1. Detailed configuration of the network.  
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Fig. 2. The architecture of the generator network.  

Fig. 3. The architecture of the critic network.  
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(8). The tanh in output layers is applied to improve the efficiency and 
accuracy of the missing data recovery. The advantage is that the nega
tive inputs will be mapped strongly negative, and the zero inputs will be 
mapped near zero in the tanh. The function is differentiable and 
monotonic while its derivative is not monotonic. 

Z = M ⊙ X ⊕ (1 − M) ⊙ N (4)  

X̄ = G(Z,M) (5)  

X̂ = M ⊙ X ⊕ (1 − M) ⊙ X̄ (6) 

Where X̂ denotes the data generated by the generator, composing the 
value of the non-missing part and the imputed value of the missing part; 
X̄ denotes the imputed data matrix, X is the incomplete matrix, Z rep
resents random matrix, M represents mask matrix, N is random value of 
uniform distribution and ⊙ represents element-wise multiplication. 

f (x) = max(0, x) (7)  

tanh(x) =
ex − e− x

ex + e− x (8)  

2.4. Critic 

As another crucial element in the WGAIN-GP framework, we intro
duce a critic C to distinguish the generated data from generator whether 
real or fake. In this paper, critic is constituted with two fully connected 
neural nets, which is foundationally the same as generator. This signif
icantly improve the network’s architecture, making the network 
slimmer and tight. The detailed architecture in critic is shown in Fig. 3. 
The input of critic is incomplete measured data and the imputation data, 
and the input is batched with 128 points in data length. In distinguished 
process, the distance of measured data and generated data in non- 
missing part are measured in detail. Subsequently, the real data and 
fake data are outputted in the critic, and the final real data are extracted 
as unique output step by step. 

2.5. Gradient penalty and clipping penalty 

To meet the requirement of the Lipschitz constraint, weight clipping 
is introduced as the implementation of the weight penalty. However, 
there are a few serious problems with the implementation of weight 
clipping. The critic loss is designed to maximize the difference between 
the scores of true and false samples, however, weight clipping inde
pendently limits the range of values of each network parameter. 
Consequently, the optimal strategy is to make all parameters as extreme 
as possible, either taking the maximum (e.g. 0.01) or the minimum (e.g. 
− 0.01). In addition, weight clipping presumably leads to accidentally 
disappearing the gradient vanishing or gradient exploding. The reason is 
that the critic is a multi-layer network, if the clipping threshold is set as a 
little smaller. After each layer of the network, the gradient becomes a 
little smaller, multi-layer will be exponentially decaying. Conversely, if 
set a little larger, after each layer of the network, the gradient becomes a 
little larger, multi-layer will exponentially explode. Only by setting it 
not too big or not too small can the generator get just the right back- 
propagation gradient, however in practice, this balance region can be 
very narrow. This impairs both the generative and stabilization capa
bilities of the GAN model. 

In this paper, the gradient penalty is introduced to resolve the model 
collapse and gradient vanishing. After using the gradient penalty, the 
distribution of the parameter values is much more reasonable after the 
critic is also fully trained, and the critic can take full advantage of its 
model fitting ability. In contrast, the gradient penalty can keep the 
gradient smooth in the backward propagation process. Gradient penalty 
only applies to the region of true and false samples, as well as the 
transition zone between the two. However, since it directly limits the 

gradient norm of the discriminator to around 1, the gradient is very 
controllable and can be easily adjusted to the appropriate scale size. 
Gradient penalty can significantly improve the training speed and solve 
the problem of slow convergence of GAN. 

2.6. Loss function and evaluation criteria 

In this paper, the innovated missing data imputation with Wasser
stein distance and gradient penalty is proposed to alleviate the problem 
of gradient vanishing/exploding in missing data imputation. 

The objective of generator is to minimize the divergence between the 
measured data and the data generated by generator. Moreover, the 
generator estimates the whole dataset of missing data. The loss function 
of the generator is composed of Wasserstein distance loss and mean 
square error (MSE) loss, which is formed in equation (9). In view of the 
stable capability of gradient penalty (GP), it can be seen in equation (10) 
that the loss of critic is attributed to Wasserstein distance loss and 
gradient penalty. In addition, Adam is regarded as the common Mo
mentum optimizer with Simple operation and efficient calculation. 
Therefore, the Adam optimizer is selected to update the parameter and 
gradient descent. 

minLWGAIN− GP(αG) = − EX̂,M[(1 − M) ⊙ C(X̂) ] +αE
[
(M ⊙ X − M ⊙ G)

2 ]

(9)  

maxLWGAIN− GP(αC) = EX̂,M[M ⊙ C(X̂) ] − EX̂,M[(1 − M) ⊙ (1 − C(X̂) ) ]
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

Wasserstein Distance Loss

+ λ
(
‖∇x̂C(Xz) ‖2 − 1

)2

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
Gradient Penalty  

where X̂ denotes the data generated by the generator, composing the 
value of the non-missing part and the imputed value of the missing part; 
X is the incomplete matrix; Xz denotes the distribution of uniform PXz 

sampling from the non-missing part of the original part and the imputed 
part created using the generator. M represents mask matrix; α represents 
hyperparameter; and λ represents hyperparameter. 

3. Real application and verifications 

3.1. Overview of the structure applied 

The Tongling Bridge, located at Yangtze River in Anhui Province, 
China, is a long-span highway-railway dual-purpose bridge. Fig. 4 pro
vides an overview map of the Tongling Bridge. To evaluate the structural 
condition of the bridge in a quantitative manner, a modern Structural 
Health Monitoring (SHM) system has been deployed. The design of the 
SHM system takes into account the significance of the monitoring object 
and the vulnerability analysis of monitoring positions. One of the crucial 
monitoring aspects is the vibration of the bridge, which holds immense 
importance for the safety and overall health of the structure. Hence, 
monitoring the bridge’s acceleration serves as an essential and intuitive 
parameter to assess the vibration response. In Fig. 4, the layout of the 
bridge’s SHM system consists of 15 acceleration sensors represented by 
red points. These sensors capture the vibration response induced by 
vehicle load and ambient load, with a sampling frequency of 100 Hz. 

3.2. Dataset preparation 

The proposed network is applied to a dataset consisting of 15 ac
celeration sensors that capture vibrations induced by vehicle load and 
ambient load, with a sampling frequency of 100 Hz. Among these sen
sors, seven sensors (J2, J4, J6, J9, J11, J13, and J15) have incomplete 
data and are selected as the target for data imputation, while the 
remaining sensors are used for training the network. Data normalization 
is a crucial step that enhances the efficiency, stability, and accuracy of 
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the proposed method while allowing for the analysis of statistical dis
tribution characteristics. The normalization process is performed as 
follows: 

xnorm =
x − xmin

xmax − xmin
(11)  

where xnorm is the normalization of the data, and the interval of the 
normalization is between 0 and 1. 

3.3. Model training and hyperparameter setting 

The sensor missing data imputation framework was implemented 
using TensorFlow, and the configurations of the computational platform 
are two Intel Xeon(R) E5-2696 v4 CPUs, a 256 GB memory, and an 
NVIDIA TITAN X (Pascal) GPU for boosting algorithm application. The 
implemented process of the data imputation method will be discussed in 
detail below. 

The hyperparameters of network were extremely important in 
training process. In this paper, the number of samples in mini-batch was 
set as constant size (128). The Adaptive moment estimation (Adam) was 
kept as constant optimizer with β1 = 0.9 and β2 = 0.999. In addition, 
optimizer’s learning rate was 0.0009. Furthermore, λ = 10 was intro
duced as a hyper-parameter to compute the critic’s loss, and α = 100 
was used to compute the generator’s loss. A number of training itera
tions were set to achieve the effectiveness and robustness of proposed 
method. 

4. Performance metrics 

To qualitatively and quantitatively assess the performance of the 
proposed missing data imputation model using visual criteria, four 
performance metrics, namely correlation coefficients (R2), root mean 
square error (RMSE), mean absolute error (MAE), and Accuracy, are 
introduced to evaluate the accuracy and robustness of imputation re
sults. These performance metrics can be formulated as: 

R2 = 1 −
∑n

i=1(y′
i − yi)

2

∑n
i=1(ȳ − yi)

2 (12)  

MAE =
1
n
∑n

i=1

⃒
⃒y′

i − yi
⃒
⃒ (13)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1
(y′

i − yi)
2

√

(14)  

Accuracy = 1 −
⃦
⃦yi − y′

i

⃦
⃦2

2

‖y′
i‖

2
2

= 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(yi − y′

i)
2

√

̅̅̅̅̅̅̅̅̅̅
∑n

i=1
y2

i

√ (15) 

where yi denotes the measure values of i th location, y′
i represents the 

imputation values of i th location, ȳ demonstrates the mean of the 
imputation values. 

Fig. 4. The schematic chart of the Tongling bridge.  
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5. Results and discussion 

Bridge health monitoring systems commonly encounter two repre
sentative forms of missing data: random and continuous. The proposed 
imputation method efficiently and accurately leverages valuable infor
mation in random missing scenarios. Although it may face difficulties in 
recovering continuous missing data, the proposed method still demon
strates efficient and robust performance even in cases of high pro
portions of missing data. Moreover, it is important to note that 
continuous and random data missing can occur simultaneously in the 
daily operation of SHM systems, a factor often overlooked in missing 
data recovery research. 

This paper introduces three types of missing data—random missing, 
continuous missing, and hybrid missing (simultaneous random and 
continuous missing)—to evaluate the generality of the proposed impu
tation method. Specifically, ten seconds of data from seven incomplete 
sensors (J2, J4, J6, J9, J11, J13, and J15) are selected to showcase the 
imputation capacity in both the time and frequency domains. 

Frequency domain analysis plays a vital role in detecting structural 
damage and is a key method for analyzing structural characteristics. In 
this study, Fast Fourier Transform (FFT) is utilized to transform the 
signals from the time domain to the frequency domain. Signal processing 
is performed on the acceleration data, with a sampling frequency of 100 
Hz, ensuring that it is more than twice the natural frequency of 50 Hz. 

5.1. The generative ability of proposed models 

The proposed WGAIN-GP model is employed to recover the missing 
data of bridge accelerations, showcasing its capacity in various sce
narios. For analysis and verification, we focus on data from seven 
incomplete sensors (J2, J4, J6, J9, J11, J13, and J15) to demonstrate the 
imputation capabilities in different scenarios, including random missing 
(Type I), continuous missing (Type II), and hybrid missing (Type III, i.e., 
random and continuous missing simultaneously). 

We first examine the performance of the WGAIN-GP model in the 
random missing scenario. Fig. 5 illustrates the results of bridge accel
eration imputation using the proposed method under a 90% missing 
rate. It is evident that the WGAIN-GP model exhibits remarkable re
covery capacity. This can be attributed to the model’s ability to learn 
spatial–temporal correlations between missing and non-missing data, 
thus enables effective imputation. 

Furthermore, continuous data missing in the sensors is inevitable due 
to the occasional instability of responses induced by the environment 
and vehicles. As shown in Fig. 6, the evaluation of continuous missing 
data for the seven sensors demonstrates the excellent imputation ability 
of the proposed framework. Overall, the proposed method exhibits su
perior transferability across different missing sensor scenarios. These 
results indicate the robustness and efficiency of the proposed framework 
in imputation performance. 

In addition, it is important to note that random and continuous 
missing can occur simultaneously in bridge SHM systems, and this 
hybrid missing scenario is often overlooked or challenging to identify. 
Similarly, as shown in Fig. 7, we utilize seven acceleration sensors to 
evaluate the imputation ability of the proposed WGAIN-GP framework. 
Overall, the WGAIN-GP model demonstrates accurate imputation per
formance for the seven missing sensors. 

To provide a quantitative assessment, four performance metrics are 
employed to evaluate the recovery performance of the proposed 
method. The imputation performance of the WGAIN-GP models in 
different missing scenarios is summarized in Table 1. The results ob
tained from these performance metrics demonstrate accurate imputa
tion with low MAE and RMSE values, along with high R2 and accuracy. 
In conclusion, the proposed WGAIN-GP framework not only achieves 
accurate imputation but also demonstrates strong generative ability, as 
confirmed by both qualitative and quantitative assessments. 

5.2. The evaluation of modal analysis 

Modal identification plays a crucial role in monitoring structural 
condition and identifying potential damage. However, missing data 
significantly affects mode recognition and the overall structural state, 
highlighting the importance of an accurate and stable missing data 
imputation method. In this study, modal identification was performed 
on both the original data and the imputed data using the Frequency 
Domain Decomposition (FDD) technique. FDD decomposes the signal 
into sinusoidal components with different frequencies and amplitudes, 
thereby extracting underlying dynamic information. For modal param
eter identification, the original and recovered results of seven sensors 
(J2, J4, J6, J9, J11, J13, and J15) were compared to assess the 
robustness and accuracy of the proposed method. 

To qualitatively and quantitatively analyze the modal identification 
based on the recovered data, the FDD method was employed. As the 
bridge structure is a low-frequency system, Fig. 8 demonstrates the ac
curate identification of six natural frequencies based on the recovered 
data from the seven sensors. Considering engineering applications, the 
six modes were inferred by selecting the peak of the singular value. The 
proposed imputation method exhibits superior performance in terms of 
natural frequency identification, with an extremely small error rate 
except for mode 1 (Fig. 8 and Table 2). The identified damping ratios, as 
shown in Table 2, also exhibit low errors when comparing the original 
and imputed data. Additionally, mode shapes are effectively identified 
by comparing the recovered data with the original data, as depicted in 
Fig. 9. These results highlight the high quality and efficiency of the 
proposed WGAIN-GP in recovering missing data. To quantify the mode 
shape comparison, the Modal Assurance Criterion (MAC) is employed as 
a measure of correlation between two vibration shapes. Table 2 in
dicates that the MAC values are consistently above 0.995, and even 
reach 1, demonstrating the accuracy of the proposed method. Overall, 
the recovered data effectively and accurately identify the modal pa
rameters of the six modes, affirming the superior capacity of the pro
posed WGAIN-GP model in assessing structural conditions. 

MAC =

⃒
⃒{ψR}

H
{ψI}

⃒
⃒2

{ψR}
H
{ψR}{ψI}

H
{ψI}

(16)  

where ψR and ψ I are real values representing the mode shape values of 
the kth mode estimated from the true and reconstructed responses. 

5.3. The robustness performance of the proposed WGAIN-GP 

To demonstrate the superiority of the proposed WGAIN-GP model, a 
comparison is made with the previous GAIN and WGAIN-CP models. To 
ensure a fair comparison, uniform standards are followed in selecting 
initial hyperparameters and sensor information, which are shown in 
section 3.3. Fig. 10 clearly illustrates the issues of model collapse and 
gradient vanishing present in the previous GAIN and WGAIN-CP models, 
where constant values persist throughout the iteration process. In 
contrast, the proposed WGAIN-GP model generates available data at the 
beginning of the iteration and shows a limitation on the loss in different 
iterations. This highlights the contribution of the Wasserstein loss 
function and gradient penalty in enhancing the stability and quality of 
the proposed WGAIN-GP model. 

To better illustrate the robustness of the proposed WGAIN-GP model, 
its performance is compared with WGAIN-CP and GAIN models under 
different scenarios: random, continuous, and hybrid (a combination of 
random and continuous) missing data. 

Fig. 11 presents the recovery accuracy of the three imputation 
methods in the presence of random missing data (Type I) occurring in 
SHM systems. In the case of 50% random missing data, the proposed 
WGAIN-GP model demonstrates superior recovery results for both high- 
frequency and low-frequency signals. In contrast, the predicted results of 
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Fig. 5. The imputation results of seven sensors under random missing scenarios: missing rate = 90%.  
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Fig. 6. The imputation results of seven sensors under continuous missing scenarios: missing rate = 90%.  
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Fig. 7. The imputation results of seven sensors under hybrid missing scenarios (continuous and random): missing rate = 90%.  
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the WGAIN-CP and GAIN models do not align well with the original 
signal, particularly in high-frequency signals. 

When dealing with continuous missing data caused by lost signal 
contact in SHM systems (referred to as Type II), the recovery accuracy of 
the three imputation methods is depicted in Fig. 12. Continuous missing 
data differs significantly from random missing data in terms of impu
tation implementation, posing a challenge for the proposed WGAIN-GP 
model. This challenge lies in its ability to not only utilize its own non- 
missing data but also capture information from other sensors. Howev
er, as observed in Fig. 6, the proposed WGAIN-GP model exhibits stable 
imputation capability when addressing continuous data missing issues 
with signals of varying frequencies. 

When dealing with hybrid missing data caused by a combination of 
continuous and random missing occurrences in SHM systems (referred 
to as Type III), the recovery accuracy of the three imputation methods is 
illustrated in Fig. 13. It is evident that the recovery of Type III data 
presents a challenging task, as the imputation method needs to effec
tively incorporate different types of information. However, it is observed 
that the predicted frequency spikes are internally consistent with the 
original spikes, indicating the capability of the proposed imputation 
methods to capture the underlying patterns in the missing data. 

Table 1 
The performance metrics of different missing scenarios with 90% missing ratio.  

Missing type Sensors MAE RMSE R2 Accuracy 

Type I J2  0.021  0.036  0.9845  0.9996 
J4  0.029  0.049  0.9809  0.9986 
J6  0.029  0.053  0.9751  0.9973 
J9  0.01  0.021  0.9866  0.9996 
J11  0.015  0.031  0.9896  0.9856 
J13  0.13  0.224  0.9915  0.9469 
J15  0.172  0.255  0.9897  0.9375 

Type II J2  0.017  0.034  0.9857  0.9996 
J4  0.023  0.037  0.9894  0.999 
J6  0.017  0.029  0.9926  0.9986 
J9  0.075  0.011  0.9962  0.9998 
J11  0.029  0.043  0.9792  0.9797 
J13  0.341  0.785  0.8944  0.9136 
J15  0.179  0.285  0.9872  0.9303 

Type III J2  0.047  0.066  0.9483  0.9993 
J4  0.022  0.029  0.9932  0.9992 
J6  0.018  0.28  0.9928  0.9986 
J9  0.015  0.22  0.9847  0.9995 
J11  0.024  0.044  0.9779  0.979 
J13  0.128  0.234  0.9906  0.9444 
J15  0.133  0.181  0.9949  0.9558  

Fig. 8. Modal Frequency Identification results using (a) Measured data, (b)Imputation data.  

Table 2 
Comparison of the modal identification results under the recovered data of seven sensors.  

Mode Frequency Damping ratio MAC 

Real Imputation Error Real Imputation Error 

1  0.34  0.38 11.76%  0.016  0.026 62.5% 0.998 
2  0.54  0.54 0%  0.021  0.022 4.76% 0.996 
3  0.82  0.82 0%  0.01  0.012 20% 0.995 
4  1.10  1.10 0%  0.008  0.009 12.5% 0.997 
5  1.38  1.38 0%  0.121  0.176 45.45% 1 
6  1.72  1.72 0%  0.017  0.018 5.88% 1  
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To comprehensively demonstrate the superiority of the WGAIN-GP 
framework, quantitative analysis is performed comparing the three 
imputation models, as shown in Table 3. The WGAIN-GP framework 
consistently achieves more accurate results and a more stable training 
process, as indicated by low MAE, RMSE, and high R2 accuracy values. 
These findings highlight the reliability and robustness of the proposed 
method as a missing data imputation framework. 

6. Conclusion 

This paper presents a robust missing data imputation framework, 
WGAIN-GP, based on a generative adversarial network with Wasserstein 
distance and gradient penalty. The proposed method is extensively 
evaluated using measured acceleration data from a long-span highway- 
railway dual-purpose bridge, demonstrating its effectiveness and 
robustness in recovering missing data. The implementation results 

highlight the framework’s superior performance across various missing 
data scenarios, even with a missing data rate of up to 90%. The method’s 
generality is also demonstrated by successfully handling different 
missing sensors and enabling modal analysis of the bridge’s structural 
state with data recovery. 

The assessment of the WGAIN-GP model in different missing sce
narios confirms its ability to leverage spatiotemporal correlations 
among sensors, resulting in accurate imputation. The performance 
metrics consistently show low mean absolute error (MAE), root mean 
square error (RMSE), and high R2 accuracy, indicating the reliability 
and precision of the proposed framework. Furthermore, the WGAIN-GP 
framework exhibits strong generative ability, as confirmed by both 
qualitative and quantitative assessments. 

Modal identification, a critical aspect of monitoring structural con
ditions and detecting possible damage, is effectively performed using the 
proposed imputation method. The recovery results demonstrate 

Fig. 9. Modal Shape results using (a) 1st mode shape, (b) 2nd mode shape, (c) 3rd mode shape, (d) 4th mode shape, (e) 5th mode shape, (f) 6th mode shape.  

Fig. 10. Train Process of (a) WGAIN-GP (b) WGAIN-CP (c)GAIN.  
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Fig. 11. The imputation results of 50% random missing in time and frequency domain (a) WGAIN-GP (b) WGAIN-CP (c)GAIN.  

Fig. 12. The imputation results of 50% continuous missing in time and frequency domain (a) WGAIN-GP (b) WGAIN-CP (c)GAIN.  
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accurate identification of natural frequencies, with minimal error except 
for mode 1. Additionally, the damping ratios exhibit low error between 
original and imputed data. The mode shapes are successfully identified, 
further affirming the high quality and efficiency of the proposed 
WGAIN-GP framework. The modal assurance criterion (MAC) values 
consistently exceed 0.995, indicating excellent accuracy in comparing 
mode shapes between the recovered and original data. Overall, the 
proposed framework excels in assessing the structural conditions by 
effectively and accurately identifying the modal parameters. 

A comparison with other imputation models, GAIN and WGAIN-CP, 
reveals the limitations of those models, such as model collapse and 
gradient vanishing. In contrast, the proposed WGAIN-GP model gener
ates reasonable data from the start of iterations, demonstrating the 
stability and quality achieved through the Wasserstein loss function and 
gradient penalty. Quantitative analysis confirms the superior perfor
mance of the WGAIN-GP framework, with lower MAE and RMSE, higher 
R2 accuracy, and a more stable training process. These results affirm the 
reliability and robustness of the proposed method as a missing data 
imputation framework. 
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