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A B S T R A C T   

Fluid viscous damper has been applied widely for energy dissipation and shock absorption in 
dynamic structural systems, specifically the oil damper. Nevertheless, there’s an issue of precisely 
incorporating shaft bearings and pressure sealings for oil dampers, which restricts its wide 
application in new or existing structures. A type of nonlinear oil damper with viscoelastic polymer 
packing soft links is posed and investigated to allow for easy production. To explore the effectivity 
and actual performance of the nonlinear oil dampers, vibration monitoring system has been 
instrumented both on the dampers and the building since it was built in 2003, which accumulated 
huge amount of precious data. A Bayesian based order selection of auto-regressive exogenous 
model is exploited to the recorded earthquake responses to extract dynamic properties of the 
passively-controlled 8-story steel building. Thus, damping characteristics of the whole structure 
can be identified and analyzed. Besides, an analytical model for the nonlinear oil damper is 
investigated and estimated by particle filter improved with Metropolis-Hastings algorithm, which 
can be incorporated into the whole structure model for model updating, reliability as well as 
response prediction. Furthermore, the calculation formulas of the additional effective damping 
ratio provided by oil damper are deduced based on above analysis using modal strain energy, and 
damping ratio of the main steel frame structure are also estimated. Taking a set of actual ground 
motion monitoring data as an example, the proposed method is then exploited to estimate the 
effective damping ratio of oil damper for each floor.   

1. Introduction 

Vibration control plays a vital role in civil engineering, especially for tall buildings or structures constructed in earthquake-prone 
area, which may experience substantial vibration due to wind or earthquake. Under severe earthquakes, vibration incurs massive 
forces, acceleration and displacement to structural and nonstructural elements, which turns the building uncomfortable to live on top, 
barely able to function normally, highly unstable or even collapse eventually. In order to dissipate the vibration energy input to 
buildings as possible, multiple vibration control approaches have been designed and posed to address this difficulty during the past 50 
years, especially consisting of active, semi-active, and passive control devices [1]. 

Since 1970s, the passive structural control methods have been utilized extensively to suppress structural chatter in earthquake 
engineering. Because implementation and operation of passive control apparatuses are relatively simple and robust without re-
quirements for actuators, outside power supplies and sensors [2]. As the supplemental passive damping apparatuses are able to 

* Corresponding author. 
E-mail address: liyuxie@tongji.edu.cn (L. Xie).  

Contents lists available at ScienceDirect 

Journal of Building Engineering 

journal homepage: www.elsevier.com/locate/jobe 

https://doi.org/10.1016/j.jobe.2023.106004 
Received 24 October 2022; Received in revised form 29 January 2023; Accepted 29 January 2023   

mailto:liyuxie@tongji.edu.cn
www.sciencedirect.com/science/journal/23527102
https://www.elsevier.com/locate/jobe
https://doi.org/10.1016/j.jobe.2023.106004
https://doi.org/10.1016/j.jobe.2023.106004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jobe.2023.106004&domain=pdf
https://doi.org/10.1016/j.jobe.2023.106004


Journal of Building Engineering 67 (2023) 106004

2

considerably improve the vibrational performance of structures through absorbing and dissipating most of the input energy, which 
other than be absorbed by lateral load resisting system of the building. Thus, the forced chatter, displacement, acceleration as well as 
inelastic deformation of the structure go down significantly [3]. 

Passive control apparatuses in civil engineering mainly include hysteretic dampers, friction dampers, velocity-dependent dampers 
(e.g. viscous fluid dampers and viscoelastic dampers), and tuned mass dampers, etc. [4–7]. They are generally considered effective and 
reliable to mitigate hazards posed by wind and earthquake as well as rehabilitate deteriorating structures. According to the Japan 
Society of Seismic Isolation, there are more than 7000 buildings equipped with seismic isolators or supplemental damping devices in 
Japan [8]. Many research works have been done on experimental investigation (full-scale or small-scale) of passive control apparatuses 
to examine or evaluate dynamic characteristics and mathematical models of passive control apparatuses [9–18]. However, actual 
performance of most passively-controlled buildings has seldom been tested by real earthquakes. Besides, the actual performance of the 
passive control devices during major and catastrophic earthquakes has barely been tested, since the frame members of structures 
remained mostly elastic during the shaking table tests. 

Fluid viscous damper (FVD) is one kind of additional passive damping apparatuses that have been well-established and used 
extensively in new and retrofit constructions in recent years [19–29]. In general, fluid viscous damper consists of a cylinder and a 
piston, and the cylinder is divided by the piston into two compartments, which are filled with viscous liquid such as oil, then usually 
referred to as oil damper. Nevertheless, one challenge with oil damper is that their demand of machining precision is extremely strict, 
thus, the cost is relatively expensive. To address this difficulty, a type of nonlinear oil damper is propounded with a gap between 
cylinder and piston to allow for easy production, which is then packed with viscoelastic polymer [30]. In this research, the oil dampers 
of this type are implemented on an eight-story steel building serving as passive energy absorbing apparatuses. In order to further 
explore the effectivity of the nonlinear oil dampers and actual performance of the eight-story steel building with nonlinear oil damper 
under strong earthquakes, structural health monitoring system has been instrumented on both the steel building and the oil dampers to 
evaluate their long-term behaviors, states as well as damping, since it was built in 2003, which cumulated huge amount of precious 
data. 

Based on the response monitoring data of the eight-story steel building with nonlinear oil damper under strong earthquakes, an 
auto-regressive exogenous (ARX) model method is employed to extract dynamic properties of the whole steel building. Since the model 
order selection was critical and nontrivial for successfully identifying the inherent damping characteristic of the building. Bayesian 
technique was then introduced to decide the order of ARX models based on inferring the posterior probability of ARX models with 
various model orders [31–33]. Finally, a Bayesian based order selection of auto-regressive exogenous model is exploited to the 
recorded earthquake responses to extract dynamic properties of the eight-story steel building with nonlinear oil damper. Thus, 
damping characteristics of the whole structure can be identified and analyzed. 

Besides, in order to evaluate the damping contribution offered by nonlinear oil dampers, mathematical model which can capture 
the primary dynamic properties of the nonlinear oil dampers is crucial for being incorporated into structural computational models, for 
successful application in design practice, as well as for model updating and response prediction. Maxwell model has been used 
extensively to represent the traditional linear oil damper. Nevertheless, the nonlinear oil damper in this research is significantly 
different from traditional linear oil damper, since it also generates viscoelastic resisting force by shear motion of sealing rings except 
the resisting force from inner pressure differential of fluid when oil flows through orifice. The dynamic behaviors of the nonlinear oil 
damper been studied experimentally in small-scale [52,53], which mainly focus on the implementation of the nonlinear oil damper to 
mitigate seismic vibration of structure. With the progress of the nonlinear oil dampers from theoretical designs into practical appli-
cations, reliable methods for model identification are necessary to assess if the damper is working as designed and validate the ex-
pected performance. 

Fig. 1. The building: (a) Front elevation; (b) Detailed distribution of oil dampers and accelerometers (blue square represents damper, red dot represents load cell and 
red triangle represents accelerometers). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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Among various nonlinear identification methods, particle filtering approach is capable of dealing with any distribution even non- 
Gaussian, which estimates the posterior density distribution merely using a group of random samples from that density. Therefore, an 
analytical model of the nonlinear oil damper is then identified with model uncertainties quantified by the particle filter algorithm 
improved with Metropolis-Hastings [34–36]. The identified model and posterior distribution of unknown parameters demonstrate that 
the improved particle filtering approach can be appropriately used for nonlinear parameter identification without stuck to special 
particles. Furthermore, based on above analysis, the calculation formulas of the additional effective damping ratio provided by oil 
damper are deduced using modal strain energy, and damping ratio of the main steel frame structure are also estimated. Taking a set of 
actual ground motion monitoring data as an example, the proposed method is then exploited to estimate the effective damping ratio of 
oil damper for each floor. 

2. Building description 

2.1. Structural system 

This research aims to explore the performance of an eight-story Administration Building on the pronounced campus of the Tohoku 
Institute of Technology (Fig. 1 (a)) located in Sendai. The main lateral load resisting system of the building is provided by braced steel 
frames of the structural system. The dimension of the main building is 48 m long, 9.6 m wide, and 34.2 m high, with 10 bays in 
longitudinal direction and three bays in transverse direction, as shown in Fig. 1 (b). The load resisting system of the superstructure is 
composed of precast concrete slabs working with braced steel frames, and the one-story basement is composed of reinforced concrete. 
This steel building itself was designed according to Japanese Earthquake Resistance Code for School Buildings even without 
considering any control devices. In order to verify the effectiveness of a newly developed oil damper and improve the structural 
earthquake resistance capability, 56 sets of dampers were installed in the building, which were distributed evenly on each floor with 
four sets of oil dampers in each direction, that is, total eight sets of oil dampers for every floor. The Oil dampers incorporate with the V- 
type steel braces to execute energy dissipating work, which are installed between the adjacent floors, as illustrated in Fig. 1 (b). Two 
sets of oil damper specifications with respect to different stroke limits and orifice shape specifications are designed for 1st floor (Type I) 
and 3rd to 8th floor (Type II), respectively. The nominal first floor and second floor from the structural view are integrated to constitute 
a large space with a height of 8 m [37]. 

2.2. Instrumentation 

The structural and vibration monitoring systems have been set up on the building since the building was constructed in 2003, which 
are mainly made up of 4 triaxial accelerometers (3 accelerometers placed on carefully selected story of the building and 1 acceler-
ometer on the ground near the building). Servo-type accelerometers were allocated on the first, fourth, eighth floors. At the same time, 
the displacement-meters and strain gauges were deployed to gauge the inter-story drifts, axial displacements and axial damper forces 
of damper braces. Small servo accelerometer CV-374AV(A) with a specific specification, of which has a resolution of 0.01 cm/s2 and 
measurement range of ±2000 cm/s2, were selected to record floor acceleration responses. All the sensors are linked together through 
local area network, and the clock built in each sensor is precisely synchronized with both Global Position System (GPS) and Network 
Time Protocol (NTP) server. Once the threshold ground acceleration of 0.5 cm/s2 is transcended, the trigger will activate the moni-
toring system to record seismic responses of the building. The sampling frequency of recorded seismic responses were 200 Hz and 100 
Hz for earthquake events before 2011 and after 2012. Moreover, the seismic response recordings were stored in a server for further 
analysis. Note that horizontal accelerations were oriented in east–west (EW) and north–south (NS) directions corresponding to lon-
gitudinal and transverse directions of the building. 

3. System identification using ARX models 

In this paper, system identification analysis of recorded seismic responses of the building are presented. The paper mainly focuses 
on the analysis of recordings of large earthquakes. Therefore, recorded data with respect to four large earthquake records with a 
moment magnitude more than 7.0 are employed for analysis. The detailed basic information about the four large earthquakes are 
displayed in Table 1 as follows. 

Among them, a recorded data set of a large earthquake with a moment magnitude of 7.0 on 26th May 2003 (called ‘Re-
cord20030526 data’ hereinafter) was analyzed as an example. Because the recorded seismic motion has non-flat distribution in fre-
quency domain, the time-domain auto-regressive exogenous (ARX) model methodology was adopted to analyze the recorded data of 
the building. 

The ARX model is a time-series model in a discrete time domain, which can be derived from dynamic equilibrium equation of 

Table 1 
Information of earthquakes.  

Date Time Location Epicentral distance Depth Magnitude 

(y/m/d) (UTC) N (◦) E (◦) (km) (km) M 

2003/5/26 9:24:33 38.849 141.568 88.6 68 7 
2005/8/16 2:46:28 38.276 142.039 102.1 36 7.2 
2011/3/9 2:45:20 38.435 142.842 173 32 7.3 
2011/4/7 14:32:43 38.276 141.588 62.7 42 7.1  
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structural system [38]. The coefficient matrices of ARX model are able to construct the system matrix of structure, and then the 
eigenvalue decomposition of the system matrix can be used to estimate the dynamic properties of the structure. In general, least square 
method is employed to estimate the coefficient matrices of the ARX model [39–43]. However, selecting an appropriate order for ARX 
model is difficult. Although Akaike’s Information Criterion (AIC) can be utilized for the model order selection, it does not always select 
a reasonable model order in practice especially when the order of model is large. Stabilization diagram method has also been proposed 
to determine the order of the ARX model, whereas, it belongs to empirical criteria and does not have strong theoretical foundations. 
Therefore, Bayes’ Theorem is applied to decide order of ARX models based on the well-established Bayesian probabilistic framework 
[31,44–47]. 

3.1. ARX model and Bayesian techniques 

3.1.1. ARX model and Bayesian model selection 
In general, the mathematical equation of ARX model can be expressed as follows: 

A(q)y(t) =B(q)u(t) + w(t) (1) 

in which t denotes the discrete time, y and u are the output and input of the system, respectively, and w is assumed to be Gaussian 
white noise, which is used to sculpture the model error and uncertainty(generally include non-parametric model errors, noise in 
measured inputs, and unmeasured inputs). A(q) and B(q) denote the polynomial functions of autoregressive coefficients {ai}, {bi}, and 
are defined as follows: 

A(q)= 1 + a1q− 1 + ⋯ + ana q− na = 1 +
∑na

j=1
ajq− j (2)  

B(q)= b1q− nk + ⋯ + bnb q− nb+1− nk =
∑nb

j=1
bjq− j+1− nk (3) 

in which q− 1 is assigned as a backward move operator, namely, q− 1yk = yk− 1, na and nb are orders of the output and input of the 
system, respectively. nk denotes the delay in time domain, Then, equation (1) can be revised as follows: 

yk = −
∑na

j=1
ajyk− j +

∑nb

j=1
bjxk− j+1− nk + wk = ψkθ + wk (4)  

ψk =
[
− yk− 1⋯ − yk− na uk− nk ⋯uk− nk − nb+1

]
(5)  

θ=
[
a1⋯ana b1⋯bnb

]T (6)  

where θ is defined as an autoregressive coefficient vector, and ψ describes a vector integrating both the output and input. 
Consider σ2 is the variance of prediction error and also an unknown parameter of the model, thus, the autoregressive coefficient 

vector is redrafted to be θe = [θT σ2]
T . Moreover, the revised parameter vector is capable of determining the whole model of the system 

for an ARX model class U (na,nb,nk). Based on recorded data D = {u, y} and Bayes’ Theorem, the posterior probability density (PDF) 
function of parameter vector θe is given by: 

p(θe|D ,U )=
p(D |θe,U )p(θe|U )

∫
p(D |θe,U )p(θe|U )dθe

(7)  

Where p(D |θe,U ) is the likelihood PDF, and p(θe|U ) denotes a prior PDF for θe. In general, Gaussian probability distribution is chosen 
as a priori, which provides the largest prior uncertainty for θe, under the condition of barely information available. Therefore, the 
chosen Gaussian prior is stated as follows: 

p(θe|U )=N

(
0, σ2

θe
I
)
=

1
(
2πσ2

θe

)(np − 1)/2
exp

[

−
1
2

θT
e θe

σ2
θe

]

(8) 

in which np = na + nb + 1 is assigned to be the dimension of uncertain parameter vector. What’s more, p(D |θe,U ) is portrayed as 
follows for the likelihood function: 

p(D |θe,U )=
1

(2πσ2)
(nd − ns)/2 exp

[
−

nd − ns

2σ2 J(θ)
]
·

1
(2πσ2

0)
ns/2 exp

[

−
1

2σ2
0

∑ns

j=1
y2

j

]

(9)  

in which nd depicts the size of input and output data, and yj(j= 1,⋯, ns) are assumed to be independent and identically distributed (i.i. 
d.). with a variance σ2

0 as the initial priori, that is, yj ∼ N (0,σ2
0). Y = [yns+1⋯ynd ]

T
,Ψ = [ψT

ns+1⋯ψT
nd
]
T
,ns = max{na,nb + nk − 1}, and 

J(θ) = 1
nd − ns

(Y − Ψθ)T
(Y − Ψθ). 

At the end, the posterior PDF equation (7) can be approximated by maximum likelihood estimate (MLE) as follows: 
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θ̂L = arg max
θ

p(D |θe,U )= arg max
θ

J(θ)=
(
ΨTΨ

)− 1ΨTY (10)  

σ̂2
L = arg max

σ2
p(D |θe,U )=min J(θ)= J(θ̂L) (11)  

C(L)
θ = σ̂2

L

(
ΨTΨ

)− 1 (12) 

in which θ̂L is the maximum likelihood estimates (MLE) of parameter vector θ, σ̂2
L is assigned as the maximum likelihood estimates 

of the variance with respect to prediction error, and C(L)
θ is the covariance matrix of parameter θ̂L.Therefore, θe can be evaluated to 

determine the input/output model of the system for an ARX model class U (na,nb,nk). 
The θe is reckoned with the requirement of a rational model order favored among model class U (na,nb,nk), which is pivotal to the 

successful execution of the ARX method. A reasonable order of ARX model is then singled out applying the classical Bayesian model 
selection. Propose a set of candidate model classes M = ∪U for system, then, following Bayes’ Theorem, the probability of M is stated 
as follows: 

p(U |D ,M )=
p(D |U )p(U |M )

p(D |M )
(13) 

In which p(D |U ) =
∫

p(D |θe,U )p(θe|U )dθe is generally pronounced as the evidence for a model class U beneath the condition of 
available data. Due to the reason that prior probability p(U |M ) for each model class U is quite often assumed to be uniform, the 
posterior probability p(U |D ,M ) of each model class U is therefore determined by the evidence. Suppose U is globally identifiable 
given data D and the number of data, nd, is sufficiently large, then the evidence can be well estimated by Laplace asymptotic 
approximation, the logarithm of the estimated evidence finally equal as follows [32]: 

ln p(D |U )= −
nd − ns

2
ln(2π) − nd − ns − np + 1

2
ln
(

σ̂2
L

)
−

nd − ns

2
−
(
np − 1

)
ln θ∗ −

1
2

θ̂
T
L θ̂L

θ∗2

−
1
2

ln
(nd − ns

2

)
−

1
2

lndet
[
ΨTΨ

]
−

ns

2
ln
(
2πσ2

0

)
−

1
2σ2

0

∑ns

j=1
y2

j

(14) 

in which θ∗ equals to the utmost element among the maximum likelihood estimates θ̂L, by which the estimates, θ̂L will be in the 
relatively high probability region of priors. 

After all, the values of evidence can be calculated analytically through equation (14), thus, the posterior probability of ARX models 
with different model orders can also be determined from equation (13). Then, the model order is selected whose posterior probability 
of ARX model is the maximum a posteriori (MAP) value. 

3.1.2. Parameter estimates of ARX model 
In the ARX model, the natural frequencies fj and damping ratios ξj denote the modal parameters of the j th mode, which are able to 

be connected to the model coefficients θ = [a1⋯ana b1⋯bnb ]
T, while model coefficients of ARX model are estimated by maximum a 

posteriori estimation or maximum likelihood estimation, once model order is selected from above equations 7–14. The natural modes 
are then reckoned as follows [48–50]: 

fj =

⃒
⃒log pj

⃒
⃒

2πΔt
=

ln
(
1
/

rj
)

2πξjΔt
(15)  

ξj =
−
⃒
⃒log pj

⃒
⃒

2πfjΔt
=

ln
(
1
/

rj
)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
pj
)2

+
[
ln
(
1
/

rj
)]2

√ (16) 

In which pj and pj are assigned as the j th conjugate pair of the poles of the polynomial functions, which is the roots of denominator 
A(z) = 0. rj and rj are also the j th conjugate pair of the corresponding residues of the system, which can be derived from the partial 
fractions expansion of the transfer function between the input to the output: 

TransferFunction=
B(z)
A(z)

=Consant +
∑na/2

j=1

[
rj

1 − pjz− 1 +
rj

1 − pjz− 1

]

(17)  

3.2. Identification results using actual monitoring data 

In this study, ARX model method with model order determined by Bayesian model selection method introduced in the previous 
sections, is carried out using records obtained through structural health monitoring system of a passively controlled eight-story steel 
building. To testify the effectiveness of the Bayesian based order selection of auto-regressive exogenous (ARX) model method 
developed in the previous section, an earthquake record used for analysis here as an example is a recorded data set of a large 
earthquake with a moment magnitude of 7.0 on 26th May 2003. Among all four strong earthquake recordings, the records on 26th May 
2003 were set on from perfect initial condition with all devices on explicit preset position, since it’s the first strong event occurred on 
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the building. Besides, both the building and monitoring devices are functional well without any damage before, during, and after the 
strike of strong earthquake on 26th May 2003. These earthquake records occurred in Sendai located in the Miyagi Prefecture of Japan, 
and elaborate information about the time and location, depth of these earthquakes, epicentral distance as well as magnitude are listed 
in Table 1. 

In order to implementation of ARX model, the acceleration time history on the ground of 1st story is designated to be the input 
excitation and the recorded data of other stories are appointed as the outputs. Then, the factor of soil–structure interaction could be 
considered to be ignorable, since the ground acceleration of the 1st story is reckoned as the input instead the free-field ground ac-
celeration records. Besides, the effect of torsional motion is very small due to the symmetrical plan of the structure, thus, the natural 
modes are estimated for both horizontal directions (that is, horizontal and transverse directions, respectively). Here, the horizontal 
accelerations denote the north–south (NS) orientation and east–west (EW) direction with respect to longitudinal and transverse di-
rections of the building (named after ‘EW’ and ‘NS’ hereinafter). 

A segment of time from 15 s to 60 s which includes the maximum response in each direction is selected to extract dynamic 
properties of the passively-controlled eight-story steel building, since the first 15s is basically the start-up part and full of noise. Fig. 2 
displays the recorded acceleration response time histories of the building in both directions. The recorded signals are processed 
through a 20th-order lowpass Butterworth filter with a cut-off frequency of 20 Hz, which is much more than the natural frequencies of 
interest, which are generally in the lower-frequency region up to 6 Hz. The sampling interval is 0.005 s. 

Bayesian model selection is conducted to determine an appropriate model order based on various model class U (na, nb, nk), for 
which the range of model orders na, nb and nk have following restraint conditions: (1) nk is assigned to be the time delay, as the time 
delay is quite small for most case, therefore generality was set to 0; (2) na is order of output of the system, which usually was set to be an 
even figure, as practical systems generally present plural mode form in which one structural mode is in conformity with a pair of 
conjugate poles of the system, that is, na = 2p; (3) nb has ensuing interrelationship with na, i.e. nb = na + 1, which can be corroborated 
by the contrast of partial fraction expansions of the transfer function between continuous time in the Laplace plane and discrete time in 
the Z plane. Accordingly, ns = max{na,nb + nk − 1} = na,and the dimension of parameters np = na + nb + 1 = 2na + 2. In order to 
adequately cover the appropriate orders of model that need to be determined, the range of chosen candidate model classes are as 
follow: 

{U d =U (na, na + 1, 0) : na = 4, 6,…, 22, 24} (18) 

The posterior probability of ARX patterns with varied orders are then calculated using Bayes’ Theorem equation (14), and is shown 
as follows in Table 2. From Table 2, the ARX model with na = 16 holds the uppermost posterior probability for both directions. 

Though the order of model has been resolved, segregating the ‘true’ modes from ‘false’ ones can still be a huge challenge as before. 
As the selected model orders are generally far bigger than twice the number of significant modes, which contribute most of the 
structural response, thus, the ‘false’ numerical modes are provoked into the identified modes, which stemmed from the estimation of 
the coefficients of ARX model. To consistently single out the ‘true’ modes that are about to be utilized for the next section, stabilization 
chart is employed to discern actual modes from false ones. The stabilization chart is capable of reflecting the relative differences of each 

Fig. 2. Acceleration time histories of input and output: (a) longitudinal direction (EW) (b) transverse direction (NS).  
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modes which are estimated under two adjacent orders. Therefore, real modes can distinguish themselves from the spurious modes by 
comparing the dynamic properties of these two groups. In practice, the relative differences are defined as less than 1% for the natural 
frequencies, 5% for damping ratios and 10% for modal assurance criterion (MAC) index of mode shapes, which are used to check the 
consistency of the modal properties derived from two approaches. In addition, modal phase collinearity (MPC) index is also employed 
to try to obtain stable modes [51]. The modal phase collinearity (MPC) index is very much close to 1 for an actual structural mode, and 
so the MPC index is set to be no less than 0.9 in this study. Afterall, the stabilization diagram figured out for ARX model is exhibited in 
Fig. 3. What’s more, Fig. 3 also depicts the estimated transfer function curve for comparing. 

As can be seen from Fig. 3 that first three significant modes are identified, which contribute most of the structural response. The 
identified first three significant modes of the building are listed as follows in Table 3. The same processes are conducted to the other 
three strong earthquake recordings, the identified first three natural frequency and damping ratio are also shown in Table 3. From the 
observation of identified results, the first two natural frequency for records 2003/5/26, 2005/8/16 and 2011/3/9 are basically the 
same level, so are the first two damping ratio. Nevertheless, Great East Japan earthquake struck northeastern Japan on March 11, 
2011, the steel building experienced the earthquake with all oil dampers on the first floor completely destroyed with abutment 
breakage, besides, dampers on the third and fourth floors had severe oil leakages. Right after the 3•11 earthquake, another strong 
earthquake was recorded on April 7th, 2011, which provided an opportunity to investigate the actual dynamic properties of main steel 
frame of the building. Post-earthquake inspection showed that the main steel frame was intact without damage. However, the 
identified first two fundamental frequency and damping ratio decrease significantly for records 2011/4/7, as can be observed in 
Table 3. Two main aspects may account for this phenomenon, on one hand, the connections and non-structural elements may undergo 
some micro damage which can’t be inspected by visual. On the other hand, the decrease of both frequency and damping ratio indicates 
that the oil damper braces not only provide supplemental damping, but also offer additional stiffness to the steel building. 

In practice, it’s most often the common case that sensors are only available on selected floors due to cost. In this paper, the number 
of monitoring instruments arranged on the steel building studied is also limited. As described in section 2.2, only the horizontal di-
rections (including the long side direction and the short side direction) of the 1st, 4th and 8th floors are deployed with accelerometers, 
respectively. Therefore, the degree of freedom of the actual measurement of the structure is only 1 layer, 4 layers and 8 layers. Since the 
degrees of freedom monitored will determine the integrity of the identifiable mode shapes of the structural system, that is, the cor-
responding mode shapes of the floors with monitoring records can be identified, otherwise, the mode shapes at the corresponding 
floors are unknown. Mode shape expansion techniques were then employed to approximate the unmeasured mode shape vectors. 
Finally, the expanded first three intact mode shapes of the steel building are illustrated in Fig. 4, and are about to be used for further 
analysis in next section. 

4. Additional damping ratio for the nonlinear oil damper 

In this paper, the different damping states also provide a good opportunity to probe the damping characteristics of passively- 
controlled steel building. This section presents simplified estimations aiming to quantify the additional damping ratios offered by 
added dampers. Before that, the oil dampers installed on every floor of the passively-controlled steel building are introduced, what’s 

Table 2 
Posterior probability of ARX models for varied orders.  

na … 6 8 10 12 14 16 18 20 … 

P(ϒ)(%)(EW) … 0.0 0.0 0.0 0.0 0.0 88.9 11.1 0.0 … 
P(ϒ)(%)(NS) … 0.0 0.0 0.0 0.0 0.0 92.7 7.3 0.0 …  

Fig. 3. Stabilization diagram for autoregressive with exogenous term (ARX) model (symbol diamond denotes stable mode, square denotes stable frequency & mode 
shape, circle denotes stable frequency & damping, cross denotes stable frequency, dotted line denotes frequency response function). 
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more, analytical model determination and parameters identification of nonlinear oil damper are conducted sequentially. Following 
that, the additional equivalent damping ratios supplied by the nonlinear oil damper braces are reckoned through the determined 
analytical models. In the end, the supplemental damping ratios provided by all the added dampers are deducted and evaluated by 
employing the identified damper parameters and the modes information derived from the system identification in above section. 

4.1. Analytical model for oil damper 

The oil dampers mounted on the steel building consist of a cylinder and a pair of pistons and are connected through the V-type steel 
braces between the adjacent floors. The interstices between the cylinder and pistons are stuffed by viscoelastic polymer to allow for 
easy production, the pair of pistons are installed in the U-type abutment which is fixed on the floor, while the central cylinder is 
mounted onto the V-type brace. The dimension of the nonlinear oil damper is 424 mm wide and 328 mm high, moreover, two types of 
nonlinear oil dampers with different orifice specifications and stroke limits of relief mechanism are utilized for 1st floor (Type I) and 
3rd to 8th floor (Type II), respectively. Detail construction of the nonlinear oil dampers are as illustrated in Fig. 5 and 6. 

The viscoelastic material shapes soft rings functioning to seal pressurized liquid, additionally, produces viscoelastic resisting force 
when the dynamic shear deformation enforces on sealing rings. Another primal member of resisting force supplied by the nonlinear oil 
damper stems from inner pressure differential of liquid when oil flows through the narrow orifice. Experimental tests have also been 
carried out to probe the behavior and hysteresis characteristic of both the viscoelastic soft rings and inner viscous liquid flowing 
through the orifice, respectively. According to the observations, hysteresis curves of the viscoelastic resisting force in the condition of 
the damper with hollow cavity create a shape of ellipse bearing an obvious axial tendency, which has a positive correlation with the 
excitation frequency. Though the simple Maxwell model is capable of simulating the elliptical loops, nevertheless, it discloses a sig-
nificant frequency dependence, which indicates a much larger bevel angle of the axis for a small increased frequency [52]. What’s 
more, hysteresis curves for the Maxwell model generally have a phenomenon of phase-lag for displacement at zero [53]. Overall, the 
dynamic behaviors and hysteresis loops of the nonlinear oil damper are much closer to that of a Kelvin-Voigt model. Therefore, a 

Table 3 
Estimates of modal parameters (EW).  

Records f1/Hz f2/Hz f3/Hz ξ1 ξ2 ξ3 

2003/5/26 0.892 2.885 5.399 0.031 0.051 0.061 
2005/8/16 0.86 2.803 5.262 0.03 0.05 0.065 
2011/03/09 0.852 2.761 5.4 0.028 0.046 0.069 
2011/04/07 0.759 2.4 5.61 0.018 0.037 0.076  

Fig. 4. Mode shapes of the building (EW).  

Fig. 5. Intact oil damper.  
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Kelvin-Voigt model is exploited to modeling the dynamic behaviors of the nonlinear oil damper, additionally, the accuracy of the 
Kelvin-Voigt model is also examined. 

The generalized Kelvin-Voigt model comprises of a spring and a nonlinear dashpot in parallel. Additionally, through the parallel 
combination, the model can allow for both the velocity-dependent and displacement-dependent elastic restoring force at the same 
time. Fig. 7 depicts the schematic diagram of the generalized Kelvin-Voigt model. Further, the mathematic expression of dynamic 
equilibrium equation for the oil damper brace can be written as follows: 

Fd(t)= kdxd(t) + sign(ẋd(t))cd|ẋd(t)|αd (19) 

Where Fd(t) and xd(t) are the axial force and displacement of oil damper brace, respectively, kd is the stiffness coefficient, cd is the 
viscous damping coefficient, αd is the velocity exponent and sign(⋅) is assigned as the signum function, The exponent coefficient αd 

renders an expression on the nonlinearity of the constitutive behavior and characterizes the design of orifice and viscous material used. 
For αd = 1, the damper force is linearly varied with the velocity. While for αd = 0, the hysteresis curves between damper force and 
displacement are rectangular, which is typical representation for friction damper [54]. For αd > 1, the nonlinear damper may generate 
large forces under high velocity demands, which produces large interaction force transferring to the connections and structure of the 
building, however, this phenomenon is absolute undesirable in seismic design applications. Therefore, αd ≤ 1 is mostly adopted for 
practical seismic applications. At the same time, a relief mechanism is usually introduced to restrict the maximum damper force 
enforced in extreme case, e.g. intense ground motion strikes. Thus, the maximum damper force of the oil dampers could be kept within 
a reasonable range. 

Structure health monitoring devices were also deployed on the nonlinear oil dampers, a load cell device was carried out on the tail 
of the nonlinear oil damper brace for the purpose of gauging the damper force. Displacement sensors were set up to gauge the axial 
relative displacement of the nonlinear oil damper in the track direction. Take an assumption that the stiffness of the rigid V-type braces 
is infinite and the corresponding deformation is negligible, consequently, the displacement of oil damper brace equals to the inter-story 
drift. Detailed distribution about the position of sensors were displayed in Fig. 8. Fig. 9 plots the recorded data of damper force verse 
displacement for damper brace on May 26th, 2003. 

4.2. Oil damper identification by particle Markov chain Monte Carlo 

The mathematical model for the nonlinear oil damper brace is crucial to be incorporated into structural computational models, and 
for successful application in design practice, as well as for model updating and prediction using vibration data in structural health 
monitoring. With the progress of the nonlinear oil dampers from theoretical designs into practical applications, reliable methods for 

Fig. 6. Schematic diagram of the nonlinear oil damper.  

Fig. 7. Schematic diagram of Kelvin-Voigt model.  
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nonlinear model identification are necessary to assess if the damper is working as designed and validate the expected performance in 
the steel building. To further explore the damping properties and hysteresis behaviors of the nonlinear oil dampers with viscoelastic 
polymer packing soft rings under earthquake excitations, Particle filter improved with Metropolis-Hastings algorithm is exploited to 
estimate the model parameters of the nonlinear oil damper, which can be represented mathematically by a nonlinear Kelvin-Voigt 
model. 

4.2.1. Particle Markov chain Monte Carlo methodology 
Consider the class of nonlinear dynamical systems modeled by the probabilistic model described in Fig. 10, in which xk denotes the 

Fig. 8. Detailed position distribution of sensors.  

Fig. 9. Force–deformation hysteresis loops.  

Fig. 10. Probabilistic model of generalized dynamical system.  
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unobserved states of the nonlinear dynamical system (or hidden variables) at time instant t = kΔt, and yk is assigned to be the ob-
servations of the system measured at time instant t = kΔt. While p(xk|xk− 1) expresses the state evolution function of the system, which 
is also referred to be as the Markovian transmission density. Besides, p(yk

⃒
⃒xk) signifies the emission density of the system. General 

problem encountered by the class of nonlinear dynamical systems is that estimation of the latent variables is demanded provided by the 
entire set of measurements y1:k. Henceforth, for any generic sequence y1:k implies (y1,y2,⋯,yk). This general difficulty can be tackled 
from a Bayesian perspective view through shifting the problem into determining an estimation of the conditional posterior p(xk

⃒
⃒y1:k). 

Following Bayes’ law, posterior distribution p(xk
⃒
⃒y1:k) can be written as: 

p(xk|y1:k)=
p(yk|xk)p(xk|y1:k− 1)

p(yk|y1:k− 1)
(20) 

However, the analytical solution for posterior density p(xk|y1:k) does not exist except for particular cases, hence, numerical 
approximation algorithms are developed to evaluate the density-weighted integrals from above equation. Among these stochastic 
simulation methods, Monte Carlo estimation methods provide a numerical way of calculating the density-weighted integrals using a set 
of samples instead of closed form computation of statistical quantities. Thus, the perplexed integrations are turned into the summation 
of the weighted samples that are distributed according to the desired target density. The accuracy, efficiency and convergence of the 
Monte Carlo methods have been verified by the central limit theorem [55]. Additionally, the error can be expressed as O(N− 1/2), where 
N is assigned as the dimension of samples. Since the error item has nothing to do with the dimensionality of the hidden variables x, 
Monte Carlo approximation methods have the superior advantage over practically other numerical algorithm for the case with large 
amount of latent variables in theory [56,57]. Nevertheless, it is not necessary in practice [58,59]. Besides, Monte Carlo approximation 
is capable of applying to nonlinear systems and non-Gaussian densities. 

In practice, it’s not very often able to sample directly from posterior density p(xk
⃒
⃒y1:k) due to the complicated functional form, 

which is especially the case for the target density of following properties: multivariate and non-Gaussian or even unknown [60]. While 
importance sampling provides a way to sample from importance density instead, where an approximate distribution is proposed as an 
importance distribution to draw samples from Ref. [55]. In this paper, sequential importance sampling (SIS) particle filters (PF) are 
implemented to estimate the posterior distribution of states and parameters of the oil damper based on the noisy measurements of the 
system. 

Consider the generic state space model of a dynamic system as follows: 

xk = g(xk− 1,wk) (21)  

yk = h(xk, vk) (22)  

where g( ⋅) is assigned as the state transition function and h( ⋅) represents the observation function. wk ∼ N(0,Qk) represents the process 
noise vector, which describes the model error including those parts of true transition function that are not modeled, noise in measured 
inputs and/or unmeasured inputs. vk ∼ N(0,Rk) is the measurement noise, used to model noise in measured observations. Moreover, 
noise is supposed to be additive, and be propagated through transition function and measurement equation. 

Determining the estimation of the conditional posterior p(xk
⃒
⃒y1:k) is desired, in order to realize that, first an importance density 

q(xk
⃒
⃒y1:k) was chosen with the same support and its maximum in roughly the same place as p(xk

⃒
⃒y1:k). Then, a weighting factor was 

defined and deducted by 

W(xk)≜
p(xk|y1:k)

q(xk|y1:k)
=

p(yk|xk)p(xk|y1:k− 1)

p(yk|y1:k− 1)

1
q(xk|y1:k)

(23) 

Since p(yk|y1:k− 1) is just a Bayesian normalization constant, the weight function W(xk) can be rewritten as 

W(xk)∝
p(yk|xk)p(xk|y1:k− 1)

q(xk|y1:k)
(24) 

In which ∝ represents a proportionality. the weight function W(xk) can then be evaluated recursively by way of solving the 
Chapman–Kolmogorov equation. Thus, above equation (24) becomes 

W(xk)∝
p(yk|xk)

∫
p(xk|xk− 1, y1:k− 1)p(xk− 1|y1:k− 1)dxk− 1∫

q(xk|xk− 1, y1:k)q(xk− 1|y1:k− 1)dxk− 1
=

p(yk|xk)
∫

p(xk|xk− 1)p(xk− 1|y1:k− 1)dxk− 1∫
q(xk|xk− 1, y1:k)q(xk− 1|y1:k− 1)dxk− 1

(25)  

Here, p(xk
⃒
⃒xk− 1, y1:k− 1) = p(xk|xk− 1) is under the assumption that state evolution equation is a first-order Markov process independent 

of the observations. 
Then, a set of random samples {x(i)

k− 1, i= 1,…,Ns} are sampled from the importance density q(xk− 1
⃒
⃒y1:k− 1), that is, x(i)

k− 1 ∼

q(xk− 1
⃒
⃒y1:k− 1). Ns is the number of particles. Propagating these samples through above equation (25) gets 

W̃
(i)
k =

∑Ns

i=1

p(yk|xk)p
(

xk

⃒
⃒
⃒x(i)k− 1

)
p
(

x(i)k− 1

⃒
⃒
⃒y1:k− 1

)

q
(

xk

⃒
⃒
⃒x(i)k− 1, y1:k

)
q
(

x(i)k− 1

⃒
⃒
⃒y1:k− 1

) =
∑Ns

i=1
W̃

(i)
k− 1

p(yk|xk)p
(

xk

⃒
⃒
⃒x(i)k− 1

)

q
(

xk

⃒
⃒
⃒x(i)k− 1, y1:k

) (26) 
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Generating samples {x(i)
k , i= 1,…,N} at time step k from q(xk

⃒
⃒
⃒x(i)

k− 1,y1:k), that is, x(i)
k ∼ q(xk

⃒
⃒
⃒x(i)

k− 1, y1:k) and approximating q(xk|y1:k)

using the set of Dirac delta function by q(xk|y1:k) = 1
Ns

∑N
i=1δ(xk − x(i)

k ).Thus, posterior distribution density can be expressed as 

p(xk|y1:k)=
∑Ns

i=1
W̃

(i)
k− 1

p
(

xk

⃒
⃒
⃒x(i)k− 1

)

q
(

xk

⃒
⃒
⃒x(i)k− 1, y1:k

) p(yk|xk)q(xk|y1:k)=
∑Ns

i=1

W̃
(i)
k− 1

Ns

p
(

x(i)k

⃒
⃒
⃒x(i)k− 1

)

q
(

x(i)k

⃒
⃒
⃒x(i)k− 1, y1:k

) p
(

yk

⃒
⃒
⃒x(i)k

)
δ
(

xk − x(i)k

)
(27) 

Normalizing W̃
(i)

k− 1
Ns 

by W(i)
k− 1 =

W̃
(i)

k− 1/Ns
∑N

i=1
W̃

(i)

k− 1/Ns

, so that they sum up to unity. 

Ultimately, the recursive weight update equation is derived as 

W(i)
k =W(i)

k− 1

p
(

x(i)k

⃒
⃒
⃒x(i)k− 1

)

q
(

x(i)k

⃒
⃒
⃒x(i)k− 1, y1:k

) p
(

yk

⃒
⃒
⃒x(i)k

)
(28)  

where p(x(i)
k

⃒
⃒
⃒x(i)

k− 1) is the predictive density (or transitional density) defined by the process equation (22) and p(yk

⃒
⃒
⃒x(i)

k ) is the likelihood 

function expressed by the measurement equation (22). The selection of the importance density q(x(i)
k

⃒
⃒
⃒x(i)

k− 1, y1:k) is crucial to the PF 

implementation, researches have validated that the optimal importance density is the one that minimizes the variance of the true 
weights, which is written as follows： 

q
(

xk

⃒
⃒
⃒x(i)k− 1, y1:k

)

opt
= q

(
xk

⃒
⃒
⃒x(i)k− 1, yk

)
=

p
(

xk

⃒
⃒
⃒x(i)k− 1

)
p
(

yk

⃒
⃒
⃒xk, x(i)k− 1

)

p
(

yk

⃒
⃒
⃒x(i)k− 1

) (29) 

the Equation q(xk

⃒
⃒
⃒x(i)

k− 1, y1:k)opt = q(xk

⃒
⃒
⃒x(i)

k− 1, yk) signifies that the selected importance density at current time step k depends on only 

xk− 1 and yk at previous time step. However, taking samples from q(xk

⃒
⃒
⃒x(i)

k− 1, yk) might still not be direct, giving rise to suboptimal choice 

of the transitional prior as the importance density function 

q
(

xk

⃒
⃒
⃒x(i)k− 1, y1:k

)
= p

(
xk

⃒
⃒
⃒x(i)k− 1

)
(30) 

By substituting above equation (30) into equation (28), the recursive weight update equation is reduced to 

W(i)
k =W(i)

k− 1p
(

yk

⃒
⃒
⃒x(i)k

)
(31) 

Thus, the estimated posterior density distribution at time step k equals 

p̂(xk|y1:k)=
∑Ns

i=1
W(i)

k δ
(

xk − x(i)k

)
(32) 

In addition, an estimation of marginal likelihood p(y1:k) can also be obtained through the above particle filter algorithm by 

p̂(y1:k) ≜ p̂(y1)
∏k

n=2
p̂(yk|y1:k− 1) (33) 

In which 

p̂(yk|yk− 1)=
1
Ns

∑Ns

i=1
Wk

(
x(i)k

)
(34) 

Overall, samples {x(i)
k , i= 1,…,N} at time step k drawn from q(xk

⃒
⃒
⃒x(i)

k− 1, y1:k) is actually generated by the transitional density, 

namely, x(i)
k ∼ p(xk

⃒
⃒
⃒x(i)

k− 1).Besides, the recursive updated weight is up to the likelihood function, the likelihood mostly used is a Gaussian 

distribution to gauge the difference between the estimates and the corresponding measurements. Alternatively, empirical likelihoods 
or numerical likelihoods can also be used [61,62]. 

Particle filters are able to obtain the whole posterior density distribution rather than allow for only estimations of first two mo-
ments, whereas a significant practical problem with particle filter is the degeneracy of the particles, which refers to that the weights of 
all except for a few are almost zero as a result of several iterations. The degeneracy can be mitigated through a resampling process. 
However, another problem of losing diversity among the particles emerges due to the resampling, as the resampled particles will have 
many duplicated particles with given high weight, which becomes severe under small process noise case [63,64]. 

Among these methods to rectify the sample impoverishment [36,56,65–67], Metropolis-Hastings sampling algorithm is capable of 
applying to large tail probabilities. Although computationally intensive, Markov Chain Monte Carlo (MCMC) method builds efficient 
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proposal distribution to generate ergodic chain whose stationary distribution follows the target PDF. In this research, posterior density 
p(x1:k

⃒
⃒y1:k) is the target PDF as in equation (28). It is usually impossible to sample directly from p(x1:k

⃒
⃒y1:k), MCMC algorithm builds 

proposal distribution to produce samples efficiently, which asymptotically follows the distribution of the target PDF when the number 
of Markov steps increases. 

Particle filter improved with Metropolis-Hastings (PFMH) algorithm [34–36] engages the estimates from particle filter, ̂p(x1:k
⃒
⃒y1:k), 

as a proposal distribution, which is not necessary to be accurate or trusty, but just roughly endures the target distribution, p(x1:k
⃒
⃒y1:k). 

Nevertheless, the marginal density of particles doesn’t have analytical expression, which is necessary for calculating the crucial MH 
acceptance ratio. In order to tackle this difficulty, a marginal likelihood p(y1:k) is adopted as sampler, whose support includes all 
random variables generated by above particle filter method. Overall, a PFMH algorithm is depicted as follows: 

T is assigned as the length of measurement, y. Since the initial state x1 follows the prior distribution rather than the target posterior, 
it consumes some time for the special designed Markov Chain to dive into high probability region of desired density, which usually be 
referred to “burn-in”. Therefore, in order to obtain a well-established Markov Chain [68], the acceptance ratio should be within range 
[0.15 0.4]. Furthermore, the objective of PFMH algorithm is to approximate the posterior p(x1:T|y1:T), by the way, also yields an 
approximation to its normalizing constant p(y1:T), which can be applied for Bayesian model updating, model class selection, and model 
averaging. In practice, parameters are generally the desired target, which can be estimated through an augmented state vector with 
parameters. 

4.2.2. Implementation 
The PFMH algorithm is carried out to the nonlinear oil dampers with states and parameters identification simultaneously through 

an augmented state vector with parameters approach. Prior information about dynamic characteristics of the oil damper can be 
leveraged to be at similar orders of magnitude allowing for visiting parameter space evenly for every parameter, thus enhance the 
model for PFMH implementation [69]. In this study, the scale of theoretical value for every parameter is utilized to establish the 
augmented state vector for parameters and state joint identification with PFMH. What’s more, the log transformation can guarantee 
parameters constrained to positive domain and the states value could be negative or positive. which achieves a nearly unconstrained 
optimization on the parameters. Thus, no additional instabilities could be induced into the identification process. 

X =

[

x, ẋ, log
( cd

100

)
, log

(
kd

1000

)

, log
(α

1

)]T

= [x1, x2, x3, x4, x5]
T (35) 

The discrete state transition equation can be expressed as 

g
(

xk, ẍg

)

= xk− 1 +

∫ kΔt

(k− 1)Δt
g
(

xk− 1, ẍg

)

+ wk (36)  

g
(

xk− 1, ẍg

)

=

⎡

⎢
⎢
⎢
⎢
⎣

ẋ1
ẋ2
ẋ3
ẋ4
ẋ5

⎤

⎥
⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎢
⎣

x2
(sign(x2)(Fd(t) − kdx1)/cd)

1/αd

0
0
0

⎤

⎥
⎥
⎥
⎥
⎦

(37) 

In a similar way, the discrete observation equation is expressed as 

h
(

xk, ẍg

)

=

[
x1
(sign(x2)(Fd(t) − kdx1)/cd)

1/αd

]

+ vk (38) 

The relative displacement x and the absolute acceleration ẍ+ ẍg, of the oil damper are the measurement vectors, which x is 
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observed from the LVDT as Fig. 8. As we can tell, one end of LVDT is set on the oil damper, and the other end is mounted on the floor, 
thus, the relative axial displacement of the oil damper in the track direction could be measured. ẍg is the records by the accelerometer 
set up on the corresponding floor. 

Assumption is made that the process noise of the system is incurred primarily due to noise in the input. thereupon, process noise 
covariance matrix (Q) is a 5 × 5 diagonal matrix, in which only q11 and q22 is non-zero. Likewise, the measurement noise covariance 
matrix (R) is a 2 × 2 diagonal matrix with non-zero entry r11 and r22, which are the variances of the corresponding measurement noise 
in the displacement and acceleration responses of the nonlinear oil damper, respectively. Moreover, it’s assumed that the measurement 
noises in the various sensors are independent with each other. Then, the prior distribution for each parameter is chose as follows at 
initial step: cd and kd are assigned to be normal distribution, parameter α is appointed to be uniform distribution, covariance for the 
corresponding process noise q11,q22, and measurement noise r11, r22 are assigned as inverse gamma distribution. Gaussian likelihood is 
exploited to gauge the difference between the estimates and the measurements. Thus, the likelihood can be conveyed as follows: 

p(yk|xk)=
1
̅̅̅̅̅
2π

√
R1

2
exp

[

−
(yk − yk)

2

2R

]

(39)  

where yk signifies the observation vector and yk is the corresponding predicted vector based on prior information. 

4.2.3. Results analysis 
In this study, the dynamic model of the nonlinear oil dampers is reckoned by the PFMH algorithm. Total 56 sets of the nonlinear oil 

dampers were put up in the building with eight sets of oil dampers on each floor, four sets of oil dampers in each direction. Two kinds of 
the dampers with the specification of different stroke limits and orifice are used for 1st floor (Type I) and 3rd to 8th floor (Type II), 
respectively. To test and quantify the contribution of the oil dampers to the building, both types of dampers are identified using the 
records mounted on themselves. 

The prior distribution for all parameters is on the basis of design, structural drawings and information available in common en-
gineering practice. Then, prior distribution for each parameter is assumed to be independent, and selected as follows: for 1st floor oil 
damper (Type I), cd and kd follow Gaussian distribution with mean μkd

= 1.6 kN/mm,μcd
= 0.12 kN ⋅ s/mm, additionally, a coefficient 

of variation is set up to be 20%; parameter α is assigned to be uniform distribution in [0, 1.5]; As for the 8th floor oil dampers (Type II), 
the parameter kd, cd, and αd are chosen as uniform distribution, i.e. kd ∼ U(1.5,2.5),cd ∼ U(0,0.5),αd ∼ U(0.5,2). The selected prior 
distributions for every parameter are illustrated as following Fig. 11. 

The posterior distribution of identified parameters of the Kelvin-Voigt model are displayed in Fig. 12, additionally, PFMH estimates 
of the parameters marginal posterior distributions are also shown in Fig. 11. From the observation of identification results, the dis-
tributions of parameters kd, cd, and αd are narrow and sharp, which indicate a relatively small variance of each identified parameter. In 
particular, parameter kd possesses the least variance. Besides, the posterior distributions of identified parameters also show that the 
developed PFMH method works well with nonlinear system without stuck to special particles, and is able to circumvent the particle 
depletion successfully. Moreover, the maximum a posteriori (MAP) estimation is employed to identify the model parameters kd, cd, and 
αd. Therefore, the MAP estimation of both specifications of the nonlinear oil damper are illustrated for longitudinal orientation (EW) in 
Table 4. 

The comparisons between estimates and corresponding measurements of the damper force time histories and the hysteresis loops of 
the 1st floor nonlinear oil dampers and 8th floor nonlinear oil dampers are drawn as illustrated in Fig. 13 (a) and (b), respectively. 
Besides, Normalized root mean squared error (NRMS) is utilized to measure the accuracy for the estimated or predicted response, 
which can be defined as follows: 

NRMS=
‖Fd(t) − F̂d(t)‖

‖Fd(t) − mean(Fd(t))‖
(40)  

where ‖•‖ represents the 2-norm function of a vector. Fd(t) denotes the measured observation vector, F̂d(t) is the corresponding 

Fig. 11. PFMH estimate of the parameter marginal posterior distributions.  
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posterior response estimates of the damper force. Here, the NRMS values vary between -Inf and 1, and the NRMS value approximate to 
0 indicates perfect fit with nearly zero error, the other way around represents bad fit. 

As can be observed from the identification results in Fig. 13 that the estimated damper responses are pretty consistent with the 
measurements, the NRMS values are 24.3% and 20.2% for the nonlinear oil damper I and II in longitudinal (EW) directions, 
respectively. Besides, the estimated hysteretic loops of the relative displacement versus the damper forces are also consistent with that 
of the recorded inter-story displacement versus the measured damper forces. The satisfactory consistency demonstrates that the Kelvin- 
Voigt model is able to basically capture the primary dynamic characteristics of the nonlinear oil damper. In addition, both states and 
parameters of the nonlinear damper model can be effectively identified by the developed PFMH approach, and the PFMH algorithm is 
robust with regard to different initial distribution. 

To further validate the identified nonlinear model and predict the model response of the nonlinear oil damper braces under other 
earthquakes, recorded data with respect to other three large earthquake records with a moment magnitude more than 7.0 are 
employed for analysis. The recorded seismic responses on 2005/08/16, 2011/03/09 and 2011/04/07 are exploited to validate the 
training models which are defined by the posterior parameters identified under May 26th, 2003 earthquake records. As its often the 

Fig. 12. Identified Kelvin-Voigt model parameter distribution for the nonlinear oil dampers in longitudinal direction (EW).  

Table 4 
Estimates of model parameters for oil dampers.  

Damper type Kelvin body Cd (kN•s/mm) Kd (kN/mm) αd 

Damper I Nonlinear 0.23 2.08 1.10 
Damper II Nonlinear 0.12 1.75 1.06  

Fig. 13. Identification or validation results of the nonlinear oil dampers for both Type I and II in longitudinal (EW) orientation.  
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case that identifying under different excitation signals yields different interpretations of the model, the final identified models are then 
evaluated by predicting the response of the nonlinear oil damper under the seismic recordings listed in Table 1. The comparison 
between the measured and predicted responses for nonlinear damper type II in longitudinal (EW) direction are then illustrated as an 
example in Fig. 14. 

4.3. Additional damping ratios provided by oil dampers 

To further probe damping characteristics and practical contribution of the nonlinear type of oil damper with viscoelastic polymer 
packing soft rings, an estimation approach for the equivalent damping ratios offered by the nonlinear oil dampers is presented here. In 
this research, the modal strain energy method is introduced to reckon the additional damping ratio supplied by the nonlinear oil 
dampers. First, suppose that a harmonic excitation force with a frequency that’s the same as the jth natural frequency of the building is 
imposed on the building. Second, the building’s deformation is proportional to the corresponding mode shape. Thus, the oil damper 
also vibrates in a harmonic motion, and the equivalent damping ratio of the j th mode provided by oil dampers following the modal 
strain energy method can be computed as follows: 

ζj,d =

∑nd

n=1
Ed

j,n

4πES,j
(41)  

where Ed
j,n is the energy dissipation of the nth oil damper under the jth mode in one cycle of motion, and 

∑nd
n=1Ed

j,n then denotes total 
energy dissipation of all oil dampers under the jth mode in one cycle of motion, nd is the total number of oil dampers brace, ES,j denotes 
the maximum strain energy deposited in the entire system under the jth mode in one cycle of motion, and can be calculated by letting 
the maximum deformation vector of the system in one cycle of motion equal to Δj = γφj, where φj denotes the jth mode shape which 
has been mass-normalized, and γ denotes amplitude factor, then the maximum strain energy deposited in the entire system under the 
jth mode in one cycle of motion can be presented as follows: 

ES,j =
1
2
ΔT

j KΔj =
1
2
γ2φT

j Kφj =
1
2
γ2ω2

j (42)  

where K denotes the stiffness matrix and ωj is the jth fundamental circular frequency of the system. 
From this, the corresponding maximum axial deformation between two ends of the nth oil damper brace is calculated as follows: 

xd
n,max = γφj,n (43)  

where φj,n is the axial deformation of the nth oil damper brace in the jth mass-normalized mode shape, and the superscript d means 
damper. 

Under the premise of assuming in a harmonic motion, formulate xd(t) = xd
n,max sin(ωjt) into Equation (19) yields: 

Fd,n(t) = kd,nxd
n,max sin

(
ωjt

)
+ Fn(t) (44) 

Fig. 14. Model evaluation of the nonlinear oil damper Type II under strong earthquake records in longitudinal (EW) orientation.  
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where Fn(t) is appointed to the viscous dashpot force imposed on nth oil damper, and is expressed as Fn(t) = Fn,max cos(ωjt). Since the 
viscous dashpot is the only element for Kelvin-Voigt model which can consume energy, so the energy dissipation Ed

j,n could be 
calculated as follows: 

Ed
j,n =

∫2π/ωj

0

Fn(t)ẋd(t)dt=
∫2π/ωj

0

Fn(t)
(

Fn(t)
cd,n

)1/αn

dt (45)  

where ẋd(t) is the velocity of the nth nonlinear oil damper brace, cd,n and αn are assigned as the damping coefficients and exponent 
coefficient of velocity of viscous dashpot of the nth oil damper brace, respectively. The solution for Equation (45) can be obtained 
analytically, that is 

Ed
j,n = 2

̅̅̅
π

√ Γ
(

1 + 1
2αn

)

Γ
(

3
2 +

1
2αn

)
F1+1/αn

n,max c− 1/αn
d,n

ωj
(46) 

in which Γ denotes the gamma function. Moreover, from Kelvin-Voigt model Equation (19), Fn,max equals to Fn,max = cd,nωαn
j (xd

n,max)
αn 

under the jth mode in one cycle of motion. 
Substituting Equations (42) and (46) into Equation (41) yields 

ζj,d =

∑nd

n=1

Γ(1+ 1
2αn)

Γ(3
2+

1
2αn)

cd,n
(
ωjγφj,n

)αn+1

̅̅̅
π

√
γ2ω3

j
(47) 

As the viscosity coefficients cd,n and the velocity exponent coefficients, αn for all nonlinear oil dampers were determined by PFMH, 
and the significant modes were also available in section 3.2. Thus, the supplemental damping ratios supplied by viscous damper braces 
can be estimated following above approach by Equation (47). Since the specification, total number, and allocation of the nonlinear oil 
dampers in transverse orientation (NS) are the same with the longitudinal orientation (EW), the supplemental equivalent damping 
ratios in the longitude (EW) orientation for strong earthquake records are estimated and listed in Table 5. 

From the results in Table 5, additional equivalent damping ratios of the nonlinear oil damper brace for the 1st and 2nd mode are 
around 1% and 2%, respectively. While the estimated additional equivalent damping ratio varies significantly for the 3rd mode. Since 
oil dampers were damaged for the 1st floor and had severe oil leakages for the third and fourth floors during Great Japan earthquake on 
Mar 11th, 2011, the estimated additional equivalent damping ratios of recording 2011/04/07 are quite small for the 1st and 2nd mode. 
At the same time, the structural seismic responses of recording 2011/04/07 were the largest among the recorded four strong earth-
quakes, which indicated that the nonlinear oil damper braces effectively mitigate seismic vibration of the steel building. The additional 
equivalent damping ratio contribution of the nonlinear oil dampers on each floor is illustrated in Fig. 15. 

As can be observed from the results in Fig. 15, the equivalent damping ratio offered by oil dampers on first floor contributes to most 
of the total additional equivalent damping ratio, while the oil dampers on other floors (3F–8F) account for a smaller proportion. 
Among them, the oil dampers on first floor account for more than 77% of the 1st mode additional equivalent damping ratio, and more 
than 58% of the 2nd mode additional equivalent damping ratio. This is mainly due to the large inter-story deformation of the first floor 
and the high energy consumption of the nonlinear oil dampers on the first floor. For the first-order effective damping ratio contri-
bution, the proportion of the oil damper gradually decreases with the increase of the floor, while in the second and third-order effective 
damping ratio contributions, the proportion of the high floor increases significantly. Nevertheless, due to the second-order and third- 
order modal responses are relatively small, and the damping energy consumption of the high-floor oil damper is limited, the oil 
dampers on high floors have less significant effect on the seismic response of the steel building. 

5. Conclusions 

This paper investigates a type of nonlinear oil damper with viscoelastic materials implemented to an eight-story passively- 
controlled steel building. The instrumented steel building has experienced over 21 earthquakes since it was built in 2003 including four 
intense earthquake records with a moment magnitude more than 7.0. System identification was exploited to the recorded actual 
earthquake responses to extract dynamic properties of the whole building. Besides, parameters of the nonlinear oil damper model were 
identified. Furthermore, a simplified estimation procedure of equivalent damping ratios provided by the nonlinear oil dampers is 
proposed, and calculation formulas of the additional damping ratio provided by oil dampers are deduced using modal strain energy. 

From the identified dynamic characteristics of the passively-controlled eight-story steel building, natural frequencies for recording 
2003/5/26, 2005/8/16 and 2011/3/9 are stable over the eight-year period studied, so are the first two damping ratio, which indicates 
that the global dynamic properties had no significant change for the steel building during this period before 3•11 earthquake. 
Nevertheless, the identified first two fundamental frequency and damping ratio decrease significantly for recording 2011/4/7, which 
laid on two main reasons: first, the connections and non-structural elements may undergo some micro damage which can’t be 
inspected by visual; second, the decrease of both frequency and damping ratio indicates that the oil damper braces not only provide 
supplemental damping, but also offer additional stiffness to the steel building. 

The parameter identification results also reveal that Kelvin-Voigt model basically captures the primary dynamic characteristics of 
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the nonlinear oil damper. In addition, both states and parameters of the nonlinear damper model can be effectively identified by the 
improved PFMH approach through state augmentation in this case. Nevertheless, although the PFMH algorithm is robust with regard 
to different initial condition, the augmented state approach may aggravate the sample impoverishment problem for even higher 
dimension parameter identification. 

The estimated effective damping ratio of oil damper presented in this paper shows that additional equivalent damping ratios of the 
nonlinear oil damper brace for the 1st and 2nd mode are around 1% and 2%, respectively. Besides, the equivalent damping ratio 
offered by oil dampers on first floor contributes to most of the total additional equivalent damping ratio due to the large inter-story 
deformation of the first floor and the high energy consumption of the nonlinear oil dampers on the first floor. As the oil dampers on 
other floors (5F–8F) account for an even smaller proportion, the first-order damping ratio of main frame of the steel building is 
approximately 0.017. 
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Table 5 
Equivalent damping ratio of oil damper braces by Kelvin-Voigt model.   

Mode 2003/05/26 2005/08/16 2011/03/09 2011/04/07 

ζj,d (%) 1st mode 0.96 1.18 1.17 0.14 
2nd mode 1.91 2.14 2.28 0.83 
3rd mode 1.45 6.01 0.85 1.02  

Fig. 15. The additional equivalent damping ratio contribution of the nonlinear oil damper braces on each floor.  
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