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A B S T R A C T   

Engineering applications of swarm intelligence optimization algorithms have been widely employed to identify 
structural systems and damages owing to their merits of simplicity, flexibility, robustness etc., while they often 
suffer from the defects of slow efficiency, premature convergence or even trapping into local optima in solving 
the inverse problem of nonlinear optimization-based parameter identification with partial noise-contaminated 
measurements. To deal with this issue, an adaptive hybrid Jaya and differential evolution (AHJDE) algorithm 
is proposed based on Jaya algorithm and differential evolution (DE) by effectively combining the advantages of 
both algorithms. In the proposed AHJDE, four improvements including adaptive mutation strategy, dynamic 
mutation and crossover operators, sampling-based resizing search space and linear resizing population size are 
integrated. The effectiveness of the proposed method is verified using a numerical example of 20-DOF linear 
system by comparing its performance with particle swarm optimization, modified artificial bee colony algorithm, 
clustering tree seeds algorithm, improved butterfly optimization algorithm etc. considering known mass case and 
unknown mass case. In addition, numerical studies on a nonlinear single degree-of-freedom system with classical 
Bouc-Wen hysteretic model and improved Bouc-Wen model are implemented to investigate the applicability in 
the field of nonlinear system identification. Finally, a series of experimental tests on a five-story steel frame 
structure are conducted in the laboratory to further validate the performance of the proposed approach in 
damage identification. Identification results demonstrate the proposed AHJDE can accurately and effectively 
identify the unknown system parameters and damages with limited sensors and noise-polluted responses.   

1. Introduction 

Continuous health monitoring and early damage identification for 
the existing and aging infrastructure, such as super high-rise buildings, 
large-span bridges, concrete dams, underground comprehensive pipe 
gallery, nuclear power plants, are significantly necessary since the 
sudden failures of such major civil structures may result in great casu
alties and property loss. Therefore, in the past few decades, a consid
erable number of identification methods have been developed and 
utilized to identify structural parameters and damages, which provides a 
solid foundation for safety assessment, maintenance arrangement and 
prediction of future service life, etc. 

From the mathematical view, structural system identification can be 
transformed into an optimization problem in which the objective is to 
determine the optimal stiffness, mass, damping and other system pa
rameters by minimizing the discrepancy between the estimated re
sponses from the numerical model and the measured responses from the 
real system. Some comprehensive reviews on the advancement of 
structural identification methods have been published [1–3], and 
considerable frequency-domain and time-domain identification 
methods have been proposed. For frequency-domain methods, various 
modal properties extracted from the structural dynamic responses, such 
as natural frequencies [4], mode shapes [5], curvature mode shapes [6], 
frequency response functions [7], model flexibility [8], were 
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successfully applied into identification of structural parameters espe
cially for the case of absent measurement of input excitations. However, 
most of these methods are generally unreliable for structural identifi
cation due to their inherent drawbacks that local or minor damages of 
structural elements may not lead to relatively obvious changes in natural 
frequencies, and the environmental temperature variation possibly 
causes more changes in frequencies than damage did. Mode shapes are 
more sensitive to small damages than frequencies, which is beneficial to 
improve identification accuracy, but high mode shapes are quite diffi
cult to be accurately acquired owing to recorded signals are unavoidably 
polluted by noise [9]. 

On the contrary, identification methods in time domain directly use 
the raw measurements (accelerations, velocities, displacements, strains, 
etc.) recorded by sensors installed on the structures. Diverse time 
domain-based approaches including the recursive least-square method 
[10], the enhanced sensitivity method [11], the maximum likelihood 
method [12], the particle filter method [13], the extended Kalman filter 
method [14], the constrained unscented Kalman filter method [15] had 
been successfully employed. For instance, Lu et al. [16] proposed a time 
domain sensitivity-based approach to identify breathing crack, and 
proved its accuracy and effectiveness with three numerical examples. 
Lei et al. [17] developed a new method of unscented Kalman filter with 
unknown input to simultaneously identify nonlinear structural param
eters and unknown input force. Although most of aforementioned 
methods are derived from sound mathematic theories, a good initial 
estimation of the unknown variables and proper gradient information of 
the objective function are usually required. Besides, these classical 
methods are prone to be sensitive to noise and trapped into the local 
optimum because of their point-to-point search strategy. In contrast, 
non-classical methods, e.g., machine learning techniques and heuristic 
optimization algorithms have received increasing attention recently 
owing to their advantages of simplicity, flexibility, robustness and no 
derivation. Neural network is an important part of machine learning 
techniques, and its applications in structural identification have been 
widely reported. Pathirage et al. [18] applied the deep sparse autoen
coder to identify the damages of a prestressed concrete bridge in the 
laboratory. Ding et al. [19] used sparse deep belief network based on 
arctan to identify damage locations and severities with limited modal 
data. Neural network-based methods have strong capacities of nonlinear 
mapping, robustness, self-learning and self-adapting, while numerous 
training samples and demanding computational time are required to 
train the network before identification of structural system. 

Compared with classical optimization methods, population-based 
stochastic search algorithms are more robust to solve the high dimen
sional and complex optimization problems since there are no re
quirements for the good initial guess of parameters and the behaviors of 
objective function (monotonicity, derivability, modality). Therefore, 
swarm intelligence optimization algorithms, such as genetic algorithm 
(GA) [20], particle swarm optimization (PSO) [21], differential evolu
tion (DE) [22], modified artificial bee colony algorithm (modified ABC) 
[23], big bang-big crunch optimization algorithm (BB-BC) [24], wolf 
algorithm [25], teaching–learning-based optimization algorithm 
(TLBO) [26], water strider algorithm [27], clustering based tree seeds 
algorithm (C-TSA) [28] have been increasingly developed and employed 
in recent years. For example, Kaveh et al. [29] applied seven swarm 
optimization algorithms to optimize plane steel frame structures. Wang 
et al. [30] utilized four different evolutionary algorithms including 
gradient search, GA, PSO, hybrid PSO and gradient search to identify 
structural parameters. Zhou et al. [31] developed an improved butterfly 
optimization algorithm (IBOA) for structural identification. However, 
for most of these heuristic algorithms, trial-and-error strategy is gener
ally adopted to select controlling parameters, which inevitably wastes 
much computing time. Instead, a novel parameter-free swarm intelli
gence algorithm, named Jaya algorithm, was proposed by Rao to solve 
constrained or unconstrained optimization problems [32]. Jaya algo
rithm has reasonable optimization idea that the offspring will move 

toward the best-so-far solution and meanwhile away from the worst 
solution. Then, the quality of solutions will be continuously improved. 
Diverse real-world applications of Jaya algorithm have been presented, 
such as training neural network [33], controller design of automatic 
generation control [34], size optimization of truss structures [35], in
verse identification of concrete dams [36], structural damage identifi
cation [37]. Nevertheless, as an emerging algorithm, Jaya still suffers 
from the limitations of slow convergence rate and easiness of being 
trapped into local optimal solution due to its relatively simple mutation 
mechanism, especially for solving multimodal and multi-dimensional 
optimization problems. 

To improve the performance of Jaya algorithm, some attempts have 
been made in recent years. For instance, Rao and Saroj [38] proposed a 
self-adaptive multi-population Jaya algorithm by dividing the popula
tion into multiple sub-populations. Yu et al. [39] constructed an 
improved Jaya algorithm by introducing self-adaptive weight, 
experience-based learning strategy and chaotic elite learning strategy. 
Besides introducing new improvement techniques to further explore the 
merits of Jaya algorithm, hybridizing two or more algorithms simulta
neously provides an alternative with the attractive concept of effectively 
combing individual advantages of different algorithms with following 
successful applications, such as hybrid bat algorithm and DE [40], 
hybrid butterfly optimization and DE algorithm [41], etc. Indeed, it is 
important for a heuristic algorithm to achieve the balance between 
exploring new regions in the predefined search domain and utilize the 
existing information. Jaya algorithm has relatively poor global explo
ration capacity since individuals in the population are guided by the 
best-so-far solution. Contrary to Jaya, DE has stronger global search 
ability and more variants of mutation schemes. Thus, Jaya and DE have 
already been hybridized and reported in some latest published papers, 
such as hybrid Jaya and DE algorithm [42], hybrid adaptive DE and Jaya 
algorithm [43], competitive hybrid DE and Jaya algorithm [44], hybrid 
Jaya algorithm with double coding [45], modified Jaya algorithm [46]. 
However, these algorithms still experience some issues to be addressed. 
Only one mutant operator of DE, i.e., DE/rand/1 or DE/rand/2, is hy
bridized with Jaya mutation, which may limit the performance of hybrid 
algorithm due to the relatively simple mutation operations. In some 
existing hybrid schemes, the mutation operations of DE and Jaya are 
simply implemented in sequence, resulting in more computational re
sources inevitably consumed. Besides, the scaling factor, crossover 
operator, population size, search space limits of unknown parameters 
are usually constants during the searching process, which is unfavorable 
to computational efficiency and accuracy. 

In consideration of these limitations, this paper proposes a novel 
hybrid algorithm, i.e., adaptive hybrid Jaya and differential evolution 
(AHJDE) algorithm based on four different improvement techniques to 
solve structural system identification and damage detection problem. 
The main contributions of this paper are the suggestion of a powerful 
AHJDE algorithm. First, an adaptive updating scheme is developed 
based on mutation pool strategies, namely, DE/rand/1 and DE/rand/2 
in exploration group, DE/current-to-best/1 and Jaya mutation in 
exploitation group. Such an adaptive mutation strategy is beneficial to 
effectively combine the local exploitation capability of Jaya algorithm 
and the global exploration capability of DE in different stage. Second, 
dynamic mutation and crossover operators are introduced to keep the 
trade-off between the global and local search abilities. Third, a 
sampling-based resizing search space method is proposed to effectively 
narrow the search limits of unknown parameters. Fourth, a linear 
resizing population size technique is applied to continually eliminate 
some individuals with low quality from the current population to 
accelerate convergence rate and reduce the risk to be trapped into local 
optimum. The performance of the proposed AHJDE algorithm in iden
tifying structural parameters and damages with partial noise-polluted 
acceleration measurements is investigated by not only numerical sim
ulations on the linear and nonlinear systems but also experimental tests 
on a laboratory-five-story steel frame structure. 
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2. Problem formulation 

Identification of structural models or damages can be treated as an 
optimization problem solved by optimization algorithms, as shown in 

Fig. 1. The objective is to find the best parameters θ
⌢ 

by minimizing the 
discrepancy between the measured structural acceleration responses 

ü(tk) and the estimated acceleration responses ü
⌢(

θ
⌢
, tk

)
as follows 

obj(θ̂) =
∑nsen

i=1

∑ntime

k=1

⃦
⃦
⃦̂̈ui(θ̂, tk) − üi(tk)

⃦
⃦
⃦

2

E
(

ü2
i (tk)

) (1)  

where θ
⌢
=

{

θ⌢
1 , θ⌢

2 , ..., θ
⌢

n

}

denotes system’s parameters including un

known structural parameters, stiffness, damping and mass, and 
nonlinear hysteretic parameters, etc.; nsen and ntime stand for the number 
of measurements and recorded samples, respectively; ‖ ⋅ ‖ means the 

Euclidean norm; E
(

ü2
i (tk)

)

= 1
ntime

∑ntime
k=1 ü2

mea(tk) represents mean squared 

value of the i-th response history. Herein, the inverse formation of 

objective function is employed as the fitness function fit
(

θ
⌢)

fit
(

θ
⌢)

=
1

ε + obj
(

θ
⌢) (2)  

where ε is set as a small value to avoid a potential zero denominator. If 
the estimated system parameters agree well with the actual value, 

namelyobj
(

θ
⌢)

= 0, the maximum fitness value will be equal toε− 1. 

The solution whose fitness function value is closer to ε− 1 is better, which 
is beneficial to obviously reflect the quality of the identified solution. 
The problem of structural system identification is summarized as follows 

maximize fit
(

θ
⌢)

, θ
⌢
=

{
θ
⌢

1
, θ

⌢

2
, ..., θ

⌢

n

}

s.t. θ
⌢
∈ Γ, Γ =

{

θ
⌢
: θmin

j ⩽ θ
⌢

j
⩽θmax

j , ∀j = 1, 2, ...,Dim
} (3)  

where Dim is the number of unknown parameters to be identified; Γ 
means the Dim-dimensional search domain; θmin

j and θmax
j stand for the 

lower and upper limits of the j-th parameter. 
By Eqs. (1–3), structural system identification can be formulated as a 

linearly constrained muti-dimensional nonlinear optimization problem, 
which is a typical inverse problem with limited input and output signals 
to identify considerable number of unknown parameters. In this case, 
some traditional optimization approaches may have difficulties in 
identifying linear and nonlinear structural models due to their weak 

search capacity and poor robustness to noise. Therefore, it is necessary 
to develop more powerful swarm intelligence algorithms. 

3. Identification algorithms 

In this section, the basic Jaya algorithm and differential evolution 
are introduced, respectively. Subsequently, the adaptive hybrid Jaya 
and differential evolution algorithm is proposed by effectively 
combining Jaya and DE. 

3.1. Jaya algorithm 

Jaya algorithm is a novel population-based stochastic optimization 
algorithm, proposed by Rao in 2016. A distinctive feature is that Jaya 
algorithm does not need any algorithm-specific parameters, except two 
common parameters, i.e., population size and number of iterations. The 
pseudo-code of Jaya algorithm is presented in Fig. 2. Jaya algorithm can 
be mainly divided into three phases, i.e., initialization phase, iteration 
phase and output phase, elaborated as follows. 

Initialization phase: Like other popular swarm intelligence algo
rithms, Jaya algorithm randomly generates an initial population (x1, x2,

..., xNP) over the entire search domain 

xj,i = xL
j,i + rand ×

(
xU

j,i − xL
j,i

)
,

i = 1, 2, ...,NP; j = 1, 2, ...,Dim
(4)  

where xj,i represents the j-th variable of the i-th solution; xU
j and xL

j stand 
for the upper and lower limits ofxj; rand means a random number taken 
from the range of [0, 1]; NP and Dim denote the size of population and 
the number of unknown variables, respectively. 

Iteration phase: The update operation is inspired by the concept that 
offspring ought to move towards the optimal solution and meanwhile 
escape from the inferior solution. The new solution vi for the i-th indi
vidual xi is generated by following equation 

vj,i,G = xj,i,G + rand1 ×
(
xj,best,G −

⃒
⃒xj,i,G

⃒
⃒
)
− rand2 ×

(
xj,worst,G −

⃒
⃒xj,i,G

⃒
⃒
)

(5)  

where 
⃒
⃒xj,i,G

⃒
⃒ represents the absolute value ofxj,i,G; xj,best,G and xj,worst,G 

stand for the value of the j-th variable for the best solution and the worst 
one at the G-th iteration, respectively; rand1 and rand2 mean two 
different random numbers in the range of [0, 1]. The second item in Eq. 
(5) rand1 ×

(
xj,best,G −

⃒
⃒xj,i,G

⃒
⃒
)

denotes the tendency of the new solution 
to approach the best solution, while the third item rand2 ×

(
xj,worst,G −

⃒
⃒xj,i,G

⃒
⃒
)

shows a trend to escape from the worst solution. 
Then, greedy selection mechanism is conducted to determine the 

original individual xi or updated solution vi will survive to the next 
iteration by comparing their fitness value as follows 

Individuals in the 
population

Start

Mathematical 
model

Estimated 
responses

Convergence ?

Yes

Output best solution

No

Actual model Measured 
responses

Identification 
error

Optimization 
algorithms

update

Fig. 1. The process of structural system identification using optimization algorithms.  
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xi,G+1 =

{
vi,G if fit

(
vi,G

)
<fit

(
xi,G

)

xi,G otherwise (6)  

where fit
(
xi,G

)
and fit

(
vi,G

)
denote the fitness function values of xi and vi 

at the G-th iteration. From Eq. (6), solution with better fitness value will 
be selected for the (G + 1) iteration. 

Output phase: The iteration phase will be continually performed 
until the convergence criterion is satisfied or the predefined maximum 
iteration number is reached. Finally, the identified best solution and its 
optimal value are obtained. 

3.2. Differential evolution 

Differential evolution (DE) is a popular swarm intelligence algo
rithm, first proposed by Storn and Price to solve real parameter opti
mization problem [47]. DE has been widely applied into various fields 
owing to its advantages of simple structure, easy implementation, fast 
convergence, strong robustness. In DE, search direction is guided by the 
cooperation and competition among individuals in the population. 
There are four main procedures of DE, i.e., initialization, mutation, 
crossover, and selection, roughly described as follows. 

Initialization: The initial population (x1, x2, ..., xNP) is randomly 

generated within the search bounds 
[
xL

j , xU
j

]
using Eq. (4). Each indi

vidual is considered as a possible solution. 
Mutation: Individual variation is realized by differential strategy, 

which is an effective way to produce new feasible solutions. In the basic 
mutation operation DE/best/1 of DE, two different individuals xri

2 ,G and 
xri

3 ,G are randomly chosen from current population. Then, individuals 
generate a difference vector by subtracting each other, multiply a mu
tation operator F and add to a third individual vectorxri

1 ,G
. Herein, 

several commonly referred mutation strategies are listed as below [48] 

DE
/

rand
/

1 : vi,G = xri
1 ,G

+ F
(

xri
2 ,G

− xri
3 ,G

)
(7)  

DE
/

best
/

1 : vi,G = xbest,G + F
(

xri
1 ,G

− xri
2 ,G

)
(8)  

DE
/

rand
/

2 : vi,G = xri
1 ,G

+ F
(

xri
2 ,G

− xri
3 ,G

+ xri
4 ,G

− xri
5 ,G

)
(9)  

DE
/

best
/

2 : vi,G = xbest,G + F
(

xri
1 ,G

− xri
2 ,G

+ xri
3 ,G

− xri
4 ,G

)
(10)  

DE
/

current − to − rand
/

1 : ui,G = xi,G + F
(

xri
1 ,G

− xi,G + xri
2 ,G

− xri
3 ,G

)

(11)  

DE
/

current − to − best
/

1 : vi,G = xi,G + F
(

xbest,G − xi,G + xri
1 ,G

− xri
2 ,G

)

(12)  

where xi,G, vi,G and ui,G stand for the target individual, mutant individual 
and trial individual, respectively; ri

1,ri
2,ri

3, ri
4 and ri

5 are mutually 
different integers randomly chosen from the range of [1, NP], and they 
are also different from the base index i, namely 
r1 ∕= r2 ∕= r3 ∕= r4 ∕= r5 ∕= i; xbest,G means the identified best-so-far solu
tion with the maximum fitness value at the G-th iteration; F represents 
mutation operator generally taken from the range of [0, 1], which scales 
the amplification of the differential vectors. It is noted that DE/current- 
to-rand/1 does not involve a binomial crossover. 

Crossover: Binomial crossover operation is implemented to improve 
the diversity of the population following the mutation operation. The 
mutated individual vi,G mixes its components with the original target 
individual xi,G to generate a trial individualui,G. If a randomly produced 
number within the range [0, 1] is less than predefined crossover oper
atorCR, binomial crossover will be performed as follows 

uj,i,G =

{
vj,i,G if

(
randj[0, 1]⩽CR

)
or(j = jrand), j = 1, 2, ...,Dim

xj,i,G otherwise (13)  

where CR is crossover operator; randj[0, 1] denotes a random number 
within the range [0, 1]; jrand means a random integer from [1, Dim] to 
ensure trial individual ui,G and xi,G are different. 

Selection: Selection operation is performed to make the better solu
tion between the target (parent) individual xi,G and the trial (offspring) 
individual ui,G survive to the next iteration as described in Eq. (6). 

Mutation, crossover, selection operations are repeated until 
convergence criterion or number of maximum iterations are satisfied. 
Taking the mutation strategy of DE/best/1 as example, the pseudo-code 
of DE is shown in Fig. 3. 

3.3. Adaptive hybrid Jaya and differential evolution algorithm 

To improve the performance of Jaya algorithm, an adaptive hybrid 
Jaya and DE algorithm is proposed by introducing adaptive mutation 
strategy, dynamic mutation and crossover operators, sampling-based 
resizing search space, linear resizing population size. 

3.3.1. Adaptive mutation strategy 
It is necessary for swarm intelligence algorithms to focus on different 

tasks in different stages. More specifically, a powerful exploration ca
pacity is desired to take any promising solution into consideration in the 
early stage. As the population evolves, a strong exploitation capacity is 

Initialization phase 
Define the population size NP, number of parameters to be identified Dim, termination criterion, maximum 
iterations number Max_Iter 
Randomly generate an initial population with Eq. (4) 
Define fitness function fit 

Iteration phase 
Initialize iteration number G = 1 
While termination criterion is not reached do 

Evaluate the fitness value for all individuals in the population 
Sort fitness values and determine the best individual ,best Gx  and the worst one ,worst Gx  
For individual i = 1 to NP do 

Produce two random number 1rand  and 2rand  uniformly distributed over the interval [0, 1] 
Update solution ,i Gx  using Eq. (5) 

End for 
Evaluate the fitness value of the new updated solution ,i Gv  
Greedy selection strategy to keep better solution with Eq. (6) 
G = G + 1 

End while   
Output phase 

Output the identified best solution and its optimal value 

Fig. 2. The pseudo-code of Jaya algorithm.  
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expected to quickly refine the quality of the best solution. An adaptive 
updating scheme is proposed based on the strategies of mutation pool, 
which has two different groups, i.e., the exploration group Group1 and 
the exploitation groupGroup2, expressed as Eqs. (14) and (15), 
respectively 

Group1 =

⎧
⎪⎨

⎪⎩

vi,G = xri
1 ,G

+ F
(

xri
2 ,G

− xri
3 ,G

)
, if rand(0, 1)<0.5

vi,G = xri
1 ,G

+ F
(

xri
2 ,G

− xri
3 ,G

+ xri
4 ,G

− xri
5 ,G

)
, otherwise

(14)  

where Group1 consists of two mutation strategies of DE/rand/1 and DE/ 
rand/2 with strong exploration capability; rand(0,1) means a random 
number taken from the range of [0, 1]. 

Group2 =

⎧
⎨

⎩

vi,G = xi,G + F
(

xbest,G − xi,G + xri
1 ,G

− xri
2 ,G

)
, ifrand(0, 1)<0.5

Jaya mutation, otherwise

(15)  

where Group2 has two different mutation strategies of DE/current-to- 
best/1 and Jaya mutation with powerful exploitation capacity. 

Different mutation strategies are selected by adjusting the proportion 
of exploration or exploitation groups, which can be stated as follows 

Mutation pool=

⎧
⎨

⎩

Select one strategy from ​ Group1,if rand(0,1)>
Iter

Max Iter
Select one strategy from ​ Group2,otherwise

(16)  

where Iter indicates the number of consumed iterations; Max Iter means 
the total number of iterations when the computation is terminated. 

It is noted from Eq. (16) that mutation strategies in Group1 and 
Group2 are selected with higher probability in the early stage and in the 
later evolution stage, respectively. Group1 has favorable global explo
ration capacity while Group2 features outstanding local exploitation 
capacity. In this regard, the global and local search ability can be 
guaranteed. 

3.3.2. Adaptive operators 
The optimization performance of DE is affected by mutation operator 

F and crossover operator CR. To avoid unpleasant results owing to 
manually selecting improper parameters, dynamic operators are pro
posed and utilized. 

Adaptive mutation operator F varied with the iteration number is 
expressed as 

F = F0 × 2μ, μ = e1 − Max Iter
Max Iter+ 1 − Iter (17)  

where F0 is a constant, whose value is set as 0.4. F is equal to maximum 

value 0.8 at the first iteration, which is conductive to achieve diversity of 
seeking directions to alleviate the probability of premature convergence. 
Then, mutation operator F gradually decreases as the iteration number 
increases, which is beneficial for converging to the best optimum. 

Unlike a fixed value in original DE algorithm, adaptive crossover 
operator CR of mutation individual vi is developed associated with its 
fitness value as follows 

CRi = CRmax +(CRmax − CRmin) ×
fmin − fi

fmax − fmin
(18)  

where CRmin and CRmax stand for the minimum and maximum values of 
crossover operator,CRmin = 0.3, CRmax = 0.8; fmin and fmax indicate 
the fitness values of the worst and best individuals in the current pop
ulation, respectively. By Eq. (18), each mutation solution vi has its 
corresponding crossover operator CRi within the range 
of[CRmin, CRmax]. Large values of CR are obtained for mutant in
dividuals with bad fitness, which decreases their possibility of being 
restored to the next iteration. On the contrary, small values of CR are 
adopted for mutant individuals with good fitness, which increases their 
possibility of surviving to the next iteration. Compared with fixed value, 
adaptive operator is beneficial to reserve better mutant individuals and 
remove worse ones. 

3.3.3. Sampling-based resizing search space 
Swarm intelligence algorithms may suffer from slow convergence 

rate and premature convergence if given a relatively large search space, 
especially for the complex multi-peak optimization problems. Obvi
ously, reducing initial search limits can improve identification accuracy 
and efficiency. Accordingly, a sampling-based resizing search space 
method is proposed to effectively narrow the boundaries of variables 
and meanwhile without missing the global optimum. 

Sampling methods, such as Latin hypercube sampling, Halton se
quences, Faure sequences, Niederreiter sequences, can roughly repre
sent and infer the information of fitness surface by implementing small- 
scale sampling tests. Herein, a popular low-discrepancy sequence, Sobol 
sequences, is employed to generate quasi-random sequences with the 
uniform space-filling properties for exploring the multi-dimensional 
solution domain. Compared with traditional pseudo-random se
quences, Sobol sequences can sample Dim-dimensional search spaces 
more evenly. Nowadays, Sobol sequences have been widely utilized in 
computational finance [49], initialization of heuristic algorithm [50], 
sensitivity analysis [51], etc. 

Sobol sequences are generated based on a set of ‘direction 
numbers’λ1,λ2⋅⋅⋅, which can be defined asλi = mi

2i . mi is the odd positive 
integer, less than2i. To obtain direction numbersλi, a primitive poly
nomial of degree p is introduced, written as following form 

ψ(d) = dp + c1dp− 1 + ⋅⋅⋅+ cp− 1d + d0 (19) 

Fig. 3. The pseudo-code of DE.  
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where coefficients 
(
c1, c2, ..., cp− 1

)
of primitive polynomial ψ(d) take the 

value of either 0 or 1. 
Then, coefficients of polynomial are used to calculate λi by the 

recurrence relation 

λi = c1λi− 1 ⊕ c2λi− 2 ⊕ ⋅⋅⋅ ⊕ cp− 1λi− p+1 ⊕ λi− p ⊕
(
λi− p ∗ 2− p), i > p

(20)  

where ⊕ stands for a bit-by-bit exclusive-or operation. 
Antonov and Saleev proposed Gray code to improve the efficiency of 

generating Sobol sequences [52]. The i-th number in the Sobol se
quences is formed by 

Si = g1λ1 ⊕ g2λ2 ⊕ ⋅⋅⋅ (21)  

where ...g3g2g1 is the Gray code representation of i. 
In the proposed sampling-based resizing search space method, new 

boundaries of each variable are resized by the minimum and maximum 
values of the first Nb samples with better fitness values in the Sobol 
sequences. The search space limits of variables confined by the selected 
samples can be expressed as 

Γ = {[LB1,UB1], [LB2,UB2], ..., [LBDim,UBDim] } (22)  

where LBi and UBi stand for the lower and upper limits of the i-th var
iable over the selected Nb samples, respectively; Dim means the 
dimension of unknown parameters to be identified. 

Number of the first Nb best samples is computed byNb = δ×
samp size. δ is a selecting fraction and it determines the number of 
selected samples. samp size denotes total sample size. The value of δ 
should be properly set because it has significant effect on the perfor
mance of the proposed method [53]. 

3.3.4. Linear resizing population size 
Population size of swarm intelligence optimization algorithms has 

significant effect on their performance. On the one hand, small popu
lation size is conducive to convergence speed but increases the risk of 
being trapped into the local optimum. On the other hand, a large pop
ulation size is beneficial for widely exploring search space but suffers 

from the disadvantage of slow convergence rate. Therefore, instead of 
setting a fixed value for population size NP, a linear resizing population 
size technique is employed to continually decreases the size of popula
tion in accordance with a deterministic linear function [54]. The pop
ulation size NPG+1 in the (G + 1) iteration can be calculated according to 
the following equation 

NPG+1 = round
[(

NPmin − NPinit

Max Iter

)

× Iter + NPinit

]

(23)  

where NPinit represents the initial population size when iteration number 
is 1; NPmin stand for the population size at the end of iterations, which is 
associated with the smallest number of individuals so that mutation 
operation of AHJDE algorithm can be implemented. The (NPG − NPG+1)

worst-ranking solutions with unfavorable fitness value will be elimi
nated from the current population wheneverNPG > NPG+1. 

3.3.5. Framework of AHJDE 
In the proposed AHJDE algorithm, four improvements including 

adaptive mutation strategy, adaptive mutation and crossover operators, 
sampling-based resizing search space and linear resizing population size 
are introduced. The detailed pseudocode of the proposed AHJDE algo
rithm is presented in Fig. 4. During the implementation of AHJDE, Sobol 
sequences sampling method is first used to take small-scale samples and 
resize the initial large search space by the minimum and maximum 
values of the first Nb best samples. A linear resizing population size 
technique is utilized to continually eliminate the worst-ranking in
dividuals from the current population with the purpose of accelerating 
convergence speed and improving identification accuracy. A self- 
adaptive updating scheme is proposed based on mutation pool strate
gies, i.e., DE/rand/1 and DE/rand/2 in Group1, DE/current-to-best/1 
and Jaya mutation in Group2, to achieve exploration or exploitation in 
different stages. Adaptive mutation and crossover operators are devel
oped to further improve the performance of hybrid algorithm. It can be 
observed from Fig. 4 that multiple mutation strategies are combined in 
the proposed AHJDE algorithm, which can effectively modify the orig
inal Jaya algorithm and meanwhile not obviously increase the fitness 
function evaluations. 

Fig. 4. The pseudocode of the proposed AHJDE.  
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4. Numerical studies 

To investigate the performance of the proposed AHJDE algorithm for 
structural system identification, two numerical studies on a 20-DOF 
linear system and a SDOF nonlinear system are employed. All numeri
cal analyses are conducted by MATLAB version 2018a on Intel(R) Core 
i5-11320 CPU @ 3.20 GHz and 16.00 GB of RAM. 

4.1. Identification of 20-DOF linear system 

As shown in Fig. 5, a two-dimensional shear-type frame structure is 
modelled as n-DOF linear structural system. The dynamic equation of 
motion for this system can be expressed as 

Mü(t)+Cu̇(t)+Ku(t) = f (t) (24)  

where M, C, and K stand for mass, damping and stiffness matrices, 
respectively;u(t), u̇(t) and ü(t) are displacement, velocity, acceleration 
vectors, respectively; f(t) represents the time-dependent input force 
vector. The Rayleigh damping matrix C is calculated by a linear com
bination of the stiffness matrix K and the mass matrix M 

C = aM + bK, ζr =
a

2ωr
+

bωr

2
(25)  

where a and b are unknown constant damping coefficients. 5 % modal 
damping ratio ζr is set in the first two modes of vibration (r = 1 and 2). 
ωr means the r-th natural frequency. Structural dynamic responses are 
simulated by the Newmark’s constant-average-acceleration method. 

A 20-DOF linear system is selected as numerical example to validate 
the applicability of the proposed AHJDE algorithm to structural system 
identification, which had been utilized in Refs. [22] and [55]. Structural 
properties of the 20-DOF system are given in Table 1. Both the known 
and unknown mass case are considered. Two physical quantities, stiff
ness and modal damping ratios, are assumed as unknown parameters to 
be identified for known mass case. While three physical quantities, 
stiffness, mass, modal damping ratios, are assumed as unknown pa
rameters for unknown mass case. As presented in Fig. 5, input forces are 
applied to the 20-DOF structure at every 5th level in the horizontal di
rection as Gaussian noise sequences with the RMS of the force scaled to 
1000 N. For known mass case, acceleration responses with sampling rate 
of 1000 samples/s and total duration of 2 s, are recorded by 8 acceler
ometers, located at the 2nd, 4th, 7th, 10th, 12th, 14th, 17th, 20th floors. 

While 12 accelerometers were installed at the 1st, 2nd, 3rd, 4th, 6th, 
8th, 10th, 12th, 14th, 16th, 18th, 20th floors for the unknown mass case, 
considering its rather more complexity of the system. The search space 
limits for each parameter are set as half to twice their corresponding 
exact value. 

4.1.1. Known-mass linear system 
There are 22 unknown parameters to be identified for the 20-DOF 

known mass case. The parameters of the proposed AHJDE method are 
population sizesNP = 100, maximum iterations 
numberMax Iter = 300, samples sizesamp size = 400, selecting 
fraction δ = 0.1, Nb = 40. ε is set as 0.001, so the maximum fitness value 
is equal to 1000. The average results based on 20 independent runs with 
AHJDE are listed in Table 2 and compared with those obtained by 
mature and state-of-the-art algorithms, i.e., SSRM [55], PSO [22], DE 
[22], modified ABC [23], C-TSA [28], IBOA [31]. It can be observed that 
the proposed AHJDE provides the most satisfactory results among seven 
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Fig. 5. Numerical model of 20-DOF structure.  

Table 1 
The structural properties of 20-DOF system.  

Parameters Numbers Value 

Stiffness (kN/m) Levels 1–10 5000 
Levels 11–15 4000 
Levels 16–20 3500 

Mass (kg) Levels 1–10 4000 
Levels 11–20 3000 

Natural period of vibration (s) First mode 2.123 
Second mode 0.797  

Table 2 
Mean and maximum errors for 20-DOF known mass system without noise (%).  

Results SSRMa PSOb DEb Modified 
ABCc 

C- 
TSA 

IBOA AHJDE 

Mean 
error-K  

0.52  0.71  0.41  0.19  0.33  0.17 0.01 

Max 
error-K  

1.60  3.37  1.29  1.04  1.28  1.08 0.04 

Mean 
error-C  

0.64  2.24  0.53  0.19  1.01  1.30 0.16 

Max 
error-C  

1.21  8.31  1.45  1.06  2.78  1.75 0. 68 

Note: abcResults obtained from Refs. [55], [22] and [23], respectively. 
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identification methods with the minor maximum errors of only 0.04 % 
and 0.68 % in the identification of stiffness and damping parameters, 
respectively. Fig. 6 shows the fitness value and mean error of 20-DOF 
known mass system by the proposed AHJDE, and Fig. 7 presents the 
convergence histories of estimated stiffness without noise corruption. 
Obviously, identified stiffness parameters of all elements converge to 
their corresponding actual values, namely element stiffness K1-K10 =

5000 kN/m, K11-K15 = 4000 kN/m, K16-K20 = 3500 kN/m. By Fig. 6, the 
fitness value approximates its maximum value 1000 after 200 iterations, 
which indicates the proposed AHJDE algorithm can accurately and 
effectively identify stiffness and damping parameters for known mass 
system. 

To investigate the robustness of proposed AHJDE to measurement 
noise in identifying structural parameters, white Gaussian noise se
quences are introduced into the clean measurements üclean 

ümea = üclean + noise = üclean +Nl × NnoiseRMS
(

üclean

)

(26)  

where ümea represents the measured signals; Nl means the level of noise, 
and 5 % and 10 % noise levels are considered; Nnoise denotes the noise 
vector of Gaussian distribution with zero mean and unit standard de

viation; RMS
(

üclean

)

stands for the root-mean-square of the recorded 

acceleration. The identified results of stiffness based on 20 independent 
runs by Jaya, C-TSA, IBOA and AHJDE are presented in Fig. 8. Among 
these four methods, Jaya provides the worst identification results with 
more than 7 % maximum error under 5 % noise. Better performance is 
acquired by C-TSA and IBOA, but more than 2 % mean error and 5.5 % 
maximum error are still not accurate enough. In contrast, the proposed 
AHJDE method provides the most excellent parameter estimation with 
mean error and maximum error less than 1.1 % and 2.5 % for the worst 
10 % noise case, which demonstrates AHJDE algorithm is accurate and 
robust to identify structural unknown parameters. 

4.1.2. Unknown-mass linear system 
There are 42 unknown parameters to be identified for the 20-DOF 

unknown mass case. The parameters of the proposed AHJDE method 
are population sizesNP = 200, maximum iterations 
numberMax Iter = 400, samples sizesamp size = 600, selecting 
fraction δ = 0.1, Nb = 60. For noise free case, the identified results for 
20-DOF unknown mass system are displayed in Fig. 9. Small identifi
cation errors are obtained by AHJDE with the maximum error 0.72 % for 
stiffness and 1.03 % for mass parameters. When 5 % and 10 % noise are 
considered, the identified results of AHJDE are summarized in Table 3 
and compared with SSRM, PSO, DE, modified ABC, C-TSA, IBOA. The 

convergence histories of stiffness, mass and damping ratios with 10 % 
noise-contaminated responses are presented in Fig. 10. It can be found 
that the proposed AHJDE algorithm can provide much better identifi
cation results than other six methods with the mean errors of 1.23 % and 
maximum of 3.62 % in stiffness, and mean error of 1.45 % and maximum 
of 4.40 % in mass even under 10 % noise. In addition, the evolution 
process of stiffness, mass, damping ratios indicates that AHJDE algo
rithm is able to accurately identify parameters of unknown mass system 
due to its good global and local optimization capacities. The obtained 
identifications are worse than the previous case owing to the coupling 
effect of stiffness and mass. Relatively obvious deviation of damping 
ratios from their actual value are observed in Fig. 10(c), but it is still 
acceptable with 7.4 % errors for ζ2 since damping parameters have a 
relatively small contribution to the structural responses, rendering it 
difficult to be accurately identified. 

Besides, the computational efficiency for these seven identification 
methods, i.e., SSRM, PSO, DE, modified ABC, C-TSA, IBOA, AHJDE, is 
further investigated. It is noted that fitness function evaluations for each 
candidate solution are the main time-consuming operation in the iden
tification process, which is related to solving the second-order ordinary 
differential equations of motion. Accordingly, the computational effi
ciency of different identification algorithms can be roughly determined 
based on the number of evaluations of the fitness function assuming 
under the same computational condition. By Table 4, the smallest 
number of 41,903 fitness function evaluations are required for the 
proposed AHJDE owing to the operation of linear resizing search space, 
which indicates it can achieve higher computational efficiency than 
SSRM, PSO, DE, modified ABC, C-TSA, IBOA. 

In summary, the strong exploration capability of DE and powerful 
exploitation capability of Jaya algorithm are effectively combined with 
mutation pool strategy. Among the above seven methods, the proposed 
AHJDE needs the least evaluation times but presents the best results in 
structural system identification. 

4.2. Identification of nonlinear SDOF system 

Given the excellent performance in the parameters identification of 
linear structures, AHJDE is applied to the more complex and difficult 
nonlinear system identification. Numerical studies on a nonlinear SDOF 
system with classical Bouc-Wen hysteretic model and improved Bouc- 
Wen model are conducted to verify the effectiveness of the proposed 
method. 
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4.2.1. Classical Bouc-Wen model 
A numerical example of nonlinear SDOF system with hysteretic 

model is shown in Fig. 11, and its properties are mass M = 200 kg, 
stiffness K = 7200 N/m, damping C = 120 Ns/m. The Kobe (1995) 
earthquake record with peak ground acceleration of 3 g is used as input 
to excite the SDOF system with the sampling frequency of 50 Hz and the 
duration of 40 s. 

The equation of motion for the nonlinear SDOF system can be 
expressed as 

Mü+Cu̇+R(u, z) = − MIg̈ (27)  

where g̈ means the earthquake acceleration; R(u, z) denotes the 
nonlinear restoring force as written as 

R(u, z) = αKu+(1 − α)Kz (28)  

where α stands for the ratio of post-yield to pre-yield stiffness,0⩽α⩽1; z 
represents the hysteretic displacement. The equation of classical Bouc- 
Wen model was given by Wen [56] as follows 

ż = Au̇ − β|u̇||z|n− 1z − γu̇|z|n (29)  

where A, β, γ, n are the parameters determining the behavior of the 
hysteretic model. A is the redundant parameter according to the authors 
in Ma et al. [57]. More descriptions on the Bouc-Wen model can be 

Fig. 8. Results of identified stiffness for known mass system with: (a) 5% noise; (b) 10% noise.  

Fig. 9. Identification results of 20-DOF unknown mass system without 
noise corruption. 

Table 3 
Identified errors for 20-DOF unknown mass system under 5% and 10% noise (%).  

Noise level Error SSRMa PSOb DEb ABCc C-TSA IBOA AHJDE 

5 % Mean-K  1.38  3.65  1.27  2.27  1.64  1.21  0.87 
Max-K  3.83  8.13  4.11  5.48  4.52  5.03  3.06 
Mean-M  1.51  3.61  1.42  2.31  2.01  1.88  1.18 
Max-M  4.02  10.81  3.56  5.16  5.46  4.62  3.57 
Mean-C  6.70  10.34  7.23  1.93  2.49  3.13  2.08 
Max-C  12.90  16.57  10.68  5.41  8.75  8.59  5.46 

10 % Mean-K  2.78  5.31  2.63  4.58  2.96  2.76  1.23 
Max-K  8.64  14.36  9.02  11.69  8.78  9.49  3.62 
Mean-M  3.00  7.06  3.29  3.95  3.65  3.84  1.45 
Max-M  10.40  16.27  11.21  9.72  10.22  10.47  4.40 
Mean-C  14.69  17.31  13.54  3.83  4.54  5.42  2.97 
Max-C  20.36  29.06  21.04  12.26  13.95  12.51  8.62 

Note: abcResults obtained from Refs. [55], [22] and [23], respectively. 

Fig. 10. Convergence histories for 20-DOF unknown mass system with 10% 
noise: (a) stiffness; (b) mass; (c) damping ratios. 
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found in Ref. [56]. Herein, β = 5, γ = 5, n = 1 are set. The Eqs. (27–29) 
are written in state-space form as follows 
⎧
⎨

⎩

u̇ = y
ẏ = − g̈ − M− 1[αKu + (1 − α)Kz + Cy ]

ż = y{1 − [βsgn(yz) + γ ]|z|n }
(30)  

where sgn(⋅) means the signum function. Eq. (30) can be solved by the 
fourth to fifth order embedded Runge-Kutta integration method. 

The common parameters of Jaya, DE and AHJDE are defined as 
population sizes NP = 100, maximum iterations number Max_Iter = 200. 
Mutation operator F = 0.8 and crossover operator CR = 0.85 are set for 
DE, and samples size is set as 300 for AHJDE. Six parameters of 
nonlinear SDOF system to be identified are stiffness, damping and 

nonlinear hysteresis parameters,θ
⌢

= {K,C, α, β, γ, n}. Mass parameters 
are assumed to be known in prior. The identified results with 0 % and 5 
% noise-contaminated acceleration responses are listed in Table 5. It can 
be seen that the proposed AHJDE is able to provide much more accurate 
identification results than Jaya and DE. The maximum error obtained by 
AHJDE ranges from 2.0 % to 5.0 % in the noise free and noise polluted 

cases, while the corresponding error ranges from 8.9 % to 11.5 % for 
Jaya algorithm and from 6.3 % to 9.6 % for DE. Furthermore, Fig. 12 
presents the hysteretic loops of the classical Bouc-Wen model with 
AHJDE method. It is observed that the identified hysteretic loop has 
good agreement with the original curves, and the parameter identifi
cation still can be achieved by the proposed approach even if the 
simulated responses are polluted by 5 % noise, which proves the effec
tiveness of AHJDE in the identification of nonlinear system. 

4.2.2. Improved Bouc-Wen model 
Over the years, the classical Bouc–Wen hysteretic model has been 

further extended. An improved Bouc-Wen model with degradation was 
proposed by Baber and Wen [58], which can be expressed as follows 

ż =
1
η
[
Au̇ − ρ

(
β|u̇||z|n− 1z − γu̇|z|n

) ]
(31)  

where η and ρ are the degradation shape functions [59]. A simplified 
parameters of Eq. (31) can be written as 

q =

[

q1 =
A
η, q2 =

ρβ
η , q3 =

ργ
η , q4 = n

]T

(32)  

where parameters meet requirements ofq1 > 0, |q3|⩽q2,q4⩾1. 
The nonlinear SDOF system, as shown in Fig. 11, with the improved 

Bouc-Wen model is identified. The Kobe (1995) ground motion with 
peak ground acceleration of 3 g is used as the external excitation with 
the sampling frequency of 50 Hz for the duration of 40 s. Structural 
responses can be calculated by using the fourth to fifth order adaptive 
Runge-Kutta method. Seven parameters of this nonlinear system to be 

identified are stated as θ
⌢

= {K,C, α,q1, q2, q3, q4}. 
The common parameters of Jaya, DE and AHJDE are defined as 

population sizes NP = 200, maximum iterations number Max_Iter = 400. 
Algorithm-specific parameters F = 0.8, CR = 0.85 for DE, and samples 
size is set as 400 for AHJDE. Identified results for the nonlinear SDOF 
system with the improved Bouc-Wen model by Jaya, DE and AHJDE are 
listed in Table 6. It can be easily observed that the maximum errors are 
4.3 % and 5.5 % for AHJDE, which are better than those identified by 
Jaya (7.6 % and 10.8 %) and DE (6.6 % and 15.2 %) under noise free 
case and 5 % noise case, respectively. Besides, Fig. 13 presents a good 
agreement between the measured response and estimated response with 
identified parameters, which indicates the proposed AHJDE algorithm 
can yield accurate estimates of structural parameters and nonlinear 
hysteretic parameters. 

5. Experimental verifications 

5.1. Experimental setup 

To further verify the applicability of the proposed hybrid algorithm 
to structural identification, experimental tests on a five-story steel frame 
structure are conducted. Fig. 14 presents the diagram of experimental 
setup in the laboratory. The total height, length and width of the frame 
structure are 1750 mm, 300 and 400 mm, respectively. The geometries 

Table 4 
Comparison of computational efficiency for 20-DOF unknown mass system.  

Methods Initial population size Iterations Total evaluations 

SSRMa 270 7410 2,000,700 
PSOb 400 500 200,000 
DEb 400 500 200,000 
Modified ABCc 180 500 95,095 
C-TSA 200 400 80,000 
IBOA 200 400 80,000 
AHJDE 200 400 41,903 

Note: abcResults obtained from Refs. [55], [22] and [23], respectively. 

Fig. 11. A nonlinear SDOF system with Bouc-Wen hysteretic model.  

Table 5 
Identified results for the nonlinear SDOF system with classical Bouc-Wen model.  

Parameter True value 0 % noise 5 % noise 
Jaya DE AHJDE Jaya DE AHJDE 

K 7200 7126.4(1.0)a 7129.5(0.9) 7185.4(0.2) 7418.7(3.0) 7039.0(2.2) 7169.8(0.4) 
C 120 122.8(2.3) 123.8(3.1) 121.6(1.3) 125.4(4.5) 123.4(2.9) 123.8(3.1) 
α 0.1 0.1(0.6) 0.1(6.3) 0.1(0.6) 0.1(7.3) 0.1(6.9) 0.1(2.6) 
β 5 5.2(4.2) 5.1(1.5) 5.1(1.2) 5.2(3.7) 5.1(1.6) 5.2(4.2) 
γ 5 5.4(8.9) 5.1(3.0) 5.1(2.0) 5.6(11.5) 5.5(9.6) 5.2(5.0) 
n 2 2.0(1.4) 2.1(3.8) 2.1(1.4) 2.1(4.0) 2.1(4.7) 2.1(4.4) 
Max error  8.9 % 6.3 % 2.0 % 11.5 % 9.6 % 5.0 %  

a Relative errors of identified parameters are in the parentheses expressed in %. 
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for each story slab are 300 × 400 × 15 mm, and all columns have 
identical dimension of 350 × 40 × 4 mm. Thus, this frame model can be 
considered as a typical shear-type structure owing to the comparatively 
strong floors and weak columns. The elastic modulus and mass density 
of steel material are 2.06 × 1011N/m2 and 7850 kg/m3, respectively. A 
Modal Shop 2100E11 vibration exciter is tightly fixed on counterforce 
wall to generate random-force time history, which is recorded by force 
sensor, applied at the top story in the y direction. Horizontal accelera
tion responses of all floors are recorded by model 991C acceleration 
sensors and collected by the Quantum X data acquisition system. The 
sampling frequency is set as 50 Hz and sampling duration is 100 s. Total 
mass of each floor including the accelerometers are M1 = 24.99 kg, M2 
= 24.94 kg, M3 = 24.93 kg, M4 = 24.75 kg, M5 = 24.80 kg. 

5.2. Initial model updating 

In order to reduce the adverse effect of modeling error on structural 
damage identification, initial model updating is implemented so that the 
finite element model is as close to the real structure as possible. The 

elemental stiffness parameters are updated with the objective of mini
mizing the discrepancies between the natural frequencies calculated 
from the numerical model and extracted from the experimental data. 
The measured natural frequencies of this frame structure are identified 
from the power spectra density of recorded accelerations in frequency 
domain with aid of frequency domain decomposition technique (FDD), 
listed in Table 7. Objective function optimized by the proposed AHJDE 
algorithm is defined as 

obj
(

θ
⌢

K

)
=

∑5

i=1

⃒
⃒
⃒wc

i

(
θ
⌢

K

)
− wm

i

⃒
⃒
⃒

wm
i

(33)  

where θ
⌢

K 
means element stiffness to be updated,θ

⌢

K
= [K1,K2, ...,KDim]; wc

i 

and wm
i stand for the natural frequencies from the analytical model and 

physical structure, respectively. 
The analytical natural frequencies of frame structure before and after 

updating are presented in Table 7. It can be observed that the first five 
natural frequencies from the updated model have a more favorable 

Fig. 12. The hysteretic loops of the classical Bouc-Wen model by AHJDE: (a) 0% noise; (b) 5% noise.  

Table 6 
Results for the nonlinear SDOF system with the improved Bouc-Wen model by Jaya, DE, AHJDE.  

Parameter True value 0 % noise 5 % noise 

Jaya DE AHJDE Jaya DE AHJDE 

K 7200 7428.4(3.2)a 7036.5(2.3) 7138.6(0.9) 7548.7(4.8) 7354.6(2.1) 7041.6(2.2) 
C 120 126.2(5.2) 125.1(4.2) 123.6(3.0) 122.6(2.2) 126.0(5.0) 126.2(5.2) 
α 0.1 0.1(3.8) 0.1(6.2) 0.1(1.3) 0.1(10.8) 0.1(6.3) 0.1(5.5) 
q1 1 1.0(2.8) 1.1(5.7) 1.0(3.2) 1.0(2.1) 1.2(15.2) 1.0(3.9) 
q2 2 2.2(7.6) 2.1(4.0) 2.1(4.3) 2.0(2.2) 2.1(4.3) 2.1(4.6) 
q3 2 2.1(6.9) 2.1(6.6) 2.0(2.1) 2.1(5.5) 2.1(2.9) 2.1(2.7) 
q4 2 2.0(4.7) 2.0(2.4) 2.0(1.6) 1.9(5.3) 1.9(4.8) 2.0(2.5) 
Max error  7.6 % 6.6 % 4.3 % 10.8 % 15.2 % 5.5 %  

a Relative errors of identified parameters are in the parentheses expressed in %. 

Fig. 13. The measured response and estimated response with identified parameters: (a) noise free; (b) 5% noise.  
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agreement with the measured results than those before updating. A fine 
initial finite element model is established considering the maximum 
relative error of 2.147 % for the fifth mode, which means the updated 
model can be taken as the baseline for the subsequent damage 
identification. 

5.3. Damage identification results 

As shown in Fig. 15, two different damage cases are investigated to 
test the capacity of the proposed AHJDE method for identifying damage 
existence, location, severity. Damages case 1 is introduced by replacing 
all columns in the 5th story from original width of 40 mm to smaller 
width of 36 mm. Similarly, damages case 2 is achieved by replacing all 
columns in the 4th story from initial 40 mm to more thinner columns of 
32 mm. In this way, 10 % and 20 % reductions of the equivalent stiffness 
are introduced in the 5th and 4th floor of the steel frame structure, 
respectively. Fig. 16 presents the detailed reduction of cross section for 
damage case 1 and case 2. In fact, cutting the cross section of columns 
would inevitably lead to reduction of stiffness and mass parameters, 
which is expected to be simultaneously identified from an ideal point of 
view. However, less than 2 % slight reduction of mass in damage case 1 
and case 2 make it difficult to be accurately identified. Thus, mass 
alteration is not considered in this example. AHJDE is employed to 
detect two damage cases with the parameter settings of population size 
100, maximum generation 200, samples size 200, and the corresponding 
identification results are shown in Fig. 16. 

By Fig. 16, it can be observed that damage location is accurately 
identified in most of tests, while some obvious deviations from the actual 

damage extent occur in the fourth test for case 1 and the first test for 
damage case 2, respectively. The mean values of the identified damage 
extent from the four tests are still satisfying considering less than 2 % 
and 2.5 % errors. Therefore, more reliable identification results tend to 
be obtained if more tests are available with the cost of increasing 
computational time. Fig. 17 presents the convergence history of the 
identified damage elements. It is noted that AHJDE takes around 30 
iterations to approximately converge to the actual damage extent, 
namely 10 % of K5 in cases1 and 20 % of K4 in cases 2. These results 
clearly imply that the proposed hybrid method is capable of accurately 
and efficiently identifying damage location and extent. 

6. Conclusions 

An adaptive hybrid Jaya and differential evolution algorithm is 
proposed based on Jaya and DE to identify structural system and dam
ages. In the proposed AHJDE, mutation pool strategy is introduced by 
effectively combining the powerful global exploration capacity of DE 
and local exploitation capacity of Jaya to generate promising candidate 
solutions. Besides, adaptive mutation and crossover operators, 
sampling-based resizing search space and linear resizing population size 
are integrated into the proposed algorithm. The accuracy and effec
tiveness of AHJDE are validated by numerical examples of a 20-DOF 
linear system and a nonlinear SDOF system with Bouc-Wen model, as 

Fig. 14. Laboratory model of five-story steel frame structure.  

Table 7 
Measured and analytical natural frequencies of frame structure before and after 
updating.  

Mode Measured 
(HZ) 

Before updating After updating 

(HZ) Analytical 
(Hz) 

Relative 
error (%) 

Analytical 
(Hz) 

Relative 
error (%) 

1  1.999  2.016  0.850  1.989  0.500 
2  5.999  5.878  2.017  5.976  0.382 
3  8.998  9.265  2.967  9.072  0.845 
4  11.998  11.910  0.733  12.066  0.567 
5  14.996  13.577  9.463  14.674  2.147  

Fig. 15. Reduction of cross section in the fifth and fourth floors.  

Fig. 16. Identified damage results of the frame structure: (a) damage case 1; (b) 
damage case 2. 
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well as experimental verifications on a five-story steel frame structure. 
Some conclusions can be drawn as below: 

(1) In the numerical studies on a 20-DOF linear system, the proposed 
AHJDE shows more favorable computational efficiency but presents 
much better accuracy in structural parameter identification than PSO, 
DE, SSRM, modified ABC, C-TSA, IBOA. Satisfactory identification re
sults can be achieved for 20-DOF unknown mass system with maximum 
errors of 3.62 %, 4.40 %, 8.62 % in stiffness, mass, damping under 10 % 
noise. 

(2) For the identification of a nonlinear SDOF system with classical 
and improved Bouc-Wen hysteretic models, favorable results prove that 
AHJDE can more accurately identify unknown structural parameters 
and nonlinear hysteresis parameters than Jaya and DE. 

(3) Experimental studies on the steel frame structure demonstrate 
that the proposed method can obtain accurate results in the identifica
tion of the damage existence, location, severity. More reliable damage 
identification results could be achieved by taking the average results of 
multiple experiments. 

(4) Reliable results in numerical and experimental studies show that 
the proposed AHJDE is effective, efficient, robust to identify structural 
systems and damages even with partial and noise-polluted 
measurements. 

It is noted that the proposed hybrid algorithm successfully identifies 
parameters of 20-DOF linear system and nonlinear SDOF system, while 
some aspects are not considered in present paper, such as modelling 
error, temperature variation, boundary stiffness alternation, optimal 
sensor placement, which would be investigated on more complex and 
large-scale engineering structures in the future study. 
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