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a b s t r a c t 

The difficulty in computational convergence poses challenges of application for traditional 

heuristic optimization algorithms to solve the optimization-based structural identification 

problem, especially for the large-scale and complex structural systems where considerable 

number of unknown parameters and degrees of freedom involved. Unlike the classic iden- 

tification methods, in this paper, a novel hybrid strategy, coarsely exploring the relatively 

large search limits with the improved Jaya algorithm and adaptive search space reduction 

method in the global stage, and then fine-tuning the identified best solution with local 

optimization methods to the optimum in the local stage, is proposed and evaluated. The 

improved Jaya algorithm includes three improvements compared to its original version, 

fuzzy clustering competitive learning, experience learning and Cauchy mutation mecha- 

nisms. Gradient based Levenberg-Marquardt method, sequential quadratic programming 

method and non-gradient based Nelder-Mead simplex method are inserted as local math- 

ematical optimizers to further enhance identification accuracy and efficiency. The superi- 

ority of proposed improved Jaya algorithm is validated in optimizing classical and CEC05 

benchmark functions by comparing with several state-of-the-art algorithms. Furthermore, 

the effectiveness of proposed global-local hybrid method is verified by a numerical exam- 

ple of truss structure and an experimental test of the steel grid benchmark structure with 

incomplete set of noise-polluted measurements. The statistical results show that the im- 

proved Jaya algorithm and adaptive search space reduction method combined with sequen- 

tial quadratic programming can achieve better performance in structural damage identifi- 

cation than other methods. 

© 2023 Elsevier Inc. All rights reserved. 

 

 

1. Introduction 

Over the past two decades, considerable number of approaches have been proposed for structural health monitoring, es- 

pecially for the structural identification [ 1 , 2 ]. Classical methods are generally based on sound mathematical knowledge, but

gradient information and good starting point are generally required. Different from classical methods, some non-classical 

methods including neural networks [3] , k-nearest neighbours algorithm [4] , especially for the heuristic optimization algo- 

rithms with different inspiration sources, such as differential evolution (DE) [5] , particle swarm optimization (PSO) [6] , fruit
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fly optimization algorithm [7] , enhanced colliding body optimization algorithm [8] , butterfly optimization algorithm [9] , have 

been widely explored, becoming one of current research hotspots. 

There is no restriction for the behaviors of objective function, such as monotonicity, derivability, modality, which facil- 

itates the application of heuristic algorithms. In addition, these optimization algorithms have no requirements on a good 

initial estimate or proper gradient information and they cannot guarantee final success for the problem to be optimized. 

Tang et al. [10] utilized a DE strategy to estimate parameters of structural systems considering limited output data, noise 

polluted signals. Subsequently, Tang et al. [11] applied the big bang-big crunch algorithm into a series of parameter iden-

tification problems and observed that better performance was obtained compared with the mature algorithms of GA and 

PSO. Vosoughi and Gerist [12] proposed a hybrid FE-PSO 

–CGAs sensitivity base technique to detect damages of laminated 

composite beams, and the simulation results proved the effectiveness of proposed method. Ding et al. [13] presented a 

modified artificial bee colony algorithm and it can successfully identify structural damages even with high-level noise and 

temperature variation. 

However, the difficulty in computational efficiency poses significant challenges of application for abovementioned heuris- 

tic algorithms to solve the optimization-based parameter identification problem, especially for the large-scale and complex 

structural systems where considerable number of unknown parameters and degrees of freedom involved. Motivated by this 

limitation, this paper proposed a more feasible approach, called global-local hybrid strategy. In the global search stage, an 

improved version of Jaya algorithm (I-Jaya) is developed. Compared with optimization algorithms such as PSO, GA, DE, the 

distinct feature of the Jaya algorithm is free from algorithm-specific parameters. The repeated trial-and-error procedures 

are not required to determine suitable algorithm parameters, which would significantly improve computing efficiency [14] . 

Despite the fact that Jaya algorithm can present favorable performance in some real-world optimization problems, such as 

structural optimization design [15] and structural damage identification [16] , simple search mechanism makes Jaya algorithm 

still suffer from premature convergence and being trapped into local optimum when solving complex engineering problems. 

Some relevant researches have been attempted to enhance the performance of the standard Jaya algorithm. Shuffling process 

and k-means clustering technique are used to improve the convergence performance of Jaya algorithm respectively [ 17 , 18 ].

In the proposed improved Jaya algorithm, three modifications including fuzzy clustering competitive learning mechanism, 

experience learning mechanism and Cauchy mutation mechanism are introduced into basic Jaya algorithm. First, the fuzzy 

clustering competitive learning mechanism is implemented to effectively utilize the population information and accelerate 

the convergence rate. Second, the experience learning mechanism is adopted to keep the balance between exploiting the 

previously visited regions and exploring new search space during the search process. The last Cauchy mutation mechanism 

is implemented to alleviate the possibility of being trapped into local optimum by fine-tuning the quality of the best-so-far 

solution. 

In the global search stage, an adaptive search space reduction method is also developed and employed. In fact, the search

limits of unknown parameters have a significant influence on the convergence performance of heuristic algorithm. Although 

heuristic optimization algorithms can explore predefined search space, the general disadvantage of these methods is time- 

demanding owing to considerable number of potential solutions to be evaluated. Search space reduction method (SSRM) 

provides an appealing way to improve the accuracy and efficiency for structural parameter identification by reducing the 

resources spent on looking far outside the space where the optimal solution lies in. Search space reduction method was 

combined with GA and butterfly optimization algorithm, presenting good parameter’s identification solutions by gradually 

reducing the search space limits of unknown parameters [19–21] . These researches indicate that it is feasible to improve

convergence rate and identification accuracy by updating the limits of search space. It is noted that these methods simul- 

taneously shrink upper and lower search space limits for all unknown parameters, which may lead to over-reduced search 

limits owing to sensitivity value of recorded responses with respect to each elemental stiffness is different. Instead, the pro- 

posed adaptive search space reduction method adaptively reduces the search space limits of parameters from the highest 

sensitivity to the smallest since more sensitive parameters are fast and easily identified. 

It is known that local optimizers, such as gradient based method, i.e., Levenberg-Marquardt (LM) method, sequential 

quadratic programming (SQP) method, and non-gradient based method, i.e., Nelder-Mead simplex search (NM) method have 

more strong ability to capture the quick right approach to the nearest optimum than stochastic optimization algorithms, 

while these local search methods are prone to be trapped into local optimal if starting with a poor initial point. On the

contrary, the proposed global method is insensitive to the initial point, while it might show unacceptable slow computa- 

tional efficiency due to its stochastic nature of parameter searching, especially when the identified solution approaches to 

the neighborhood of the global optimum. It seems to be an attractive strategy by combining global search and local search

methods to benefit from the advantage of each algorithm and alleviate their weakness. 

Considering the advantages and disadvantages of heuristic algorithms and local optimizers, an attractive hybrid identifi- 

cation strategy for structural identification is proposed to overcome the local optima trap in the global stage and refine the

identified solution in the local search stage. Specifically, fuzzy clustering competitive learning mechanism, experience learn- 

ing mechanism and Cauchy mutation mechanism are integrated into Jaya algorithm to enhance its exploration and exploita- 

tion performance. In addition, adaptive search space reduction method is developed to adaptively reduce the search space 

limits of unknown parameters from the highest sensitivity to the smallest. In this way, computational time is significantly 

decreased, and the problem of over-reduced search limits in previous studies can be alleviated. Finally, three local optimiza- 

tion methods including LM method, SQP method, NM method are employed and compared. Computational efficiency and 

identification accuracy could be further improved. Numerical and experimental studies demonstrate the effectiveness of the 
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hybrid identification strategy, coarsely exploring the relatively large search space with I-Jaya algorithm and adaptive search 

space reduction method (IJASR) in global search stage, then fine-tuning high-quality potential solution by implementing 

intensive local search starting from the best estimate of IJASR in local search stage. 

2. Problem formulation 

The equation of motion for a multi-degree-of-freedom linear structural system under external loads can be stated as 

follows 

M ̈u ( t ) + C ˙ u ( t ) + Ku ( t ) = F ( t ) (1) 

where M, C, K stand for the N × N mass, damping and stiffness matrices; ü (t) , ˙ u (t) and u ( t ) denote the acceleration, velocity

and displacement vectors with the same dimension of N × 1; F(t) means a vector of input force acting on the structure

system. N represents the DOFs of the structure. The Rayleigh damping model is utilized as an expression for the damping

matrix C by a linear combination of the stiffness matrix K and the mass matrix M 

C = αM + βK, ς r = 

α

2 ω r 
+ 

βω r 

2 

(2) 

where α and β are two constant coefficients. 5% damping ratio ( ς r ) is considered for the first two modes ( r = 1 and 2).

Newmark’s constant-average-acceleration method is employed to calculate structural dynamic responses. In Eq. (1) , it is 

assumed that the mass matrix remains unchanged during the identification. The stiffness of each element and two damping 

coefficients are the unknown parameters to be identified. 

The objective function is defined as minimizing the difference between the measured structural dynamic responses and 

the estimated structural responses from the finite element model as follows 

ob j ( θ ) = 

n sen ∑ 

i =1 

n time ∑ 

j=1 

∥∥∥� 

ü i 

(
θ, t j 

)
− ü i 

(
t j 
)∥∥∥2 

E 
(
ü 

2 
i 

(
t j 
)) (3) 

where ob j ( θ ) denotes the value of objective function, θ = { θ1 , θ2 ,..., θDim 

}; ü i ( t j ) and 

� 

ü i ( θ, t j ) are the measured and es-

timated structural responses; n sen and n time represent the number of measurements and recorded samples. E( ̈u 2 
i 
( t j ) ) = 

1 
n time 

∑ n time 
j=1 

ü 2 
i 
( t j ) stands for mean squared value from i th measurement. The fitness function fit ( θ ) is expressed as the 

inverse formation of objective function 

f it ( θ ) = 

1 

ε + ob j ( θ ) 
(4) 

where ε is a small value to avoid zero denominator, and it is set as 0.001 in this paper. The maximum fitness value is equal

to ε−1 when the identified best structural parameter agrees with the actual value, i.e., obj = 0. Thus, the problem of structural

identification is summarized as 

maximize f it ( θ ) , θ = { θ1 , θ2 , ..., θDim 

} 
s.t.θ ∈ 	, 	 = 

{
θ : θmin 

n ≤ θn ≤ θmax 
n , ∀ n = 1 , 2 , ..., D im 

} (5) 

where θn is considered as the n -th parameter to be identified, and its corresponding lower and upper bounds are θmin 
n and

θmax 
n , respectively; Dim stands for the number of unknown parameters; 	 represents the Dim -dimensional search space. 

By Eqs. (3 - 5 ), structural identification can be formulated as a linearly constrained nonlinear optimization problem where 

multiple local optimal solutions may exist, which poses some difficulties for traditional optimization techniques considering 

their poor optimization capacity. Instead, heuristic algorithms have the advantages of strong search ability, ease of imple- 

mentation and loose initial conditions, etc. Therefore, it may be feasible to develop more powerful heuristic algorithms for 

solving the optimization-based structural identification problem. 

3. Identification algorithms 

3.1. Global search stage 

3.1.1. Improved jaya algorithm 

Jaya algorithm is a novel heuristic intelligent algorithm based on the concept of the feasible solution simultaneously 

approaching to the best solution and moving away from the worst solution during the search process, aiming to reach the

best solution [22] . 

Individuals in the initial population are randomly generated in the predefined search space limits. Jaya algorithm gener- 

ates offspring with the best-so-far solution and the worst-so-far solution as below 

X 

G +1 
i, j 

= X 

G 
i, j + rand 1 ×

(
X 

G 
best, j −

∣∣X 

G 
i, j 

∣∣) − rand 2 ×
(
X 

G 
worst, j −

∣∣X 

G 
i, j 

∣∣) (6) 
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Fig. 1. The general process of fuzzy clustering competitive learning mechanism. 

 

 

 

 

 

 

 

 

 

 

where X G 
i, j 

and X G +1 
i, j 

represent the value of the j -th variable for the i th individual at the G -th and ( G + 1)-th iterations,

respectively; | X G 
i, j 

| means the absolute value of X G 
i, j 

; rand 1 and rand 2 stand for random number within the range of [0, 1]; 

X G 
best, j 

and X G 
worst, j 

denote the value of the j -th variable for the best-so-far solution and the worst-so-far solution at the G -th 

iteration, respectively. The second term on the right side of the Eq. (6) implies the tendency to approach the current best

candidate solution X G 
best 

while the third term shows the trend away from the current worst candidate X G worst . 

3.1.1.1. Fuzzy clustering competitive learning mechanism. Fuzzy c-means clustering is a division-based clustering algorithm, 

and its idea is to maximize the similarity between samples classified into the same cluster and minimize the similarity be-

tween different clusters. Different from the hard division of k-means clustering algorithm, fuzzy c-mean clustering achieves 

soft fuzzy partitioning by introducing fuzzy theory to express the degree of a sample belonging to a certain cluster. A brief

introduction about fuzzy c-means clustering is given below [23] . 

The clustering loss function to be minimized can be stated as follows [24] 

ϕ m 

= 

n ∑ 

j=1 

NC ∑ 

i =1 

(
v i j 

)m 

∥∥X j − c i 
∥∥2 

(7) 

where m is fuzzy coefficient determining the fuzzy degree of clustering results, m > 1; v ij denotes the degree of membership

that sample X j belongs to cluster i; X j means the j -th sample, j = 1, 2, ..., n; c i is the center of the i th cluster, i = 1, 2, ...,

NC, NC = 0.1 × NP ; ‖ X j − c i ‖ 2 is the Euclidean distance between the i th cluster center and the j -th data sample. The sum

of membership degrees for every single sample to all clusters is 1 as following equation [24] 

NC ∑ 

i =1 

v i j = 1 , j = 1 , 2 , ..., n (8) 

Then, the Fuzzy c-means clustering iteratively optimizes the loss function ϕm 

by updating the degree of membership v ij 
and cluster centers c i 

v i j = 

NC ∑ 

r=1 

( ∥∥X j − c i 
∥∥∥∥X j − c r 
∥∥
) 

−2 
( m −1 ) 

(9) 

c i = 

( 

n ∑ 

j=1 

v m 

i j X j 

) ( 

n ∑ 

j=1 

v m 

i j 

) −1 

(10) 

If the variation of loss function is less than threshold, stop the iterative process. 

As presented in Fig. 1 , a novel mechanism of fuzzy clustering competitive learning is proposed, and its general process

can be roughly divided into three steps 

Step 1: All samples in population P are allocated into NC clusters, i.e., subpopulation P 1 , P 2 ,..., P NC by fuzzy c-means

clustering. 

Step 2: Assuming all samples compete within a same cluster. As a result of competition, the sample with best fitness

value is denoted as winner X w 

, while the rest samples lost this competition are named as losers X . 
l 
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Step 3: The winner X w 

could directly survive to the next generation whereas all losers X l in a subpopulation P i will be

updated by following learning equation 

X 

G +1 
l 

= X 

G 
l + rand 1 ×

(
X 

G 
w 

− X 

G 
l 

)
+ rand 2 ×

(
c i − X 

G 
l 

)
(11) 

where rand 1 and rand 2 mean random number in the interval of [0, 1]; c i denotes the cluster center. 

By Eq. (11) , losers learn from the winner X w 

and cluster center c i . More specifically, the second term on the right side

of the equation rand 1 × ( X G w 

− X G 
l 
) is called cognitive component where samples lost competition update its position to- 

wards the local optimal through learning from winner X w 

. In addition, the third term rand 2 × ( c i − X G 
l 
) is termed as social

component where losers X l learn from the mean position of the cluster c i . 

3.1.1.2. Experience learning mechanism. Candidate solutions in the population of Jaya algorithm are iteratively updated by 

considering both the optimal solution and the worst solution, which could facilitate improving the convergence rate and lo- 

cal search ability, while the population diversity and global search ability of Jaya algorithm might decrease during the search 

process. To this end, an experience learning mechanism based on the information of other candidates in the population is 

proposed to enhance the population diversity and global exploration ability [25] . Specifically, the new candidate X 

′ 
i,j is gen-

erated based on the experience of another two different individuals X r 1 and X r 2 randomly selected from the population as 

follows 

X 

′ 
i, j = 

{
X i, j + rand ×

(
X r1 , j − X r2 , j 

)
, i f f ( X r1 ) < f ( X r2 ) 

X i, j + rand ×
(
X r2 , j − X r1 , j 

)
, otherwise 

(12) 

where X i,j means the value of the j -th variable for the current i th individual; rand is a random number taken from the

range of [0, 1]. 

3.1.1.3. Cauchy mutation mechanism. To address the problem that Jaya algorithm is prone to be trapped into local optimal 

solution, Cauchy mutation operation is introduced into basic Jaya algorithm. It is known that Cauchy distribution function 

has small peak at the origin point but long distribution at both ends. Thus, Cauchy mutation can generate a larger perturba-

tion near the current best individual. Compared with Gaussian mutation, Cauchy mutation has stronger perturbation ability 

to make it easier to jump out of the local optimum [26] . The standard Cauchy distribution function f e ( z ) is formulated as

follows 

f e ( z ) = 

1 

π

e 

e 2 + ( z − z 0 ) 
2 
, e > 0 , −∞ < z < + ∞ (13) 

where e is the scale parameter defining the half width at half of the maximum value; z 0 means the positional parameter

defining the distribution peak position. The best solution is updated using Eq. (16) 

X 

′ 
best = X best × ( 1 + Cauchy ( 0 , 1 ) ) (14) 

where Cauchy (0, 1) means a random number that obeys standard Cauchy distribution, z 0 = 0, e = 1. 

The characteristics of Cauchy distribution enable it to generate random numbers far from peak position. Therefore, the 

stochastic perturbation with the Cauchy mutation contributes to keep the diversity of Jaya algorithm and alleviate the pos- 

sibility of being trapped into the local optimum. 

3.1.1.4. Framework of improved jaya algorithm. Three main improvements including fuzzy clustering competitive learning 

mechanism, experience learning mechanism and Cauchy mutation mechanism are introduced into original Jaya algorithm. 

The flowchart of improved Jaya algorithm is presented in Fig. 2 . It can be observed that fuzzy clustering competitive learn-

ing mechanism is implemented before search stage, which is helpful to effectively utilize the population information and 

accelerate convergence rate. In addition, with the purpose of balancing the exploration and exploitation capacities in the 

search process, Jaya optimization by Eq. (6) and experience learning mechanism by Eq. (12) are implemented in a random

manner. Cauchy mutation mechanism is conducted to update the best-so-far solution to reduce the risk of falling into a 

local optimum to some extent. 

3.1.2. Adaptive search space reduction method 

Previous search space reduction methods can enhance the computational efficiency and identification accuracy with the 

idea of reducing the time spent on looking far outside the area where the optimal solution lies in. However, the prob-

lem of over-reduced search limits may be caused by simultaneously reducing the search space limits for all parameters. It 

was reported that more sensitive parameters are prone to be exactly identified [27] . Accordingly, an adaptive search space

reduction method is proposed and presented in following content. 

Before the predefined number of runs to reduce search space reached, I-Jaya algorithm performs R r independent runs 

with a large initial search space for sufficient exploration. At the beginning, the estimated value evidently deviates from their 

exactness. It is necessary to select reasonable number of runs R r since search limits of structural parameters are reduced
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Fig. 2. The flowchart of I-Jaya algorithm. 

 

 

based on a coarse estimation from previous runs. Subsequently, a set of identified solutions are sort out and the worst R w 

ones are discarded. The remaining ( R r − R w 

) solutions can be expressed as 

ˆ X = { X s | s = 1 , 2 , ..., R r − R w 

} (15) 

The weight coefficient w s of solution X s is calculated by 

w s = 

f it ( X s ) 

max { f it ( X s ) } s =1 , 2 ,...,R r −R w 

(16) 

where fit ( X s ) denotes the fitness value of X s . The weight coefficient w s is equal to 1 for X s with the best fitness value. 

Then, the weighted mean value μi and standard deviation σ i of the i th parameter ( i = 1, 2, ..., Dim ) can be computed

as follows 

μi = 

( 

R r −R w ∑ 

s =1 

w s X si 

) ( 

R r −R w ∑ 

s =1 

w s 

) −1 

(17) 

σi = 

√ √ √ √ 

( 

R r −R w ∑ 

s =1 

w s ( X si − μi ) 
2 

) ( 

R r −R w ∑ 

s =1 

w s 

) −1 

(18) 

The new trial search range [ Lb i ,Ub i ] of the i th parameter is defined as {
L b 

i 
= μ

i 
− W × σ

i 

Ub 
i 
= μ

i 
+ W × σ

i 

(19) 

where X si is the i th variable for the s -th solution; Dim denotes the number of parameters to be identified; W means the

window width, which regulates the magnitude of reduced search space. It is noted that constant W should be reasonably 

set to satisfy requirements including being sufficiently small to achieve convergence but adequately wide to make the actual 

solution remain within the new trial search space. 

To evaluate response sensitivity of unknown parameters, a sensitivity study is conducted by differentiating Eq. (1) with 

respect to elemental stiffness K i 

M 

∂ ̈u ( t ) 

∂K 

+ C 
∂ ˙ u ( t ) 

∂K 

+ K 

∂u ( t ) 

∂K 

= − ∂K 

∂K 

( u ( t ) + β ˙ u ( t ) ) (20) 

i i i i 
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where ∂ ̈u (t) 
∂K i 

, ∂ ̇ u (t) 
∂K i 

, ∂u (t) 
∂K i 

are the response sensitivity with respect to elemental stiffness K i . 

Response sensitivity with respect to damping coefficients α and β can be computed by 

M 

∂ ̈u ( t ) 

∂α
+ C 

∂ ˙ u ( t ) 

∂α
+ K 

∂u ( t ) 

∂α
= −M ̇

 u ( t ) (21) 

M 

∂ ̈u ( t ) 

∂β
+ C 

∂ ˙ u ( t ) 

∂β
+ K 

∂u ( t ) 

∂β
= −K 

˙ u ( t ) (22) 

Through Eqs. (20 - 22 ), the response sensitivity with respect to structural parameters are computed. After sensitivity anal- 

ysis, all parameters are divided into several Parts. Structural parameters have similar amplitude of sensitivity value in each 

Part. The search space limits of parameters in the Part with the highest sensitivity are first reduced. Subsequently, the re-

maining parameters will be more easily identified if more sensitive parameters have converged to the neighborhood of exact 

value. 

It is noted that the upper and lower limits of feasible solution in the next run should be ensured between the initial

search space [ Lb i ,Ub i ] 
init and the minimum search limit [ Lb i ,Ub i ] 

min 

[ Lb i , Ub i ] 
new = [ Lb i , Ub i ] 

init ∩ [ Lb i , Ub i ] 
tri ∪ [ Lb i , Ub i ] 

min 
(23) 

where [ Lb i ,Ub i ] 
tri means the trial search range; [ Lb i ,Ub i ] 

min = mean × (1 ± miniband ). The minimum band miniband is

defined as 0.1 to prevent premature caused by over-constrained search range. 

3.2. Local search stage 

Herein, three local mathematical optimizers including gradient based Levenberg-Marquardt method, sequential quadratic 

programming method, and non-gradient based Nelder-Mead simplex method, are briefly outlined, respectively. 

3.2.1. Levenberg-Marquardt method 

The Levenberg-Marquardt (LM) method is one of the most widely used algorithms to solve nonlinear least squares prob- 

lem. Although Newton’s method has fast convergence speed, it needs to calculate the Hessian matrix. In fact, it would be

complicated to calculate the second-order derivatives, especially for high-dimensional problems. The Gauss-Newton method 

can obviously improve computational efficiency by replacing the calculation of Hessian matrix with Jacobian matrix. LM 

method was proposed by introducing an identity matrix I into Hessian matrix. More detailed description about LM method 

can be easily found in Ref. [28] . 

3.2.2. Sequential quadratic programming method 

Sequential quadratic programming (SQP) method is considered one of the best methods for solving nonlinear program- 

ming (NLP) problems owing to quickly finding the optimal solution in the neighborhood. The basic idea of SQP method is

to transform the original nonlinear programming problem into a sequence of quadratic programming subproblem, which 

can be obtained after linearizing the nonlinear constraints. Although SQP method has powerful gradient search ability and 

fast convergence speed, it is susceptible to be trapped into local suboptimum if a good initial value is not provided. More

detailed description about SQP method can be found in Ref. [29] . 

3.2.3. Nelder-Mead simplex method 

Nelder-Mead simplex (NM) method is a popular non-gradient based local search algorithm for solving unconstrained 

optimization problem. For a n-dimensional minimization optimization problem, the simplex is initialized by randomly gen- 

erating ( n + 1) vertices and new simplex is obtained by replacing the worst vertices with newly generated vertices. There

are four main procedures of NM method, i.e., reflection, expansion, contraction, shrinkage. More detailed description about 

NM method is illustrated in Ref. [30] . 

3.3. Hybrid identification strategy 

Although heuristic optimization algorithms can explore predefined search space, the general disadvantage of these meth- 

ods is time-demanding owing to considerable number of potential solutions to be evaluated. To improve the convergence 

rate of I-Jaya algorithm, an adaptive search space reduction method is developed to decrease computational time on evalu- 

ating the candidates far away from the optimal solution. The proposed I-Jaya algorithm and adaptive search space reduction 

method (IJASR) aims to coarsely explore the relatively large search space in the global stage. It is known that local opti-

mizers, such as LM method, SQP method, NM method, have more strong ability to capture the quick right approach to the

nearest optimum than stochastic optimization algorithms, while these local search methods are prone to be trapped into 

local optimal if starting with a poor initial point. On the contrary, the proposed IJASR method has powerful ability of global

exploration, fast convergence speed in the early stage and insensitive to the initial point, while it might manifest unac- 

ceptable slow computational efficiency due to its stochastic nature of parameter searching, especially when the identified 
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Fig. 3. Hybrid identification strategy based on IJASR and local search method. 

 

 

 

 

 

 

 

 

 

 

 

 

solution approaches to the neighborhood of the global optimum. It seems to be an attractive strategy by combining IJASR 

and local search methods to benefit from the advantage of each algorithm and alleviate their weakness. 

Fig. 3 shows the flowchart of hybrid method with IJASR and local mathematical optimizers. There are two different search 

stages, namely, the rough global search stage and the intensive local search stage. In the global search stage, a sensitivity

study is first implemented to determine the sensitivity of unknown parameters. I-Jaya algorithm is independently performed 

for R r runs in the same search space, followed by the calculation of weighted mean and standard deviation of the identified

best solutions. Then, search space limits of unknown parameters are redefined by Eq. (19) in sequence according to their

sensitivity value. If the maximum number of runs complete, the identified best solution is taken as initial value in the

subsequent local search stage. Local optimizers LM, SQP and NM are utilized to identify high-quality potential solution by 

implementing intensive local search starting from the best estimate of IJASR method until predefined maximum iterations 

reached or the following convergence criteria Tol satisfied 

Er ror G i = 

Dim ∑ 

i =1 

| K G i 
−K G −1 

i | 
K G 

i 

Dim 

< T ol (24) 

where Dim is the number of unknowns to be identified. K 

G 
i 

and K 

G −1 
i 

stand for the identified parameter of the i th candidate

after G and ( G- 1) iterations, respectively. 

There are three different hybrid identification methods, denoted as IJASR-LM, IJASR-SQP, IJASR-NM, and their performance 

would be tested in the following studies. 

4. Numerical studies 

The performance of proposed I-Jaya algorithm is evaluated and compared with several state-of-the-art algorithms using a 

set of classical and CEC05 benchmark functions. In addition, a more complex 37-bar truss structure is utilized as the second

example to verify the effectiveness, efficiency and robustness of the hybrid identification strategy based on IJASR and local 

optimization methods. All studies are conducted in MATLAB 2018a on the Intel(R) Core i5–13600KF CPU @ 3.50 GHz PC with

16.00 GB RAM. 

4.1. Comparison of I-Jaya with other heuristic algorithms 

4.1.1. Classical benchmark functions 

To validate the performance of proposed I-Jaya algorithm, a representative set of classical mathematical benchmarks, 

as listed in Table 1 , are employed in this section. For the comparison purpose, GA, DE, Jaya algorithms are adopted, and

their parameters recommended from the literatures [31] and [32] are shown in Table 2 . The population size and maximum

number of iterations are 100 and 500. Termination threshold is set as 10 −10 . If maximum iteration is reached or the ob-

jective function value is less than the termination threshold, the iteration process will be stopped. Due to the stochastic 

characteristic of heuristic algorithms, statistical solutions based on 30 independent runs are used. 

The convergence curves of the mentioned four benchmark functions are presented in Fig. 4 and numbers of iteration for

GA, DE, Jaya, I-Jaya are listed in Table 3 . It can be observed that GA and DE have some difficulties in solving the Ackley and
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Table 1 

Four classical benchmark functions for tests. 

Number Name Range Dimension Type 

F1 Sphere [ −100, 100] 30 Uni-modal, Separable 

F2 Ackley [ −32, 32] 30 Multi-modal, Non-separable 

F3 Rastrigin [ −5.12, 5.12] 30 Multi-modal, Separable 

F4 Griewank [ −600, 600] 30 Multi-modal, Non-separable 

Table 2 

Parameters of four algorithms adopted for structural identification. 

Parameters GA DE Jaya I-Jaya 

Population size NP 100 100 100 100 

Maximum iterations G m 500 500 500 500 

Mutation operator 0.05 0.5 

Crossover operator 0.95 0.8 

Total evaluations 50,000 50,000 50,000 50,000 

Termination threshold 10 −10 10 −10 10 −10 10 −10 

Fig. 4. The convergence process of the mentioned four benchmark functions. 

 

Rastrigin functions since the identified value is far away from termination threshold 10 −10 when the maximum number of 

iterations is reached. Jaya algorithm has competitive or sometimes better performance than representative heuristic algo- 

rithms GA and DE. It is noted that Jaya algorithm is free from algorithm-specific parameters, which is beneficial to use for

the beginner. Furthermore, the proposed I-Jaya algorithm achieves faster convergence speed than other three methods with 

168, 212, 157, 160 iterations only, which clearly proves the effectiveness of three improvement mechanisms, namely, fuzzy 

clustering competitive learning, experience learning and Cauchy mutation. 

As a metaheuristic method, it is necessary for I-Jaya algorithm to conduct a study of diversity. Population diversity is 

measured by [33] 

Di v ersity = 

Dim ∑ 

i =1 

√ 

1 

NP 

NP ∑ 

i =1 

(
X i, j − X̄ j 

)2 
(25) 

where X̄ j stands for the mean value of dimension j in the whole population. 
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Table 3 

Number of iterations for GA, DE, Jaya, I-Jaya. 

Number 

Number of iterations 

GA DE Jaya I-Jaya 

F1 500 461 377 168 

F2 500 500 329 212 

F3 500 500 240 157 

F4 500 485 398 160 

Fig. 5. Results of diversity analysis on classical benchmark functions. 

 

 

 

 

 

 

 

 

 

 

The evolutions of population diversity of GA, DE and I-Jaya for benchmark functions including Sphere, Ackley, Rastrigin, 

Griewank, are illustrated in Fig. 5 . The axis x and axis y correspond to the number of iterations and the diversity, respec-

tively. Setting of parameters are as follows: population size NP = 30, Maximum iterations G m 

= 500. By Fig. 5 , it is observed

that before 200 iterations, the diversity values are relatively large, which stands for that the individuals in the population 

scatter in the search domain and concentrate on the exploration search. After 200 iterations, high diversity values of GA 

and DE indicate that the local search phase is not reasonably conducted. Instead, the diversity value of I-Jaya algorithm is

significantly small, which means the individuals gradually gather together and focus on the exploitation search. 

4.1.2. CEC benchmark tests 

CEC2005 functions are considered as an effective tool to test the performance of heuristic algorithm. Six representative 

functions, F1, F4 (unimodal functions), F10, F12 (multimodal biased functions), F13, F14 (expanded functions), as listed in 

Table 4 are employed. In order to verify the effectiveness of I-Jaya algorithm, the results from some recent advanced algo-

rithms are compared. These benchmark functions in CEC2005 are implemented on dimensions D = 10 and D = 50 for a

maximum of 10 0 0 × D function evaluations, and statistical solutions based on 30 independent runs are used. For dimen-

sion = 10, the optimization results by balanced teaching-learning-based optimization (BTLBO) algorithm [34] , bare-bone 

Gaussian tree seed algorithm (BGTSA) [35] , clustering based tree seeds algorithm (C-TSA) [33] , gray prediction evolution al-

gorithm based on the even difference (GPEAed) [36] and I-Jaya algorithm are listed in Table 5 . For dimension = 50, BGTSA

[35] , C-TSA [33] , Modified ABC [13] , IDRCEA [37] and I-Jaya algorithm are listed in Table 6 . There are some differences

in the compared algorithms because it is difficult to find several algorithms that calculate CEC2005 benchmark functions 

with dimensions 10 and 50 simultaneously. It can be noted from Table 5 and Table 6 that no algorithm can outperform on

all benchmark functions while I-Jaya algorithm can achieve more favorable results than other heuristic algorithms in most 

cases. 
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Table 4 

Information of the CEC2005 benchmarks functions. 

Number Function’s name Range Global value Type 

F1 Shift Sphere function [ −100, 100] −450 Unimodal function 

F4 Shift Schewfel’s problem 1.2 with noise in fitness [ −100, 100] −450 

F10 Shift Rotated Rastrigin’s Function [ −5, 5] −330 Multimodal biased 

function F12 Schwefel’s Problem 2.13 [- π , π ] −460 

F13 Expanded Extended Griewank’s plus Rosenbrock’s Function [ −3, 1] −130 Expanded function 

F14 Expanded Rotated Extended Scaffe’s [ −100, 100] −300 

Table 5 

Performance of BGTSA, C-TSA, IDRCEA, GPEAed, I-Jaya on CEC2005 benchmarks (10D). 

Num 

BGTSA C-TSA IDRCEA GPEAed I-Jaya 

Mean std Mean std Mean std Mean std Mean std 

F1 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 2.48E-06 1.17E-05 0.00E + 00 0.00E + 00 

F4 2.62E-14 8.31E-14 2.75E-21 1.05E-20 4.96E + 02 4.15E + 02 4.19E + 01 1.63E + 02 1.67E-15 2.96E-16 

F10 1.57E + 00 9.42E-01 9.88E + 00 2.83E + 00 1.27E + 01 6.59E + 00 1.27E + 01 7.14E + 00 1.46E + 00 8.49E-01 

F12 1.69E + 03 2.24E + 02 1.92E + 00 6.73E-01 2.34E + 02 5.13E + 02 3.56E + 04 1.60E + 04 1.25E + 00 3.14E + 01 

F13 1.33E + 00 6.66E-01 7.21E-01 8.83E-02 1.48E + 00 7.38E-01 1.37E + 00 9.39E-01 1.46E + 00 4.58E-01 

F14 1.57E + 00 1.94E-01 3.04E + 00 3.56E-01 3.96E + 00 3.26E-01 3.68 + 00 3.00E-01 1.32E + 00 1.75E-01 

Note: the bold value stands for the best identified value. 

Table 6 

Performance of BGTSA, C-TSA, Modified ABC, IDRCEA, I-Jaya on CEC2005 benchmarks (50D). 

Num 

BGTSA C-TSA Modified ABC IDRCEA I-Jaya 

Mean std Mean std Mean std Mean std Mean std 

F1 1.97E-15 6.02E-15 1.55E-27 8.11E-28 8.15E-16 1.07E-16 3.64E-04 2.84E-04 2.46E-16 5.36E-18 

F4 2.77E + 03 1.73E + 03 3.02E-02 8.81E-02 6.59E + 03 1.26E + 03 8.52E + 04 1.56E + 04 4.20E + 02 1.72E + 01 

F10 2.89E + 01 1.32E + 01 2.06E + 02 4.15E + 01 2.99E + 02 8.42E + 01 1.12E + 02 2.90E + 01 2.45E + 01 1.48E + 01 

F12 2.09E + 05 1.35E + 05 7.83E + 04 7.58E + 03 1.32E + 04 1.08E + 04 1.42E + 05 5.40E + 04 1.07E + 04 2.51E + 03 

F13 4.06E + 00 3.17E-01 7.71E + 00 6.29E-01 1.32E + 00 1.17E-01 3.42E + 01 7.99E + 00 4.46E + 00 2.78E + 01 

F14 1.31E + 01 2.21E-01 2.30E + 01 2.00E-01 2.26E + 01 4.01E-01 2.37E + 01 2.54E-01 1.11E + 01 1.78E-01 

Note: the bold value stands for the best identified value. 

Fig. 6. Friedman rank test for the CEC2005 benchmarks: (a) D = 10; (b) D = 50. 

 

With the purpose of evaluating the performance of the proposed I-Jaya algorithm from a statistical point of view, the 

non-parametric Friedman test [38] on the CEC2005 benchmarks is carried out. In this test, the mean errors of objective 

function values obtained by abovementioned algorithms are employed as the input. Frist of all, the Friedman test finds 

the rank of optimization algorithms for the individual problems. Then, the average rank is calculated to get the final rank

of each algorithm for the considered problems. Fig. 6 presents the mean ranks of different heuristic algorithms for the 

CEC2005 mathematical benchmarks. It is clearly observed that the proposed I-Jaya algorithm obtains the best rank among 

these heuristic algorithms with the least score. 
241 



G. Zhang, C. Wan, S. Xue et al. Applied Mathematical Modelling 121 (2023) 231–251 

Fig. 7. Numerical model of 37-bar truss structure. 

Fig. 8. The min-max normalization of sensitivity value for truss structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2. Identification with hybrid global-local method 

As presented in Fig. 7 , a relatively complex truss structure in Ref. [21] is employed as the numerical example to verify

the performance of the proposed global-local hybrid strategy. In this numerical simulation, the assumption of priori known 

mass parameter is used because of the assertion that mass can be estimated accurately enough from the structural drawing. 

A broad initial search space limits for unknown parameters is defined as half to double of their true values. The simply-

supported truss structure has 20 nodes and 37 elements in total, and its boundary condition is considered as a pin support

and roller support at node 1 and 20, respectively. The Young’s modulus, density and cross -sectional area of each bar are

2.1 × 10 11 N/m 

2 , 7.8 × 10 3 kg/m 

3 , 0.0016 m 

2 , respectively. The structure is excited by an ambient excitation with magnitude

of 200 N acting at nodes 6 in vertical direction. Accelerometers are installed at eight different locations, as highlighted in

Fig. 7 , to record dynamic responses with sampling rate of 20 0 0 samples/s and time duration of 2 s along the vertical

direction. 

The sensitivity analysis is initially conducted to determine the order of reducing search space limits of unknown param- 

eters. Sensitivity value of eight recorded measurements in 2 s with respect to structural parameters are computed. Fig. 8

presents the amplitude and distribution of response sensitivity with respect to element stiffness after the min-max normal- 

ization. As listed in Table 7 , all elements of simply-supported truss structure are relatively evenly divided into four different

Parts according to their similar sensitivity values. The search limits of the most influential parameters in Part 1 will be re-

duced at the 6th run, and these parameters are prone to be faster identified due to their standard deviations have small

dispersion. Subsequently, the search range of unknown parameters within more Parts are gradually reduced. In this way, the 

less decisive parameters to be explored are assigned a greater region of search space, which can alleviate the possibility of

wrong convergence. The last time of search space reduction method is implemented at the 30th run to redefine the search

limits of all structural parameters. 

The parameter settings of the proposed IJASR method are given as follows: population size NP = 20, maximum 

generations G m 

= 30; the number of total runs and evaluations are 30 and 18,0 0 0; the number of independent runs be-

fore search space reduction is R r = 6; the number of solutions to be discarded R w 

= 1; the weighted mean value and standard

deviation are calculated with R r − R w 

= 5 solutions; width of window λ= 4. After 30 runs, the final identified best value,
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Table 7 

The order of reduced search space limits according to response sensitivity. 

Part Domain of min-max 

normalized sensitivity 

Parameters to be identified Number of run 

to reduce limits 

Reduce search 

limits for Part 

1 [0.5, 1] β , K 6 , K 9 , K 10 , K 13 , K 14 , 

K 18 , K 20 , K 22 , K 26 

6 1 

2 [0.3, 0.5) K 1 , K 2 , K 7 , K 11 , K 12 , K 15 , K 16 , K 24 , K 30 12 1, 2 

3 [0.1, 0.3) α, K 4 , K 5 , K 8 , K 17 , K 21 , K 28 , 

K 29 , K 34 , K 37 

18 1, 2, 3 

4 [0, 0.1) K 3 , K 19 , K 23 , K 25 , K 27 , K 31 , K 32 , K 33 , K 35 , K 36 24, 30 1, 2, 3, 4 

Fig. 9. Identified stiffness and its reduced search space limits with IJASR method. 

Fig. 10. Identified stiffness and its search space of element 20. 

 

 

 

 

 

 

upper and lower search space limits are shown in Fig. 9 . It is observed that the identified best solution successfully ap-

proaches to the neighborhood of exact value. In addition, compared with the initial large search range [0.5, 2.0], the mean

lower and upper search space limits are refined to a more reasonable domain of [0.82, 1.19] by implementing the search

space reduction method five times. The underlying reason why the proposed IJASR method can acquire favorable results is 

further elaborated. Taking element 20 as an example, Fig. 10 illustrates the identification process of K 20 and its upper and

lower search limits with the number of runs. The better 5 solutions out of total 6 independent runs are chosen to determine

the search space of next run. The search space limits are gradually refined from initial [0.5, 2.0] to [0.54, 1.75], [0.68, 1.58],

[0.76, 1.36], [0.85, 1.14] and [0.89, 1.09], which corresponds to each implementation of search space reduction. It is noted 

that good identification results and superior search space limits are achieved using the proposed IJASR method. 
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Table 8 

Comparison of computational efficiency. 

Methods Objective function value Total evaluations Computational time (s) 

IBOA [21] 305 40,000 17,642.01 

Ham-IBOA [21] 686 20,000 9903.55 

IJASR-LM 901 23,301 2418.90 

IJASR-SQP 998 22,203 2361.54 

IJASR-NM 970 28,000 2998.25 

Table 9 

Comparison of computational accuracy (%). 

Methods 

0% noise 5% noise 10% noise 

Mean error Max error Mean error Max error Mean error Max error 

IBOA [21] 2.43 6.38 3.21 9.68 5.46 12.15 

Ham-IBOA [21] 0.86 1.62 1.89 4.87 3.02 6.42 

IJASR-LM 0.38 1.50 1.82 5.42 3.23 6.84 

IJASR-SQP 0.14 0.86 0.42 1.95 0.89 2.42 

IJASR-NM 0.21 1.05 0.69 2.34 1.54 4.02 

 

 

 

 

 

 

 

 

Then, local mathematical methods including gradient based LM method, SQP method, and non-gradient based NM 

method are employed to further fine-tune the quality of solution starting from the best solution obtained by the proposed 

IJASR method. The predefined number of iterations for LM, SQP, NM methods are 70, 100, 10,000, respectively. Only IBOA 

and Ham-IBOA obtained in Ref. [21] are compared with the proposed global-local hybrid strategy, namely, IJASR-LM, IJASR- 

SQP, IJASR-NM. As listed in Table 8 , the identification efficiency and total computational time are investigated. It is found

that hybrid global-local identification methods present more favorable performance than IBOA and Ham-IBOA. Besides, the 

gradient based local optimizers LM and SQP are more efficient than non-gradient based NM method. Especially, IJASR-SQP 

method achieves the most satisfactory identification results with maximum objective function value and minimum compu- 

tational time. 

In addition, Gaussian white noise is considered as follows 

ü mea = ü clean + Nl × N noise RMS ( ̈u clean ) (26) 

where Nl stand for the given noise level; N noise represents the randomly generated noise vector with Gaussian zero mean

and unit standard deviation; RMS( ̈u clean ) denotes the root-mean-square value of the clean measurement ü clean . Three lev- 

els of noise 0%, 5% and 10% are used to consider the adverse effect of measurement noise on the computational accuracy.

The identified errors under three levels of noise are shown in Table 9 . It is noted that IBOA obtains unsatisfactory perfor-

mance in consideration of more than 6% false identification for the noise-free case. Ham-IBOA and IJASR-LM are able to 

accurately identify structural parameters without noise but more than 6% maximum errors are observed when 10% noise 

case is considered. In contrast, the proposed hybrid global-local methods, IJASR-SQP, IJASR-NM, can provide more pleasant 

identification results with slight mean error. More specifically, the identified mean and maximum errors of IJASR-SQP are 

only 0.89% and 2.42% even for 10% noise case, which indicates the superiority of IJASR-SQP method. 

In summary, it can be concluded that hybrid global-local identification strategy, roughly approaching to neighborhood of 

optimal solution by proposed IJASR method and then taking the identified best solution as initial point in the subsequent 

local search stage, provides a feasible approach to identify unknown parameters for large-scale and complex structures. Tak- 

ing the identification accuracy and computational efficiency into consideration, the proposed IJASR-SQP method can provide 

more accurate identification result with the least computational times than IBOA, Ham-IBOA, IJASR-LM, IJASR-NM. 

5. Experimental study 

Structural health monitoring has achieved significant progress through various theoretical and experimental researches, 

whereas these works are basically based on different engineering structures and experimental conditions, rendering it quite 

difficult to evaluate the performance of different identification methods. To deal with this problem, a well-known benchmark 

structure was established as a platform to consistently assess new proposed structural parameter identification methodolo- 

gies before real-life applications. Herein, the steel grid benchmark structure is employed to further validate the effectiveness 

of proposed hybrid global-local identification methods. 

As presented in Fig. 11 (a) [39] , the physical model of benchmark structure has a two-span continuous beam across the

middle supports, and its total length and width are 5.49 m and 1.83 m. The sections for girders, beams and columns are

S3 × 5.7, S3 × 5.7 and W12 × 26, respectively. The Young’s modulus and mass density of steel grid benchmark structure 

are 2.1 × 10 11 N/m 

2 and 7850 kg/m 

3 . Fig. 11 (b) shows the finite element model has 14 nodes and 19 elements. Hinge

connections, allowing rotation in a certain direction and restraining the other degrees of freedom, are considered as the 

boundary condition of support location at nodes 1, 4, 7, 8, 11, 14 [40] . The structure is excited by an ambient force acting
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Fig. 11. The steel grid benchmark structure: (a) laboratory model; (b) numerical model. 

Table 10 

The order of reduced search space limits according to sensitivity value. 

Part Domain of min-max 

normalized sensitivity 

Parameters to be 

identified 

Number of run to 

reduce limits 

Reduce search 

limits for Part 

1 [0.6, 1] β , K 1 , K 2 , K 7 , K 8 6 1 

2 [0.2, 0.6) α, K 3 , K 4 , K 10 , K 14 , K 15 12 1, 2 

3 [0.05, 0.2) K 5 , K 9 , K 11 , K 13 , K 16 , K 17 18 1, 2, 3 

4 [0, 0.05) K 6 , K 12 , K 18 , K 19 24, 30 1, 2, 3, 4 

 

 

 

 

 

 

at node 3 in vertical direction. Six accelerometers are instructed at nodes 2, 5, 9, 10, 12, 13 to record dynamic responses

for 600 s with sampling frequency of 400 Hz along the vertical direction. More details about this structure can be found in

Burkett [41] . 

Initially, sensitivity analysis is carried out to determine the sequences of reducing search limits of unknown parameters 

by calculating sensitivity value of six recorded measurements in 2 s with respect to structural parameters. The amplitude 

and distribution of min-max normalized sensitivity with respect to element stiffness for steel grid benchmark structure is 

displayed in Fig. 12 . As listed in Table 10 , all elements are relatively evenly divided into four different Parts according to

its similar domain of sensitivity [0.6, 1], [0.2, 0.6), [0.05, 0.2), [0, 0.05). Only search range of elements within Part 1 will be

reduced at the 6th run to alleviate the possibility of over-reducing search space limits. Subsequently, the search limits of 

unknown parameters within more Parts are gradually reduced in the order presented in Table 10 . 

In this study, parameter settings of the proposed IJASR method are listed as follows: population size NP = 20, maximum

generations G m 

= 40, total runs and evaluations are 30 and 24,0 0 0; R r = 6, R w 

= 1, width of window λ= 4. After 30 runs, the
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Fig. 12. The min-max normalized sensitivity value for steel grid benchmark structure. 

Fig. 13. The identification best value and reduced search space limits for grid benchmark structure. 

Table 11 

Identification stiffness errors for the steel grid benchmark structure under three noise levels (%). 

Methods 

0% noise 5% noise 10% noise 

Mean error Max error Mean error Max error Mean error Max error 

IBOA [21] 2.03 5.48 2.92 8.79 3.82 11.87 

Ham-IBOA [21] 0.63 1.28 1.52 4.11 2.14 6.05 

IJASR-LM 0.32 1.08 1.87 5.78 3.37 11.87 

IJASR-SQP 0.13 0.38 1.40 3.11 2.84 6.45 

IJASR-NM 0.30 1.05 1.92 5.26 3.22 10.72 

IJASR-I-Jaya 0.69 1.59 2.44 6.69 4.68 15.92 

 

 

 

 

 

 

identified value of unknown parameters and its reduced search space limits are shown in Fig. 13 . It is found that the accurate

results could be acquired with the maximum error of less than 3.5%, and average lower and upper search space limits are

[0.887, 1.123]. The identified best values are regarded as the initial point for LM, SQP and NM methods in the subsequent

local search stage. 

The number of iterations for LM, SQP, NM and I-Jaya methods are predefined as 60, 50, 50 0 0, 10 0, respectively. IBOA and

Ham-IBOA from Ref. [21] are utilized to compare the performance of the proposed hybrid identification methods. Table 11 

provides the identification errors for the steel grid benchmark structure under 0%, 5% and 10% noise levels. In the noise free

case, IJASR-SQP obtains the most satisfactory results with small maximum and mean errors of 0.38% and 0.13% among six 

different methods. When contaminated with 10% noise, better performance is obtained by Ham-IBOA and IJASR-SQP than 

other four methods, with less than 6.5% and 2.9% of maximum and mean errors. In addition, the computational efficiency is
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Table 12 

Comparison of computational efficiency for four identification methods (noise free). 

Methods Objective function value Total evaluations Computational time (s) 

IBOA [21] 472 20,000 10,182.06 

Ham-IBOA [21] 709 10,000 5122.74 

IJASR-LM 983.46 26,602 2620.96 

IJASR-SQP 999.81 26,344 2581.87 

IJASR-NM 988.46 29,000 2886.49 

IJASR-I-Jaya 970.57 30,000 2995.75 

Fig. 14. Numerical model of 16-element simply supported beam. 

 

 

 

 

 

 

 

 

 

 

 

also studied for IBOA, Ham-IBOA, IJASR-LM, IJASR-SQP, IJASR-NM and IJASR-I-Jaya, as listed in Table 12 . It is obviously noticed

that global methods, i.e., IBOA and Ham-IBOA takes more computation time than global-local hybrid methods. For two stage 

methods, the convergence speed of IJASR-I-Jaya is lower than IJASR-LM, IJASR-SQP, IJASR-NM since an initial population is 

regenerated for the starting value as opposed to the local optimization methods LM, SQP and NM, where a single good

initial point is directly utilized from the previous global search stage. 

In brief, hybrid global-local methods based on IJASR and local mathematical optimizer can accurately identify the un- 

known structural parameters with limited noise-polluted measurements. In particular, the proposed IJASR-SQP method can 

provide better identification results with less computational time than IBOA, IJASR-LM, IJASR-NM, IJASR-I-Jaya. Thus, the 

performance of proposed global-local identification methods is effectively validated. 

6. Application in structural damage identification 

Structural damage identification is a fundamental issue of the structural health monitoring, which can be formulated as 

an optimization problem in which the objective function is defined as the difference between the measured responses and 

the estimated responses from the finite element model. The inverse identification could be solved by minimizing the objec- 

tive function using the proposed hybrid global-local identification methods. In this section, the effectiveness of the proposed 

methods in structural damage identification problem is validated. A numerical model of simply-supported beam is presented 

in Fig. 14 , and its length, width and height are 960 mm, 50 mm and 3 mm, respectively. There are 16 identical elements and

17 nodes in total, resulting in 60 mm length for each element. Euler-Bernoulli beam theory is adopted with negligible shear

strain considering the large ratio of length to height. Intermediate nodes (2–16) have two degrees of freedoms of vertical 

translation and rotation, while only rotation is considered for the boundary nodes. The Young’s modulus of steel material 

is E = 2.1 × 10 11 N/m 

2 and its density is ρ= 7850 kg/m 

3 . It is assumed that a random white Gaussian noise with zero

mean and unit standard deviation is vertically applied at node 6, and six accelerometers at nodes 2, 4, 8, 11, 13 and 15, as

highlighted in Fig. 14 , are instrumented to record translational acceleration responses for 2 s with a sampling rate of 20 0 0

samples/s. 

Damage in the simply supported beam is simulated as reduction in flexural stiffness. The beam width in elements 8 and

12 is reduced to 26 mm and 38 mm from 50 mm. The damage extent of the i th element can be defined as 

D i = 

E I i _ u − E I i _ d 
EI i _ u 

× 100% (27) 

where D i is the damage extent of element i ; EI i _ u and EI i _ d are the flexural stiffness of the undamaged and damaged element

i . The damage extent in element 8 and 12 to be identified are 48% and 24% due to the reduction of element width. 

In order to determine the sequences of reducing search limits of unknown parameters, sensitivity analysis is carried 

out by calculating sensitivity value of recorded accelerations in 2 s with respect to each structural parameter. The min-max 

normalized sensitivity value for the simply supported beam structure is displayed in Fig. 15 . As listed in Table 13 , parameters

to be identified are divided into three different Parts according to its similar domain of sensitivity [0.4, 1], [0.03, 0.4), [0,
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Fig. 15. The min-max normalized sensitivity value of simply supported beam structure. 

Table 13 

The order to reduce search space limits according to sensitivity value. 

Part Domain of min-max 

normalized sensitivity 

Parameters to be 

identified 

Number of run 

to reduce limits 

Reduce search 

limits for Part 

1 [0.4, 1] α, β , K 4 , K 5 , K 6 , K 7 6 1 

2 [0.03, 0.4) K 1 , K 2 , K 3 , K 8 , K 9 , K 10 12 1, 2 

3 [0, 0.03) K 11 , K 12 , K 13 , K 14 , K 15 , K 16 18 1, 2, 3 

Table 14 

Identification error with IJASR for different run numbers and noise levels (%). 

Run 

number 

0% noise 5% noise 10% noise 

Mean error Max error Mean error Max error Mean error Max error 

1 15.67 40.74 18.42 41.75 20.48 40.76 

7 10.24 32.82 11.86 34.62 13.03 33.74 

13 6.45 21.54 7.75 22.40 8.61 23.46 

19 2.48 11.41 3.43 13.72 4.09 14.29 

 

 

 

 

 

 

 

 

 

 

0.03). Only search range of elements within Part 1 will be reduced at the 6th run to alleviate the possibility of over-reducing

search space limits. Then, the search space limits of unknown parameters within Part 2 and Part 3 are gradually reduced in

the order presented in Table 13 . 

The parameter settings of the proposed IJASR method are given as follows: population size NP = 20, maximum 

generations G m 

= 30, total runs = 19, R r = 6, R w 

= 1, R r − R w 

= 5, λ= 4. The identified results with the proposed IJASR method

under 0%, 5% and 10% noise levels are listed in Table 14 . As the level of noise increases, larger errors are observed. For

the noise free case, in the 1st run, large identification errors are observed since candidate solutions are randomly gener- 

ated in the initial broad domain, with mean and maximum errors of 15.67% and 40.74%. Subsequently, identification errors 

are roughly decreased in an iterative way owing to the gradually reduced search limits. In the 19th run, promising results

of structural parameters are identified by the proposed IJASR method. However, local optimization methods are needed to 

further improve identification accuracy considering more than 11% maximum error for three levels of noise. 

The identified best value using IJASR is taken as the initial point for LM, SQP and NM methods in the subsequent local

search stage. The number of iterations for LM, SQP, NM are set as 50, 50, 50 0 0, respectively. The identified damage extents

for 0%, 5% and 10% noise cases are presented in Fig. 16 . For IJASR-SQP method, with 0%, 5% and 10% noise contaminated

measurements, the damage extents are 48.13%, 46.31% and 47.74% in element 8 and 23.73%, 23.96% and 23.85% in element 

12. Similarly, the identified damage extents in elements 8 and 12 with IJASR-LM and IJASR-NM are also very close to the

corresponding exact values of 48% and 24%. As shown in Table 15 , the maximum identification error is less than 5% even

for the 10% noise case, which indicate that the proposed global-local hybrid strategy can accurately locate and quantify 

structural damages even with noisy measurements. 

By the numerical study on a simply supported beam structure, it is concluded that the proposed hybrid algorithms 

including IJASR-LM, IJASR-SQP, IJASR-NM, could be viewed as effective tools to solve the structural damage identification 

problem. 
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Fig. 16. Identification results for the simply-supported beam: (a) 0% noise; (b) 5% noise; (c) 10% noise. 

Table 15 

Mean and maximum identification errors for the simply-supported beam (%). 

Methods 

0% noise 5% noise 10% noise 

Mean error Max error Mean error Max error Mean error Max error 

IJASR-LM 0.57 1.93 1.50 4.39 1.74 4.96 

IJASR-SQP 0.17 0.73 0.86 2.21 1.01 2.90 

IJASR-NM 0.61 1.34 1.52 4.46 2.17 4.73 

(

(

(

 

(

7. Conclusions 

In this paper, a novel hybrid identification method, combining the powerful global exploration capacity of population- 

based improved Jaya algorithm and strong local exploitation capacity of gradient or non-gradient based methods, for struc- 

tural health monitoring is proposed and investigated. In one aspect, the original Jaya algorithm is improved by introducing 

fuzzy clustering competitive learning mechanism, experience learning mechanism and Cauchy mutation mechanism. Be- 

sides, with the purpose of reducing computational time on evaluating the candidates far away from the optimal solution, 

the adaptive search space reduction method is developed to reduce the search space limits of unknown parameters. In the 

other aspect, three local optimizers LM, SQP and NM are employed in local search stage to identify high-quality potential 

solution starting from the identified best estimate of IJASR method. In order to validate the feasibility and the effectiveness 

of the proposed methods, benchmark functions and 37-bar truss structure, as well as an experimental study of steel grid 

benchmark structure are adopted. Some interesting conclusions can be summarized as follows: 

1) Compared with GA, DE, Jaya, the proposed I-Jaya algorithm can achieve faster convergence speed in classical benchmark 

functions. The results of CEC benchmarks show improved performance owing to introducing fuzzy clustering competitive 

learning, experience learning and Cauchy mutation mechanisms. 

2) The numerical and experimental studies demonstrate that the proposed IJASR method can improve the identification 

accuracy and efficiency for more complex structures based on I-Jaya and adaptive search space reduction method by 

spending more computational resources on evaluation of the candidates close to promising search space limits. 

3) The hybrid global-local identification strategy, coarsely finding a favorable solution by IJASR method in the global search 

stage, and then taking it as initial point for local optimization methods in the local search stage, is proved feasible and

effective to identify unknown parameters for relatively large-scale and complex structures. 

4) Taking the identification accuracy and computational efficiency into consideration, the proposed IJASR-SQP method can 

achieve more superior parameter identification results with less computational time than IJASR-LM, IJASR-NM, even with 

incomplete and 10% noise-polluted measurements. 

Structural parameters are successfully identified with the proposed hybrid strategy, while optimal sensor placement and 

uncertainties, such as modeling error, time-varying environmental condition, boundary stiffness reduction etc., are not con- 

sidered. These issues would be investigated on more complex and large-scale engineering structures in the future study. 
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