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A B S T R A C T   

To solve the optimization-based structural damage identification problem, a novel hybrid algorithm based on 
Jaya and differential evolution algorithm (HJDEA) is proposed to detect, locate and quantify structural damages 
by effectively incorporating the powerful local exploitation capacity of Jaya algorithm and global exploration 
capability of differential evolution. Meanwhile, Hammersley sequence initialization and Lévy flight search 
mechanism are introduced into HJDEA to further improve convergence rate and refining the quality of the best 
solution. Four different algorithms, genetic algorithm, particle swarm optimization, Jaya and the proposed 
HJDEA are employed for comparative study. In addition, the objective function is established by adjacent ac
celeration correlation function so as to avoid false identification caused by defining improper reference point. 
The performance of the proposed damage identification strategy based on HJDEA and adjacent acceleration 
correlation function is investigated with numerical examples involving an 8-DOF lumped mass model and a 
cantilever beam, as well as an experimental study of the ASCE benchmark structure under white noise excitation. 
Results show that the proposed hybrid identification method is accurate, efficient and robust in the identification 
of the damage existence, location and severity of stiffness and mass parameters even with partial output-only 
responses and 20% noise-polluted measurements.   

1. Introduction 

Major civil engineering structures, such as super high-rise buildings, 
large-span spatial structures and bridges, nuclear power plants, offshore 
production platforms, and underground comprehensive pipe galleries, 
have a design service life of over decades or even one hundred years. 
During the long-term service period, structures would inevitably accu
mulate damages due to earthquakes, typhoons, as well as the coupling 
effect of adverse factors such as environmental erosion, material 
degradation, corrosion and overload. If the damaged members are not 
detected and repaired in time, such potential threat may lead to the 
collapse of the whole structure, causing catastrophic accidents. There
fore, it is of great theoretical and practical significance to conduct 
structural health monitoring and damage identification to ensure the 
structural safety, meanwhile reduce the operation and maintenance 

costs. 
After decades of development, considerable number of damage 

identification methods have been proposed, among which the vibration- 
based damage identification methods are able to inversely identify 
structural changes for the physical properties of stiffness, mass, damp
ing, etc., with its dynamic responses (displacement, velocity, accelera
tion, strain) collected from sensors embedded in the structure, and 
fruitful research results are achieved [1]. They can be broadly divided 
into two categories for the vibration-based damage identification 
methods, namely frequency domain and time domain methods. Some 
frequency domain methods have been widely applied for structural 
damage assessment especially for the case of unknown input informa
tion. However, modal indexes, such as natural frequencies [2], mode 
shapes [3], modal strain energy [4], mode shape curvature [5], may 
have their inherent disadvantages. In fact, natural frequencies as a 
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global index of structural vibration characteristics are insensitive to the 
local or minor damages of structural members. Compared with the 
natural frequencies, high-order mode shapes are much sensitive to local 
damages. However, high-order modes are difficult to be accurately ac
quired and susceptible to be polluted by measurement noise. Besides, it 
might be challenging to identify structural damage with these model 
data when affected by environment variation. In contrast, numerous 
time domain methods have been developed to detect structural damage 
directly using raw measurement responses. Although the least square 
method [6], the extended Kalman filter [7], the particle filter [8], the 
response sensitivity method [9] and wavelet analysis [10] etc. have 
proven their capacity to identify structural damage, most of aforemen
tioned traditional methods generally require a good initial point or 
appropriate gradient information, which adversely affects their practical 
application in large-scale and complex structures. 

For most of structural identification methods in time domain, the 
information of input excitation and output responses are generally 
required simultaneously. However, the time history of excitations 
applied to engineering structures, such as wind load, traffic load, are 
difficult to be directly measured, whereas some efforts have been made 
to successfully identify the damages only with the structural output re
sponses without excitation measurement. A structural damage identifi
cation method based on the cross correlation function amplitude vector 
was proposed [11], and the experimental results of a composite beam 
model verified its ability to locate damages under steady random exci
tation. A modified covariance of covariance matrix-based damage 
identification method was developed [12], and the numerical results of 
a simply supported beam indicated that this method was insensitive to 
noise. In addition, an auto/cross-correlation function of acceleration- 
based method was presented to identify the structural damage under 
multiple random excitations [13]. On this basis, correlation functions 
and four evolutionary algorithms were combined to identify structural 
parameters [14]. However, reference point is necessarily defined and 
plays an important role in these researches. If the response at the 
reference point has poor sensitivity to the structural damage, identifi
cation accuracy of cross-correlation function may be adversely affected 
[15]. To address this deficiency, a new method based on adjacent ac
celeration correlation function is introduced, which do not need to pre- 
define reference point. Accordingly, the proposed method can avoid 
obtaining wrong damage identification results caused by selecting 
inappropriate reference points. 

In recent years, with the advancement of available computational 
capacity, non-traditional identification methods, e.g., neural network 
methods and heuristic optimization algorithms, have received 
increasing attention and become attractive alternative strategies. Neural 
networks have the features of parallel computing, self-learning, 
nonlinear mapping and robustness, presenting pleasant computational 
results in the damage identification of hyperbolic cooling towers [16] 
and bolt-loosening [17], while significant number of training samples 
and demanding computational resources are needed. Compared with 
traditional methods, some of the well-known heuristic optimization al
gorithms such as genetic algorithm (GA) [18], particle swarm optimi
zation (PSO) [19] algorithm, differential evolution (DE) algorithm [20], 
evolutionary strategy [21], have more powerful performance to deal 
with multi-objective, nonlinear, discontinuous or discrete complex 
optimization problems. Accordingly, heuristic algorithms have attracted 
increasing attention in the field of structural damage identification due 
to their advantages of strong search ability, ease of implementation and 
loose initial conditions. However, it should be noted that structural 
damage identification is a typical inverse problem with limited output 
but considerable unknowns to be identified, which may pose some 
challenges to above-mentioned heuristic algorithms, especially taking 
the environmental noise, incomplete measurements, modelling error, 
etc. into account. Therefore, more population-based metaheuristic al
gorithms, such as ant colony optimization [22], frog-leaping algorithm 
[23], artificial bee colony algorithm [24], butterfly optimization 

algorithm [25], grey wolf optimization algorithm [26], whale Optimi
zation Algorithm [27], are increasingly developed and employed. These 
novel algorithms have succeeded in solving various optimization prob
lems, such as training wavelet neural networks [28], structural param
eters identification [29] and cloud computing resource scheduling [30], 
but considerable computational time still have to be consumed. More 
importantly, for the aforementioned swarm intelligence optimization 
algorithms, the algorithm-specific parameters are generally required, 
which would dramatically affect its effectiveness to solve optimization 
problems [31]. Possibly, changing a single algorithm parameter may 
result in evident alteration of the computational results. In other words, 
unsatisfied identification results or local optimal solution will be ob
tained if algorithm parameters are set inappropriately. Therefore, 
repeated trial-and-error procedures are usually required to find suitable 
coefficients before solving different optimization problems, which 
would inevitably waste considerable computational resources. 

An emerging yet powerful swarm intelligence optimization algo
rithm without any algorithm-specific parameters except two common 
parameters, i.e., population size and number of maximum iterations, 
was proposed by Rao and named Jaya algorithm [32]. The core idea of 
Jaya algorithm is that offspring moves toward the optimal solution and 
meanwhile away from the inferior solution, resulting in progressive 
improvement for the quality of solutions. Diverse real-world optimiza
tion applications have been achieved by Jaya algorithm, e.g., parame
ters identification of photovoltaic cell and module models [33], 
optimization of shell-and-tube heat exchangers [34], design of dual- 
input power system stabilizer [35], job-shop scheduling problem opti
mization [36] and text document clustering [37]. Despite the fact that 
Jaya algorithm has demonstrated better performance than genetic al
gorithm, particle swarm optimization, teaching optimization algorithm 
and artificial bee colony algorithm in standard function test and some 
engineering optimization design, it still suffers by the problems of slow 
convergence speed and easy to be trapped into local optimal solution 
[38]. The simple mutation mechanism of basic Jaya algorithm may pose 
challenges of application in solving the optimization-based structural 
damage identification problem, especially for the large-scale and com
plex structural systems where considerable number of unknown pa
rameters and degrees of freedom involved. In recent years, there have 
been some studies to improve the performance of Jaya algorithm Yu 
et al. [39] proposed a performance-guided Jaya algorithm by intro
ducing individual performance quantification and self-adaptive chaotic 
perturbation mechanisms. Farah et al. [40] embedded chaotic sequences 
into Jaya algorithm to alleviate the drawbacks of premature conver
gence, demonstrating more robust performance on the test functions 
than other algorithms. Warid et al. [41] developed a novel quasi- 
oppositional modified Jaya algorithm as a promising method to solve 
different multi-objective optimal power flow problems. 

In addition to further exploring new improvement mechanisms to 
enhance the optimization capacity of Jaya algorithm, hybrid algorithm 
by integrating different swarm intelligence algorithms provides another 
attractive way with a large number of successful applications, such as 
hybrid particle swarm optimization with improved Nelder–Mead algo
rithm [42], hybrid butterfly optimization and differential evolution al
gorithm [43], hybrid charged system search and colliding bodies 
optimization algorithm [44], hybrid difference grey wolf algorithm 
[45]. In this study, a hybrid algorithm based on Jaya algorithm and 
differential evolution algorithm (HJDEA) is proposed by effectively 
incorporating the merits of the exploitation capability of Jaya algorithm 
and exploration capability of differential evolution algorithm. Besides, 
population initialization with Hammersley sequence is employed to 
increases the diversity of the population and the convergence speed of 
hybrid algorithm. Lévy flight search mechanism is implemented to 
refine the quality of the optimal solution and escape from the local 
optimum. Thus, for, the balance between exploiting the previous region 
and exploring new search domain might be better achieved than original 
Jaya algorithm. The proposed HJDEA has powerful global exploration 
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capacity, fast convergence speed in the early stage, while it might 
manifest unacceptable slow computational efficiency due to its sto
chastic characteristic of parameter searching, especially when the 
identified solution approaches to the neighborhood of the global 
optimum. 

The local damages of structures are considered as reduction of 
elemental stiffness parameters, and the alteration of mass parameters is 
directly ignored in the previous studies [42,43]. However, structural 
local damages may be accompanied by the simultaneous reduction of 
mass and stiffness parameters owing to the local spalling of concrete or 
elements removed from structure etc. In addition, in some circum
stances, it is quite difficult to visually inspect whether the mass pa
rameters are changed [46]. Thus, to more accurately express the 
structural damage model, it is suggested that both the variation of 
stiffness parameters and mass parameters be considered. 

In this paper, a novel damage identification strategy based on pro
posed HJDEA and adjacent acceleration correlation function is proposed 
to simultaneously identify the alterations of both stiffness and mass 
parameters with output-only responses under white noise excitation. In 
the proposed hybrid algorithm, the powerful local search capability of 
Jaya and global search capability of DE are effectively combined. 
Meanwhile, other improvements including Hammersley sequence 
initialization and Lévy flight search mechanism are also introduced. 
Adjacent acceleration correlation function is developed to establish the 
objective function. First, the performance of the proposed HJDEA is 
evaluated and compared with GA, PSO and Jaya algorithms by numer
ical studies on an 8-DOF lumped mass model. Then, the effectiveness of 
proposed reference point-free method on accuracy and efficiency of 
damage identification is validated with a cantilever beam structure. In 
addition, the ASCE Benchmark structure are employed to test the 
applicability of the proposed output-only method based on HJDEA and 
adjacent acceleration correlation function to structural damage identi
fication. Finally, to further accelerate convergence rate and improve 
identification accuracy, a hybrid approach based on the proposed 
HJDEA and gradient search method is proposed and investigated with 
the attractive idea of converging to the region of optimal solution by 
HJDEA and then taking it as initial values in the subsequent gradient 
search. 

2. Identification algorithms 

In this section, basic Jaya algorithm and differential evolution are 
briefly introduced, respectively. Then, the hybrid Jaya and differential 
evolution algorithm is proposed and described in detail. 

2.1. Jaya algorithm 

Jaya algorithm is a recently proposed global search-based swarm 
intelligence optimization algorithm to solve constrained and uncon
strained optimization problems. A distinctive feature of Jaya algorithm 
is that algorithm-specific parameters, such as mutation operator, 
crossover operator, inertia weight, learning factors, are not required. 
The structure of Jaya algorithm is presented in Fig. 1, which can be 
roughly divided into four steps: initialization, individual updating, 
greedy selection, and result output. 

Jaya algorithm randomly initializes population in the predefined 
search space as follows. 

Xi,j = Li,j + rand(0, 1) ×
(
Ui,j − Li,j

)
(1)  

where Ui,j and Li,j stand for the upper and lower bound of the search 
limits, respectively; rand(0,1) is a random number taken from the range 
of [0, 1]. 

After the step of initialization, fitness function evaluations are 
implemented and ranked for all candidate solutions in the current col
ony. Subsequently, the best individual Xbest and the worst one Xworst can 
be easily determined. Then, individuals are updated to generate 
offspring X′

i,j,G with the best and the worst candidates by following 
equation. 

X ′

i,j,G = Xi,j,G + rand1 ×
(
Xbest,j,G −

⃒
⃒Xi,j,G

⃒
⃒
)
− rand2 ×

(
Xworst,j,G −

⃒
⃒Xi,j,G

⃒
⃒
)

(2)  

where Xi,j,G and 
⃒
⃒Xi,j,G

⃒
⃒ denote the j-th variable of the i-th candidate so

lution at the G-th iteration and its absolute value, respectively; rand1 and 
rand2 stand for random numbers taken from the interval [0, 1]; Xbest,j,G 

and Xworst,j,G represent the value of the j-th variable for the best and worst 
candidate solutions in iteration of G, respectively; On the right side of 
Eq. (2), the second term rand1 ×

(
Xbest,j,G −

⃒
⃒Xi,j,G

⃒
⃒
)

implies the tendency 
of candidates to approach the optimal solution while the third term 
rand2 ×

(
Xworst,j,G −

⃒
⃒Xi,j,G

⃒
⃒
)

indicates the trend of candidates to move 
away from the worst solution. 

The third step is greedy selection, which can make the solution with 
better fitness function value survive to next generation by comparing the 
new solution with the previous one. 

Xi,G+1 =

⎧
⎨

⎩

X′

i,G f (X ′

i,G)⩽f (Xi,G)

Xi,G otherwise
(3) 

Step 1. Initialization 
Predefine the population size NP, the dimension of variables Dim, maximum generation Gm
Randomly produce initial population with Eq. (1) 
Define fitness function 

Step 2. Individual updating 
While maximum generation Gm is not reached do 

Compute fitness values and find the best individual bestX  and the worst individual worstX
For candidate i = 1 to NP do 
  For variable j=1 to Dim do 

Produce random number in the interval of [0, 1] 
Update individual ,i jX  with Eq. (2) 

  End for 
 Evaluate the fitness value of the updated individual   

End for 
Step 3. Greedy selection 

Implement greedy selection strategy to keep better solution 
Update current number of iterations

End while   
Step 4. Result output   

Output the best solution and optimal value 

Fig. 1. The structure of Jaya algorithm.  
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where Xi,G+1 and Xi,G mean the i-th individual at G-th and (G + 1)-th 
iteration, respectively; X′

i,G is the updated value ofXi,G; f denotes fitness 
function evaluation. 

The second and third steps will be performed until the convergence 
criterion satisfied or the predefined maximum iteration number 
reached. Finally, output the identified optimal solution. 

2.2. Differential evolution algorithm 

As a typical representative of stochastic search algorithms, differ
ential evolution algorithm has powerful global optimization capacity. 
After initializing the population, mutation operation is implemented 
through differential strategy of parent individuals. A popular variant of 
mutation formulas is presented as. 

Vi,G+1 = Xr1,G + F ×
(
Xr2,G − Xr3,G + Xr4,G − Xr5,G

)
(4)  

where Vi,G+1 means the mutation vector; Xr1,G,Xr2,G,Xr3,G,Xr4,G,Xr5,G 
denote five different candidates randomly selected from the population; 
F stands for the mutation factor taken from the range of [0, 2]. 

Then, the crossover operation is conducted by crossing the parent 
vector with the corresponding mutation vector. The new offspring in
dividual can be generated by. 

Ti,j,G+1 =

{
Vi,j,G+1 if (rand(j)⩽CR )or(j = randn(i) )
Xi,j,G otherwise (5)  

wherei = 1, 2, ...,NP, j = 1, 2, ...,N, NP and N represent the number of 
individuals and variables, respectively; CR is the crossover factor within 
the range of [0, 1]. 

Finally, the greedy selection strategy is utilized in every iteration to 
guide the algorithm approximate the optimal solution by retaining su
perior individuals and eliminating inferior individuals. 

2.3. Hybrid Jaya and differential evolution algorithm 

2.3.1. Initialization with Hammersley sequence 
In general, the initial population of swarm intelligence algorithms 

are randomly generated within given search space. Nevertheless, po
tential instability may render the optimization algorithm trapped into 
local optimum when the initial individuals coincidentally distribute a 
limited local region, which is extremely unfavorable to the subsequent 
stochastic search. To this end, some modified initialization methods 
have been introduced, such as Logistic mapping [47], Tent mapping 
[48] and low-discrepancy sequences [49], to generate more uniform 
samples than random sequence. Logistic mapping and Tent mapping are 
representative methods to produce chaotic sequences, widely applied in 
various algorithm improvements due to its characteristics of random
ness and ergodicity. Besides, it was found that quasi-Monte Carlo 
methods or low-discrepancy sequences provide another favorable 
alternative, especially for Hammersley sequence owing to its inherent 
advantage of highly uniform distribution [49]. A brief description of 
Hammersley sequence is given in the following content. 

Hammersley sequence uses the characteristic of computer’s binary 
representation to mirror the binary representation of a given decimal 
number after the decimal point, and constructs a value between [0,1] 
through the radical inversion method. 

n =
∑z

b=0
nbPb = nzPz + ...+ n1P1 + n0P0 (6)  

where n means any integer; z =
[
logp(n)

]
; stands for extracting the 

integer part of the internal number. 
Then, the value of n can be expressed as. 

φP(n) = n0P− 1 + n1P− 2 + ...+ nzP− z− 1 =
∑z

m=0
nmP− m− 1 (7)  

where φP(n) denotes the value of n after the step of radical inversion. 
Hammersley sequence in k-dimensional space could be easily 

generated by. 

ψk(n) = (n/N,φP(n) ) =
(
n/N,φP1

(n),φP2
(n), ...,φPk− 1

(n)
)

(8) 

wheren = 0, 1, ...,N − 1; N represents the total number of sampling 
points; P1,P2, ...,Pk− 1 are prime numbers. 

Four initialization methods, namely Logistic mapping, Tent map
ping, random sequence and Hammersley sequence, are reasonably 
compared. One-dimensional distributions of 100 samples for four 
different initialization methods are presented in Fig. 2 and Table 1. It is 
obviously observed that Hammersley sequence is capable of construct
ing the most uniform set of samples among the four methods, which 
would facilitate generating uniform initial population within the whole 
search space, increasing population diversity and improving conver
gence efficiency. Therefore, only Hammersley sequence is applied in 
hybrid algorithm as follows. 

Xi,j = Li,j +ψ(i, j) ×
(
Ui,j − Li,j

)
(9)  

where ψ(i, j) represents samples generated by Hammersley sequence. 

2.3.2. Lévy flight search mechanism 
Lévy flight is a kind of random walk whose step sizes follow Lévy 

distribution, and it can make large ‘‘jumps’’ to a new region of the search 
domain. From Eq. (2), it is clear that the best solution of Jaya algorithm 
plays an important role in the search process by guiding and drawing 
other individuals to move to its location. However, the identified best 
individual may be located in the local optimal region when solving 
complex multi-peak optimization problems. Accordingly, other in
dividuals within the population would be easily attracted to the position 
of the current local best solution, leading to premature convergence due 
to trapped into local optima. Lévy flight search mechanism has been 
adopted in many swarm intelligence algorithms, such as, cuckoo search 
algorithm, fruit fly optimization algorithm, tree seeds algorithm, bat 
algorithm, to help the best solution escape from the local optimum. 

New individual of next generation Xi+1 can be generated by Lévy 
flight as follows. 

Xi+1 = Xi + κ ⊕ D(λ) (10)  

where κ is the step size parameter; ⊕ means entry wise multiplication; λ 
stands for distribution index,0 < λ⩽2. 

The step size based on Lévy flight can be expressed as. 

step = κ ⊕ D(λ) ∼ 0.1
u

|v|1/λ (Xr − Xbest) (11)  

where Xbest is the best solution in the current iteration; Xr represents a 
randomly selected individual,Xr ∕= Xbest ; u and v obey following normal 
distribution. 

u ∼ N
(
0, σ2

u

)
, v ∼ N

(
0, σ2

v

)
(12)  

σu =

{
Γ(1 + λ) × sin(πλ/2)

Γ
[
(1 + λ)/2] × λ × 2(λ− 1)/2

}1/λ

, σv = 1 (13)  

where Γ denotes Gamma function. 
A new updating equation of best solution Xbest is introduced as. 

X∗
best = Xbest + step × rand(0, 1) (14)  

where X∗
best is the best solution after performing Lévy flight; step ×

rand(0,1) means the process of Lévy flight. 
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Finally, the solution with better fitness value between Xbest and X∗
best 

will survive to the next generation. 

2.3.3. Mutation learning mechanism 
It can be seen from Eq. (2) that individuals of Jaya algorithm are 

updated considering both the best and worst candidates, which is 
conducive to accelerating the convergence speed and improving the 
local optimization ability, yet the diversity of the population and global 
optimization ability of Jaya algorithm may decrease with the increase
ment of iteration numbers, resulting in the imbalance between explo
ration and exploitation. To alleviate this issue, a novel mutation learning 
mechanism inspired by the Eq. (4) is introduced into Jaya algorithm as 
follows. 

Vi,G+1 = Xr1,G + rand1 ×
(
Xr2,G − Xr3,G

)
+ rand2 ×

(
Xr4,G − Xr5,G

)
(15)  

where Xr1,G,Xr2,G,Xr3,G,Xr4,G and Xr5,G stand for five different candidates 
randomly selected from the population at G-th generation,; and are 
random numbers within the range of [0, 1]. 

The new solution Vi,G+1 is obtained from the mutation operation of 
five different individuals. Thus, the proposed mutation learning mech
anism can sufficiently utilize existed information of other individuals 
and improve global search capacity. 

2.3.4. Framework of hybrid algorithm 
The hybrid Jaya and differential evolution algorithm is proposed by 

introducing population initialization with Hammersley sequence, Lévy 
flight search mechanism and mutation learning mechanism into basic 
Jaya algorithm. It should be noted that this HJDEA effectively combines 
the merits of each single algorithm, namely, the powerful exploitation 
capability of Jaya algorithm and exploration capability of differential 
evolution algorithm. Besides, there are no additional algorithm param
eters introduced, which means HJDEA does not require any algorithm 
parameters except for two general parameters, i.e., population size and 
number of iterations. Hence, the proposed hybrid algorithm has the 
advantages of simple structure, high stability and easiness of operation. 
Its flowchart is presented in Fig. 3. 
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(a) Logistics mapping
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(b) Tent mapping
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(d) Hammersley sequence

Fig. 2. One-dimensional distribution of 100 samples with four initialization methods.  

Table 1 
Statistical results of four different initialization methods.  

Domain Number of samples 

Logistic 
mapping 

Tent 
mapping 

Random 
sequence 

Hammersley 
sequence 

0.0–0.2 32 20 19 20 
0.2–0.4 13 19 18 20 
0.4–0.6 13 24 17 20 
0.6–0.8 14 17 23 20 
0.8–1.0 28 20 23 20  
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3. Correlation function for damage identification 

Correlation functions of dynamic responses can be used to identify 
structural damages. In this section, fitness function is established based 
on the adjacent acceleration correlation function, which is optimized by 
the proposed HJDEA. Hence, an output-only structural damage identi
fication method using HJDEA and adjacent acceleration correlation 
function is developed. 

3.1. Adjacent acceleration correlation function 

The dynamic equation of linear elastic system with multiple degrees 
of freedom (MDOF) can be described as. 

Mẍ(t)+Cẋ(t)+Kx(t) = BF(t) (16)  

where M, C and K stand for the mass matrix, damping matrix and 
stiffness matrix of the structural system, respectively; herein, the 
damping matrix is modelled as Rayleigh dampingC = a1M + a2K, 
where a1 and a2 are two damping constants, determined by the damping 
ratios of first two modes;x(t), ẋ(t) and ẍ(t) represent the displacement, 
velocity and acceleration vectors;. F(t) denotes the time-dependent 
ambient excitation, which is generally considered as white noise. B is 
a mapping vector with the value of 1 at the excitation location and 0 at 
others. 

Assuming the initial displacement and velocity of structure is zero, 
the acceleration response at the μ-th DOF can be calculated by. 

ẍμ(t) =
∫ ∞

− ∞
ḧμ(t − τ)F(τ)dτ (17)  

where ḧμ(t) denotes unit impulse response function, and it can be ob
tained by following Newmark method. 
{

Mḧ(t) + Cḣ(t) + Kh(t) = 0
h(0) = 0, ḣ(0) = M− 1B

(18) 

The cross-correlation function of accelerations at the μ- th and ζ-th 
DOFs can be expressed as. 

Rμϛ(τ) = E
[

ẍμ(t)ẍϛ(t − τ)
]

=

∫ t

− ∞

∫ t− τ

− ∞
ḧμ(t − μ1)ḧϛ(t − τ − μ2) × E(f (μ1)f (μ2) )dμ1dμ2 (19)  

where μ1 and μ2 means small time interval. 
The equation of E(f(μ1)f(μ2) ) = Sδ(μ1 − μ2) can be obtained when 

external excitation is assumed as white noise, where S and δ(μ1 − μ2)

represent a constant and Dirac delta function, respectively. 
Then, Eq. (19) can be simplified as. 

Rμϛ(τ) = S
∫ +∞

0
ḧμ(t)ḧϛ(t − τ)dt = Hμϛ(θ)S (20)  

whereHμϛ(θ) =
∫+∞

0 ḧμ(t)ḧϛ(t − τ)dt, Hμϛ(θ) stands for the convolution of 
unit impulse response functions, and it is only associated with unknown 
structural parameters. Thus, the cross-correlation function of accelera

Find the best solution Xbest 
and the worst solution Xworst

i = 1

  Xi = Xbest ?

a < b (a,b=rand)

Jaya optimization 
by Eq. (2)

Mutation learning 
mechanism by Eq. (15)

Greedy search to keep better solution

i < population size

No

oNseY

Yes

No

Output best solution

Initialize population with 
Hammersley sequence by Eq. (9)

Start

Yes

Lévy flight search 
mechanism by Eq. (14)

Termination criterion satisfied ?

Yes

No

i = i+1

Fitness function evaluation

Fig. 3. The flowchart of proposed HJDEA.  
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tions Rμϛ depends on structural parameters θ to be identified and a 
constant S. 

If n accelerometers are embedded in the structure simultaneously, 
the adjacent acceleration correlation function R can be written as. 

R =
[
R1,2,R2,3, ⋅⋅⋅,Rn− 1,n

]
(21)  

3.2. Damage identification with HJDEA and correlation function 

In this paper, to present more accurate structural damage model, a 
series of elemental index vectors α = (α1,α2, ...,αi, ...αne) and β = (β1, β2,

..., βi..., βne) taken from the range of [0, 1] are employed to consider al
terations of both stiffness and mass parameters. The global stiffness 
matrix Kd and mass matrix Md of damaged structure can be expressed as. 

Kd =
∑ne

i=1
(1 − αi)Kele

i (22)  

Md =
∑ne

i=1
(1 − βi)Mele

i (23)  

where Kele
i and Mele

i stand for the stiffness and mass matrix of the i-th 
element under intact state; ne means the total number of structural el
ements; αi and βi are the damage index corresponding to the i-th 
elemental stiffness and mass. It is obvious that αi = 0 and βi = 0 
imply the i-th element is intact while αi = 1 and βi = 1 represent this 
element is completely damaged. Therefore, structural parameters areθ =

{(1 − α1), ..., (1 − αne), (1 − β1), ..., (1 − βne) }, and the problem of 
structural damage identification based on proposed damage model can 
be transformed into identifying damage index vectors α and β. 

The proposed damage identification strategy based on HJDEA and 
correlation function is implemented as following steps: 

Step 1: measure or calculate the actual acceleration response of 
damaged structure with pre-installed accelerometers under white noise 
excitation, and then obtain the measured adjacent acceleration corre
lation functions Rmea. 

Step 2: Initialize the structural parameters θ in the search space limits 
with the Hammersley sequence. 

Step 3: for each estimated structural parameters θi, calculate Hest and 
Sest with the equations of Hest(θi) =

∫+∞
0 ḧμ(t)ḧϛ(t − τ)dt and Sest =

(
HT

estHest
)− 1HT

estRmea, and then compute the estimated correlation func
tion Rest of the parameterized model by Eq. (20). 

Step 4: Calculate the fitness function fitness based on measured and 
estimated cross-correlation functions as follows. 

fitness =
1

c +
∑n− 1

i=1
∑l

j=1
|Rest(i,j)− Rmea(i,j) |2

E(R2
mea(i) )

(24)  

where n and l represent the number of accelerometers and data points; 
E
(
R2

mea(i)
)

=
∑l

n= 1R2
mea(i, j)/l denotes the mean squared value of the 

i-th measured cross-correlation functions; c is a constant, whose value is 
set as 0.001. Thus, the maximum value of fitness function is equal to 
1000 when Rest agrees with Rmea. 

Step 5: Find the best and worst solutions, and then iteratively update 
the structural parameters using proposed hybrid Jaya and differential 
evolution algorithm. 

Step 6: Repeat Step 5 until the maximum number of iterations 
reached or other termination conditions satisfied, and output the 
optimal identified structural parameters. 

4. Numerical studies 

To verify the identification accuracy, computational efficiency and 
noise robustness of the proposed output-only structural damage identi
fication method based on the proposed HJDEA and correlation function, 

two numerical examples, namely an 8-floor shear-type frame and a 
cantilever beam subjected to white noise excitation are utilized. Spe
cifically, the superiority of the proposed HJDEA is validated and 
compared with GA, PSO, Jaya algorithm in the first example. The 
effectiveness of proposed adjacent acceleration correlation function is 
tested and compared with reference point predefined method in the 
second example. 

Algorithm parameters of GA and PSO are recommended from Refs. 
[18] and [50], respectively. The adopted parameters of GA, PSO, Jaya 
and HJDEA are listed in Table 2. The average value based on five runs is 
applied into performance evaluation to guarantee the effectiveness of 
identification results. 

4.1. Comparison of four optimization algorithms 

An 8-story shear-type steel frame structure from literature [14] is 
shown in Fig. 4(a), and its total height and width are 2000 mm and 600 
mm, respectively. The width and thickness of identical steel beams are 
100 mm and 25 mm, and the rectangular section of steel column is 50 ×
5 mm. The initial elastic modulus of steel material is set as 2.0 × 1011N/ 
m2, and the mass density is 7850 kg/m3. The steel column and beam are 
welded together, and the bottom boundary condition is considered as 
fixed support. Thus, this frame structure can be modelled as an 8-DOF 
lumped mass model, as presented in Fig. 4(b), owing to its mass 
mainly concentrated on the beam. A white noise excitation with zero 
mean and unit standard deviation is horizontally applied to the top floor. 
As highlighted with red circle, four accelerometers located at the 1st, 
3rd, 5th and 7th floor are used to record acceleration responses in 
horizontal direction with sampling frequency of 200 Hz and sampling 
duration of 1800 s. Adjacent acceleration correlation functions, namely 
R1,3, R3,5 and R5,7, are used for damage identification. 

Assuming 30% and 20% stiffness are reduced at elements 2 and 7 
respectively, and 30% mass is reduced at element 4, namely α2 = 0.3,
α7 = 0.2, β4 = 0.3 White Gaussian noise is introduced into clean accel
eration responses ẍclean to investigate the robustness of proposed struc
tural identification strategy as follows. 

ẍmea = ẍclean +NlNnoiseRMS
(

ẍclean

)

(25)  

where ẍmea denotes noise-polluted measurement; Nl means the level of 
noise pollution; Nnoise stands for the randomly generated noise vector of 
Gaussian distribution with zero mean and unit standard deviation; 

RMS
(

ẍclean

)

represents the root mean square of the acceleration 

response. 
Fig. 5 and Table 3 present the convergence curves of fitness function 

and comparison of computational efficiency for four different algo
rithms, namely GA, PSO, Jaya and HJDEA, respectively. By Fig. 5, it can 
be clearly observed that GA and PSO provide relatively slow 

Table 2 
Parameters of GA, PSO, Jaya and HJDEA in numerical studies.  

Parameters GA PSO Jaya HJDEA 

Population size NP 100 100 60 60 
Maximum generation 

Gm 

400 400 200 200 

Mutation probability 
Pm 

0.2    

Crossover probability 
Pc 

0.8    

Inertia weight w  decrease linearly from 0.9 
to 0.4   

Cognitive parameter 
c1  

2   

Social parameter c2  2   
Total evaluations 40,000 40,000 12,000 12,000  
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convergence rate and inferior value of fitness. Similarly, Jaya also suf
fers by the unfavorable convergence speed because of its weak global 
search capacity in the early stage. In contrary, HJDEA approaches to 
convergence only around 100 iterations but achieves the best perfor
mance among four methods due to the successful combination of 
powerful global search capacity of DE and local search capacity of Jaya 
algorithm. As shown in Table 3, the calculated fitness of GA, PSO, Jaya 
and HJDEA are 314.42, 267.74, 565.60 and 885.21 respectively. The 
total computation time of GA and PSO are 697.12 s and 889.24 s, which 
is apparently longer than 220.45 s and 215.16 s consumed by Jaya and 
HJDEA. These results imply that HJDEA can obtain better fitness with 
less computational time compared with GA, PSO, and Jaya. Neverthe
less, extensive number of iterations are still needed for HJDEA after the 
nearby location of optimal solution is approached, which would waste 
considerable computational resources. For this issue, an appealing 
method by combining HJDEA and gradient search is proposed to further 
improve identification efficiency, which will be deeply elaborated and 
discussed in Section 6. 

Damage identification results of steel frame model based on four 
different algorithms are shown in Figs. 6 and 7 for noise free and 20% 
noise case, respectively. In addition, the identified errors of stiffness and 
mass parameters based on average value over five runs are provided in 
Table 4, and identification results of damaged elements are listed in 
Table 5. It can be observed from Fig. 6 that GA and PSO are able to detect 
locations of the damaged element, but they cannot accurately identify 
damage extent, and several false identifications are evidently observed 
at elements 1, 3, 5, 6 and 8. As listed in Table 4, the maximum identi
fication errors of structural parameters based on GA and PSO are 12.37% 
and 13.69% for noise free case, which means these two algorithms fail to 
identify stiffness and mass parameters. On the contrary, Jaya and 
HJDEA are able to provide accurate identification results of damage 
existence, location and severity, with less than 4% and 2% for the 
maximum errors respectively. Besides, in Table 5, it can be found that 
the identified standard deviations of α2, α7, β4 by HJDEA are 
apparently smaller than Jaya. Thus, these results indicate that proposed 
hybrid algorithm has higher identification accuracy and stronger 
robustness. For the case with 20% noise contaminated, GA and PSO 
obtain unacceptable results with the maximum errors more than 16% 
and some obvious false identification at elements 1, 2, 3, 4, 6, and 8. 
Although the locations of the damaged element are successfully identi
fied, Jaya has difficulty in estimating the damage extent of mass 
parameter at element 4. Large relative error of 33.91% and standard 
deviation of 0.179 are obtained. Among four algorithms, HJDEA ach
ieves the best performance with maximum standard deviation less than 
0.015 and maximum error of structural parameters less than 5% even 
with 20% noise pollution. These excellent results demonstrate that the 
proposed HJDEA is effective and robust to simultaneously identify the 
reduction of elemental stiffness and mass using output-only responses by 
optimizing the objective function based on adjacent acceleration cor
relation function. 

Another possible damage case is considered to further validate the 
robustness of the proposed method. Assuming 20%, 15% stiffness are 
reduced at elements 2, 6 respectively, and 20%, 15% mass are reduced at 
elements 3 and 5, namely α2 = 0.20, α6 = 0.15, β3 = 0.20, β5 = 0.15. The 
calculated fitness value and computational time for these four algo
rithms are listed in Table 6. It can be observed form Table 6 that the 
calculated fitness value of GA, PSO, Jaya and HJDEA are 334.13, 
289.43, 586.62 and 899.24 respectively. The total computation time of 
GA and PSO are 700.56 s and 880.47 s, which is obviously larger than 
219.95 s and 218.64 s taken by Jaya and the proposed HJDEA method. 
These results indicate HJDEA can achieve high fitness value but 
consumed less computational time compared with GA, PSO, and Jaya. 

In addition, identification accuracy of stiffness and mass parameters 
for GA, PSO, Jaya, HJDEA is studied and presented in Table 7. For the 
noise free case, the maximum errors of the identified parameters based 
on GA and PSO are 10.48% and 12.02%, and such a poor result indicates 

25
0×

8

25

1

2

3

4

5

6

7

8

Accelerometer Excitation

(a) (b)

Fig. 4. The eight-floor steel frame structure: (a) dimension; (b) finite element 
model (unit: mm). 
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Fig. 5. Convergence process of fitness function for the frame structure.  

Table 3 
Comparison of computational efficiency for four different algorithms.  

Methods Fitness Evaluations Time for single 
evaluation (s) 

Computational time 
(s) 

GA  314.42 40,000  0.0174  697.12 
PSO  267.74 40,000  0.0222  889.24 
Jaya  565.60 12,000  0.0181  220.45 
HJDEA  885.21 12,000  0.0178  215.16  
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that these two algorithms fail to accurately identify structural parame
ters. In contrast, Jaya and HJDEA can provide more pleasant identifi
cation results of damage location and extent with less than 4% and 2% 
maximum errors, respectively. For the 20% noise case, apparently un
acceptable results with the maximum errors of more than 13% and 16% 
are obtained by GA and PSO, respectively. On the contrary, HJDEA 
achieves quite favorable results with the maximum and mean errors of 

less than 4.5% and 2.5%. These results demonstrate that the proposed 
HJDEA has more effective and robust performance than GA, PSO, Jaya 
to simultaneously identify stiffness and mass parameters even with 20% 
noise polluted responses. 

Fig. 6. Damage identification results of steel frame without noise: (a) stiffness; (b) mass.  

Fig. 7. Identified damage extent with 20% noise: (a) stiffness; (b) mass.  
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4.2. Comparison of reference point free and defined method 

Reference point is necessarily defined as reviewed in previous liter
atures [11–14]. However, damage identification result may be affected 
by the selection of reference point. The proposed adjacent acceleration 
correlation function in Section 3.1 is a reference point-free method, and 
its performance is compared with reference point predefined method on 
the damage identification accuracy and robustness in this section. The 
previous numerical study has demonstrated that HJDEA outperforms 
the other three swarm intelligence optimization algorithms in terms of 
identification accuracy and computational efficiency, so only hybrid 

Table 4 
Identified errors for four different methods (%).  

Errors Noise free 20% noise 

GA PSO Jaya HJDEA GA PSO Jaya HJDEA 

Mean error-K  7.32  7.79  1.92  1.18  10.33  10.92  6.51  2.27 
Max error-K  12.19  13.69  3.50  1.70  13.72  16.85  11.63  4.64 
Mean error-M  7.08  7.86  1.70  1.28  9.80  10.65  5.37  2.31 
Max error-M  12.37  13.19  3.93  1.63  16.28  16.46  10.17  4.51  

Table 5 
Identified results of damage elements for the steel frame.  

Methods Damage extent Noise-free 20% noise 

Mean value RE (%) SD Mean value RE (%) SD 

GA α2 = 0.3  0.2892  3.61  0.053  0.2502  16.59  0.069 
α7 = 0.2  0.2002  25.09  0.027  0.2636  31.82  0.038 
β4 = 0.3  0.3049  1.63  0.035  0.2611  12.97  0.054 

PSO α2 = 0.3  0.3089  2.96  0.045  0.3032  1.07  0.017 
α7 = 0.2  0.2763  38.16  0.036  0.2959  47.95  0.047 
β4 = 0.3  0.3257  8.56  0.039  0.3546  18.19  0.046 

Jaya α2 = 0.3  0.2947  1.76  0.014  0.3128  4.27  0.036 
α7 = 0.2  0.2155  7.76  0.021  0.2282  14.08  0.094 
β4 = 0.3  0.3089  2.98  0.051  0.1983  33.91  0.179 

HJDEA α2 = 0.3  0.3073  2.42  0.005  0.3066  2.20  0.008 
α7 = 0.2  0.2089  4.43  0.010  0.2169  8.46  0.012 
β4 = 0.3  0.3081  2.70  0.014  0.3040  1.34  0.013 

Note: RE means relative error and SD stands for standard deviation. 

Table 6 
Comparison of fitness and computational time for GA, PSO, Jaya, HJDEA.  

Methods Fitness Evaluations Time for single 
evaluation (s) 

Computational time 
(s) 

GA  334.13 40,000  0.0175  700.56 
PSO  289.43 40,000  0.0220  880.47 
Jaya  586.62 12,000  0.0183  219.95 
HJDEA  899.24 12,000  0.0182  218.64  

Table 7 
Identified errors of stiffness and mass parameters for GA, PSO, Jaya, HJDEA (%).  

Errors Noise free 20% noise 

GA PSO Jaya HJDEA GA PSO Jaya HJDEA 

Mean error-K  6.58  7.66  1.98  1.19  9.71  10.17  6.26  2.24 
Max error-K  10.48  12.02  3.93  1.84  13.72  15.43  9.63  4.40 
Mean error-M  6.70  7.11  1.75  1.23  8.99  9.92  5.49  2.26 
Max error-M  9.50  11.57  3.97  1.62  13.98  16.63  8.88  4.12  

2 3 4 5 6 7 8 9 10

6 mm

900 mm

50.75 mm

Accelerometer Excitation

11 1412 13 15 161

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 8. Numerical model of a cantilever beam structure.  
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algorithm is utilized for the following studies. A cantilever beam struc
ture with more element numbers is employed as numerical example to 
better present the superiority of proposed reference point-free method. 

As presented in Fig. 8, the total length, section width and height of 
cantilever beam are 900 mm, 50.75 mm and 6 mm, respectively. Due to 
the large ratio of length to height, shear strain is not considered ac
cording to the Euler-Bernoulli beam theory. The finite element model of 
the cantilever beam has total numbers of 16 nodes and 15 elements, and 
each element has identical length of 60 mm. Each node has two degrees 
of freedom, i.e., vertical translation and rotation. The material of 
cantilever beam is steel with the elastic modulus of 2.1 × 1011N/m2 and 
the mass density of 7860 kg/m3. From Fig. 8, it is observed that a white 
noise excitation with zero mean and unit standard deviation is vertically 
applied at node 16. A more difficult yet practical case of partial mea
surements is employed to identify structure damage. Five accelerome
ters are installed at nodes 4, 7, 9, 11, and 13 to record the dynamic 
response of the cantilever beam structure in vertical direction with 
sampling frequency of 2000 Hz and sampling duration of 1800 s. 

To simulate more complex and reasonable damage cases including 
multiple damages or both stiffness and mass related damages, it is 
assumed that there are 20% and 15% reduction of stiffness at the 3rd and 
12th elements, 20% and 10% reduction of mass at the 6th and 9th ele
ments, which means damage indexes α3 = 0.2, α12 = 0.15, β6 = 0.2,
β9 = 0.1 respectively. To evaluate the effectiveness of the proposed 
reference point-free method (RP0), adjacent acceleration correlation 
functions, namely R4,7, R7,9, R9,11, R11,13, are calculated, and its 
computational results are compared with reference point-defined 
methods, taking measurement at node 4, 7, 11 as the reference points 
(RP4, RP7, RP11) respectively. In this example, first 200 data points of the 
cross-correlation functions are selected for damage identification. The 
damage identification results of the cantilever beam structure under the 
noise free and 20% noise polluted conditions are shown in Figs. 9 and 
10, respectively. Table 8 lists the statistical maximum and mean iden
tified errors. 

For the case of noise free, it can be seen from Fig. 9 that RP4 provides 
the worst identification results among the four different methods. Some 
unneglected identification errors are easily observed at the elements 7, 

8, 10 and 11, and the maximum errors of stiffness and mass are more 
than 14 % and 13%, respectively, which means RP4 has some difficulties 
in identifying the location and extent of structural damage. On the 
contrary, reference point-defined method RP11 can accurately identify 
the damage location and degree with the maximum errors of stiffness 
and mass parameters of less than 1.5% and 3.5%, as well as the mean 
errors less than 0.6% and 0.9%, respectively. Obviously, pleasant results 
of RP0 can be found in the Fig. 9 and Table 8. There is no apparent false 
identification and the identified mean errors of stiffness and mass are 
less than 0.6% and 1.1%. When contaminated with 20% noise, RP4 also 
fails in identifying structural damages with the poor identification result 
of maximum error up to 27.45%. Although the damage location and 
extent are successfully identified by RP7, several apparent false identi
fications occur at the elements 2, 6, 10 and 15. Among the four methods, 
RP11 acquires the most satisfactory identification results with the mean 
errors of 1.03% and 1.06%. From above description, it can be found that 
selection of different reference points would dramatically affect the 
computational results. Improper reference point will result in unac
ceptable identification results. On the contrary, the proposed RP0 
method is more robust to identify multiple structural damage with 
maximum errors of 5.66% and 6.41% for stiffness and mass related 
damages, respectively. This result is acceptable taking the limited sen
sors and 20% noise polluted measurements into account. 

Another possible damage case is considered to further validate the 
robustness of the proposed reference point free method. It is assumed 
that there are 20%, 15%, 10% reduction of stiffness at the 3rd, 8th 13th 
elements, 20%, 15%%, 10% reduction of mass at the 6th, 9th, 12th el
ements, which means damage indexes α3 = 0.20, α8 = 0.15, α13 = 0.10, 
β6 = 0.20, β9 = 0.15, β12 = 0.10, respectively. The identified results by 
four methods are presented in Fig. 11 and Fig. 12 corresponding to the 
noise free and 20% noise case, respectively. The maximum and mean 
identified errors are listed in Table 9. 

For the noise-free case, it can be seen from Fig. 11 that RP4 achieves 
the worst results with the maximum error of identified stiffness and mass 
parameters more than 12% among four different methods. Some obvious 
false identifications are observed at the elements 4, 5, 6 and 12, which 
indicates RP4 has some difficulties in identifying structural damages. 

Fig. 9. Damage identification results of cantilever beam without noise: (a) stiffness; (b) mass.  
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Although the damage location and extent are successfully identified by 
RP7, apparent false identifications occur at the elements 1, 3, 10. RP11 
can accurately identify the damage location and degree with the 
maximum errors of less than 2.0% and mean errors less than 0.8%, 
respectively. Favorable results are also obtained by the proposed RP0. 
There is no apparent false identification and the identified maximum 
errors of stiffness and mass are less than 2.5%% and 3.0%. For 20% noise 
case, similarly, RP4 fails to identify structural damages with the poor 
identification result of maximum error up to 17.21% and RP11 obtains 
more satisfactory results with the maximum and mean errors of 2.33% 
and 0.92% than other three methods. It can be found from Table 9 that 
selection of different reference points would dramatically affect the 
accuracy of identified results. In other words, selecting improper refer
ence point may lead to unacceptable identification results. In contrast, 
the proposed reference point free method RP0 is more robust to identify 
multiple structural damages with the maximum errors of 4.51% and 
3.91% for stiffness and mass with 20% noise polluted measurements. 

In summary, it can be concluded that the proposed method of adja
cent acceleration correlation function has competitive or even better 
performance than those acquired by reference point-defined methods. 
More importantly, adjacent acceleration correlation function has the 
capacity of robustness to avoid the false identification results caused by 

selecting inappropriate reference points. 

5. Experimental verifications 

In the past two decades, researchers have conducted numerous 
theoretical and experimental studies on structural health monitoring, 
and proposed various damage identification methods. However, these 
works are basically suitable for different engineering structures or 
different application conditions, rending it difficult to compare and 
judge their effectiveness and robustness. With the purpose of providing a 
unified standard research platform for analysis, comparison and evalu
ation of different damage identification techniques, the IASC-ASCE SHM 
Benchmark structure was developed in the Earthquake Engineering 
Research Laboratory at the University of British Columbia (UBC) [51]. 
In this section, the applicability of the proposed method to structural 
damage identification is verified and compared with GA, PSO, Jaya al
gorithms with the ASCE Benchmark structure. As presented in Fig. 13 
[52], the scale-model is a 4-story, 2- bay by 2-bay steel frame. It has plan 
dimension of 2.5 m × 2.5 m and total height of 3.6 m. Each floor has 8 
identical braces. The detailed properties of structural members are listed 
in Table 10. This ASCE Benchmark model is made of hot rolled 300 W 
grade steel with a nominal yield strength of 300 MPa, and its elastic 
modulus and mass density are 2.0 × 1011N/m2 and 7800 kg/m3, 
respectively. 

A linear 12 degree-of-freedom shear model subjected to white noise 
excitation on the roof is employed, and 4 accelerometers are installed at 
each story to record the structural response with sampling frequency of 
500 Hz and sampling duration of 1800 s. Herein, acceleration cross- 
correlation functions of the 1st and 2nd floors (R1,2), the 2nd and 3rd 
floors (R2,3), the 3rd and 4th floors (R3,4), are employed for structural 
damage identification. The horizontal stiffness of health structure in the 
strong (x) direction and weak (y) direction are 106.60 MN/m and 67.90 
MN/m in each story. As listed in Table 11, four different damage pat
terns are considered to test the capacity of cross-correlation function- 
based method for identifying damage existence, location and severity. 
Damages are introduced by removing braces. There are only less than 

Fig. 10. Damage identification results of cantilever beam with 20% noise: (a) stiffness; (b) mass.  

Table 8 
Identification results of the stiffness and mass parameters (%).  

Methods Parameters Noise free 20% noise 
Maximum 
error 

Mean 
error 

Maximum 
error 

Mean 
error 

RP4 Stiffness  14.66  5.01  16.45  6.24 
Mass  13.92  4.07  27.45  6.97 

RP7 Stiffness  3.18  1.09  7.00  2.63 
Mass  7.27  1.21  8.05  2.37 

RP11 Stiffness  1.46  0.56  3.33  1.03 
Mass  3.41  0.89  5.90  1.06 

RP0 Stiffness  3.62  0.59  5.66  1.60 
Mass  5.25  1.02  6.41  2.08  
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1% alteration of element mass in these four damage patterns. Thus, 
damage indexes of mass parameters are assumed to be βi = 0 in this 
example. The same algorithms parameters for GA, PSO, Jaya listed in 
Table 2 are adopted in this experimental study. HJDEA is employed to 
detect four damage patterns with the parameter settings of population 
size 60 and maximum generation 100. The corresponding results of 
stiffness and mass parameters by GA, PSO, Jaya and HJDEA are pre
sented in Fig. 14 and Table 12. 

It can be obviously observed from Fig. 14 that GA, PSO, Jaya and 
HJDEA with adjacent acceleration correlation function are capable of 
accurately identifying the damage location and extent. The maximum 
error obtained by these four methods is less than 5.5%. Especially, the 
identified structural stiffness and mass parameters by proposed HJDEA 
match very well with the exact values for these four damage patterns, e. 
g., the maximum errors of stiffness are 1.71%, 1.05%, 0.81%, 1.14%, 
and the maximum errors of mass are 1.64%, 1.39%, 2.39%, 1.38%, 
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Fig. 11. Identified results for RP4, RP7, RP11, RP0 without noise: (a) stiffness; (b) mass.  
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G. Zhang et al.                                                                                                                                                                                                                                  



Measurement 199 (2022) 111591

14

respectively, which is fairly satisfying under the conditions with output- 
only responses and no priori knowledge of mass and stiffness. These 
results demonstrate the proposed HJDEA can more accurately and effi
ciently identify damage location and severity than GA, PSO, Jaya al
gorithm under multiple damage situations. 

Fig. 15 presents the convergence history of identified damage ele
ments for damage pattern 2 and 4 by the proposed HJDEA method. It is 
noted that HJDEA takes around 30 iterations to approximately converge 
to the damage extent, namely α1_x = 45.24%, α1_y = 71.03%, α3_x =

45.24%, α3_y = 71.03% for damage pattern 2 and α1_y = 17.76%, α3_x =

11.31% for damage pattern 4. These results clearly imply that the pro
posed hybrid identification method is capable of accurately and effi
ciently identifying damage location and degree. 

Furthermore, a comparison of cross-correlation function between 
healthy state and damage state of pattern 3 is conducted, provided in 
Fig. 16, to show the effectiveness of cross-correlation function for 
damage identification. There are three cross-correlation functions of 
adjacent acceleration from four measurements R1,2, R2,3 and R3,4, and 
first 300 data points of adjacent acceleration correlation function are 
presented in Fig. 16. It is observed that the cross-correlation function in 
healthy state Rhea deviates from measured or estimated value in damage 
state, which implies adjacent acceleration correlation function is a 
sensitive index to reflect damage. In addition, the measured cross- 
correlation function Rmea agrees well with the estimated cross- 
correlation functionRest . Herein, relative error (RE) and Pearson corre
lation coefficient (PCC) are utilized to measure the deviation and linear 

correlation degree between the measured and estimated value as 
follows. 

RE =
‖Rest − Rmea‖2

‖Rmea‖2
× 100% (26)  

PCC(Rmea,Rest) =
Cov(Rmea,Rest)

σRmea σRest

(27)  

where: Cov stands for covariance; σ means standard deviation. 
Computational results with RE = 13.37% and PCC = 0.9918 dem

onstrates that HJDEA is able to effectively identify structural damage by 
optimizing the fitness function established by measured and estimated 
cross-correlation functions. 

6. Discussion 

As described in Section 4.1, considerable number of fitness 

Table 9 
Identification results for RP4, RP7, RP11, RP0 (%).  

Methods Parameters Noise free 20% noise 

Maximum 
error 

Mean 
error 

Maximum 
error 

Mean 
error 

RP4 Stiffness  14.02  4.13  16.62  4.77 
Mass  12.82  4.19  17.21  4.47 

RP7 Stiffness  3.93  2.01  6.69  2.47 
Mass  4.24  2.10  7.73  2.76 

RP11 Stiffness  1.77  0.74  2.33  0.92 
Mass  1.82  0.64  2.29  0.89 

RP0 Stiffness  2.12  0.92  4.51  1.18 
Mass  2.63  0.91  3.91  1.26  

Fig. 13. Experimental model of ASCE Benchmark structure.  

Table 10 
Physical properties of Benchmark structure.  

Property Braces Beams Columns 

Section type L25 × 25 × 3 S75 × 11 B100 × 9 
Cross-section area A (m2) 0.141 × 10-3 1.43 × 10-3 1.133 × 10-3 

Moment of inertia(strong) Ix (m4) 0 1.22 × 10-6 1.97 × 10-6 

Moment of inertia(weak) Iy (m4) 0 0.249 × 10-6 0.664 × 10-6 

Torsion constant J (m4) 0 38.2 × 10-9 8.01 × 10-9 

Shear modulus G (Pa) 0.77 × 1011 0.77 × 1011 0.77 × 1011  

Table 11 
Four different damage patterns.  

Patterns 
s 

Damage 
location 

Specific damage Damage extent 

1 1st story Remove all braces α1 x = 0.4524,α1 y = 0.7103 
2 1st and 3rd 

stories 
Remove all braces α1 x = 0.4524, α1 y = 0.7103

α3 x = 0.4524, α3 y = 0.7103 
3 3nd story Remove one brace α1 y = 0.1776 
4 1st and 3rd 

stories 
Remove one brace 
in each story 

α1 y = 0.1776,α3 x = 0.1131  

G. Zhang et al.                                                                                                                                                                                                                                  



Measurement 199 (2022) 111591

15

evaluations are still required for the proposed HJDEA even in a rela
tively small search space when the nearby location of optimal solution is 
approached, which would waste much computational resources to 
achieve pleasant damage identification results. In fact, HJDEA has 
strong search capacity in the early stage, while suffers from the rela
tively slow convergence rate due to the inherent stochastic optimization 
characteristic of population-based optimization algorithm. On the con
trary, gradient search has higher computational efficiency and more 
powerful local search ability than HJDEA. Nevertheless, good initial 
guess is generally needed for gradient search method. Therefore, it 
would be a meaningful attempt to combine HJDEA and gradient search 

method with the attractive idea of roughly approaching to the optimal 
solution by HJDEA and then taking it as initial values in the subsequent 
gradient search to utilize its strong local search ability. The cantilever 
beam structure in Section 4.2 is taken as numerical example to investi
gate the hybrid HJDEA and gradient search method. 

It is obvious from Fig. 17(a) that gradient search, initially approxi
mating to the optimal solution after 30 iterations by HJDEA and then 
taking the identified value as initial guess in the subsequent gradient 
search, achieves larger fitness value than HJDEA only with 80 iterations 
in total. In addition, a more evident contrast can be observed by Fig. 17 
(b). The total number of fitness function evaluations by hybrid HJDEA 
and gradient search is 2300, far less than 12,000 taken by HJDEA. 
Fig. 18 provides the detailed convergence history of fitness value and 
mean errors calculated by gradient search, in which the final results of 
fitness approximate to 1000 and mean error less than 1% are observed. 
The comparison of two methods presented in Table 13 shows that only 
extra 500 times of candidate evaluation are required after 1800 evalu
ations of HJDEA, while more favorable results in terms of smaller 
identification errors and less computational times are acquired, which 
indicates the combination of hybrid HJDEA and gradient search method 
is a feasible strategy to first achieve coarse global search by HJDEA to 
the position near the optimal solution, and then taking as initial value in 
gradient search for further refining the quality of identified results. 
Therefore, it can be concluded that hybrid HJDEA and local search 

Fig. 14. Identified results of stiffness and mass parameters with: (a) GA; (b) PSO; (c) Jaya; (d) HJDEA.  

Table 12 
Identification error for four damage patterns with four different methods (%).  

Methods Identified error Pattern 1 Pattern 2 Patter 3 Pattern 4 

GA Max error-K  2.57  5.25  1.91  3.82 
Max error-M  2.67  4.40  0.92  3.72 

PSO Max error-K  2.44  5.48  1.50  2.92 
Max error-M  3.23  4.78  2.00  3.18 

Jaya Max error-K  2.56  2.44  2.69  3.27 
Max error-M  2.79  3.37  2.85  2.46 

HJDEA Max error-K  1.71  1.05  0.81  1.14 
Max error-M  1.64  1.39  2.39  1.38  
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Fig. 15. The convergence history of identified damage elements: (a) damage 
pattern 2; (b) damage pattern 4. 

Fig. 16. Comparison of cross-correlation function between healthy state and 
damage pattern 3. 

Fig. 17. Convergence history with: (a) number of iterations; (b) number of 
evaluations. 

Fig. 18. Fitness and mean error of gradient search after 30 iterations 
with HJDEA. 
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methods is a promising alternative to further improve identification 
accuracy and computational efficiency. 

7. Conclusions 

In this paper, a hybrid algorithm based on Jaya and differential 
evolution algorithm is proposed with the purpose of effectively 
combining the powerful local search capability of Jaya and global search 
capability of differential evolution, to detect, locate and quantify the 
multiple structural damages. In the proposed hybrid algorithm, Ham
mersley sequence initialization and Lévy flight search mechanism are 
introduced to increase the diversity of initial population and refine the 
quality of identified best solution. Besides, adjacent acceleration corre
lation function is developed to improve robustness of reference point- 
defined method. The performance of hybrid identification method is 
investigated numerically (8-DOF lumped mass model and cantilever 
beam) and experimentally (ASCE Benchmark structure). Furthermore, 
hybrid HJDEA and gradient search method on damage identification 
accuracy and efficiency are discussed. Following conclusions can be 
summarized from this study:  

(1) The proposed hybrid algorithm can effectively combine the 
merits of strong local search ability of Jaya and global search 
ability of DE. In addition, HJDEA has the advantages of simple 
structure, easy operation and robust performance for the reason 
that any algorithm-specific parameters are not required. 

(2) Compared with GA, PSO and Jaya algorithm, identification re
sults demonstrate HJDEA is more accurate and efficient to iden
tify structural stiffness and mass parameters under white noise 
excitation, owing to its ability to better achieve the balance be
tween global exploration and local exploitation. 

(3) Adjacent acceleration correlation function has competitive per
formance with reference point-defined methods, while it is more 
robust to obtain satisfactory identification results because of its 
reference point-free characteristic. The proposed identification 
method based on HJDEA and correlation function is able to 
accurately identify the damage location and extent even with 
20% noise pollution. 

(4) Hybrid HJDEA and gradient search method can initially imple
ment coarse global search to the neighborhood of the optimal 
solution by HJDEA and then take it as initial value in the subse
quent gradient search, which is a promising alternative to further 
improve damage identification accuracy and efficiency in a 
relatively small search space.  

(5) The proposed hybrid identification method could successfully 
identify structural stiffness and mass damages with noise- 
polluted output-only responses under white noise excitation, 
while more complex and practical identification of structural 
stiffness, mass and damping parameters considering un
certainties, such as modelling error, temperature variation, 
boundary stiffness reduction etc. still need to be investigated in 
the future. 
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