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A B S T R A C T   

Previous studies have proven that adding an inerter to a sliding isolation structure can reduce the isolation 
displacement without compromising the control effect of the superstructure. However, due to the strong 
nonlinearity of the sliding isolator, approximate methods or numerical analyses are adopted to investigate 
inerter-added sliding isolation structures, which hinders the understanding of the inherent working mechanisms 
of such structures. This study derives exact analytical solutions during both sliding and stick motion states of 
inerter-added sliding isolation structures under harmonic ground motions and investigates the influence of an 
additional inerter on the motion states and responses of such structures. The main novelties of this paper are the 
employment of the inerter technique in a sliding system for performance improvement and explicit expressions of 
the dynamic responses and motion modes for inerter-added sliding isolation structures that assist in under
standing the role of the additional inerter. Differential equations are established for both the stick and sliding 
motions of inerter-added sliding isolation structures subjected to harmonic ground excitations. The dynamic 
characteristics of the structure are analyzed, and accurate analytical solutions are derived for structural re
sponses. The explicit forms for the occurrence conditions of three fundamental modes (i.e., the stick-stick, stick- 
slip and slip-slip modes) for the motion of the inerter-added sliding isolation structures are presented. Based on 
the derived analytical solutions, extensive parametric analyses are conducted to investigate the influences of the 
added inerter on the motion modes and responses of sliding isolation structures. By adding an inerter, a 
decreased natural frequency, a decreased damping ratio and a reduction in ground motion excitation are 
observed for the vibration of the superstructure in the inerter-added sliding isolation structure compared to that 
in the sliding isolation structure without an inerter. Furthermore, the inerter causes the slip-slip mode to occur 
more easily, which is preferred for sliding isolation structures when sliding occurs. An increasing inertance of the 
inerter is beneficial for reducing isolation displacement in general but contrary to reducing maximum acceler
ation in some frequency ranges and excitations with large amplitudes. The trade-off between the reduction of 
isolation displacement and acceleration is recommended for determining the inertance of the inerter in sliding 
isolation structures.   

1. Introduction 

Base isolation technologies have been proven to be efficient for 
protecting primary structures against damaging seismic excitations in 
the past few decades [1–3]. Using base isolation systems with low lateral 
stiffness, the dynamic actions transmitted to the superstructures can be 
significantly reduced and the dynamic responses of the superstructures 
are mitigated. Since the birth of the base isolation concept, various base 
isolation devices have been developed. In general, these devices can be 

classified into two types: elastomeric bearing and sliding isolation sys
tems [2,4]. Among these two isolation techniques, the sliding isolation 
system outperforms the elastomeric bearing system in terms of effec
tiveness in a large excitation frequency range [5]. Meanwhile, when the 
sliding isolation structure is subjected to ground motions, the forces 
transmitted to the superstructure in a sliding isolation structure are 
limited to no more than the friction force along the sliding surface [6,7]. 
Typical sliding isolation systems include the pure-friction system, the 
friction pendulum system (FPS) [8] and the resilient-friction base 
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isolator (R-FBI) [9]. Among these systems, the pure-friction system is 
historically the most-original sliding isolation device without any 
restoring force [10], which was adopted in bridges [11] and some 
low-rise buildings for earthquake protection [10,12]. The FPS and R-FBI 
are sliding isolation systems, including restoring force, which have 
become more popular for application in recent years [4]. In addition, as 
a siding isolation system, geotechnical seismic isolation techniques 
using locally available materials such as limestone sand [13], 
sand-bitumen mixtures [14] and rubber-soil mixtures [15] were devel
oped for structural seismic response mitigation. These techniques are 
characterized by low cost and simple construction and are of particular 
significance in developing countries [16–18]. 

Although the base isolation technique has an excellent effect for 
structural response suppression, a large displacement is generally 
induced at the isolation layer under ground excitation due to the low 
lateral stiffness. This can be an issue that cannot be neglected for the 
application of base isolation systems in practice considering the auxil
iary facilities (e.g., pipeline systems) existing in the isolation layer and 
adjacent buildings [19]. To reduce the displacement of the isolation 
layer, additional energy dissipation devices have been proposed in base 
isolation systems [20]. However, this strategy can cause an increased 
response of the superstructure. A hybrid control strategy incorporating 
the tuned mass damper into the base isolation system was also proposed 
to address the large isolation displacement [21,22]. More input energy is 
induced due to the additional mass for the base isolation structure under 
ground motion. Recently, inerter-based technologies have been intro
duced into the base isolation system to reduce the isolation displacement 
without increasing the superstructure responses and inducing external 
energy input owing to the inherent characteristics of the inerter 
[23–25]. 

The inerter is a two-terminal device whose reaction force is pro
portional to the relative acceleration of its two nodes [26–28]. The 
constant of this proportionality is defined as inertance (also called 
apparent mass) [26], which represents the apparent mass effect of an 
inerter. Using an appropriated physical realization (e.g., the ball screw 
mechanism), the inertance of an inerter can be generated up to an order 
of thousands of times to its gravitational mass [29]. In addition, the 
inerter also exhibits a frequency-dependent negative stiffness effect [30, 
31]. With the characteristics above, the inerter technique is of increasing 
interest [32–36] to scholars in the field of structural vibration control, 
and many high-performance inerter-based devices have been developed 
[37–43]. Employing the apparent mass effect of the inerter, Zhang et al. 
[44] presented a tuned mass inerter system to achieve the lightweight 
control of a wind turbine tower. This device is also employed in multi
mode control of the seismic response of the high-rise industrial chimney 
[45]. Wang et al. [46] proposed a parallel connected inerter to enhance 
the performance of an active-passive-combined vehicle suspension sys
tem. To improve seat comfort, Ning et al. [47] proposed an electro
magnetic inerter device with variable inertance and checked the 
corresponding capacity through both numerical simulations and 
experimental tests. In terms of reducing the force transmission from the 
machine to the ground, Zhang et al. [48] presented an additional inerter 
system and proposed an optimal design strategy based on the 
closed-form power equation to achieve efficient control. Inerter-based 
devices have also been utilized for vibration control of practical struc
tures in China and Japan [26,49]. In summary, inerter-based devices 
have exhibited an extensive vibration control capacity for structures in 
different fields. Owing to the special characteristics of inerters, this 
technology has also been proposed for performance enhancement of 
base-isolated structures regarding the isolation displacement and re
sponses of the superstructure [23,50,51]. 

By assuming the base-isolated object as a rigid mass, Saitoh [52] 
proposed a base isolation system combined with an additional inerter to 
mitigate the isolation displacement. It is found that the addition of an 
inerter can reduce the natural frequency and the amplitude of seismic 
excitation for the base isolation system. Consequently, the isolation 

displacement is determined to be decreasing based on both the analyt
ical and numerical solutions. Simplifying the superstructure with a 
single degree of freedom (SDOF) system, Ye et al. [53] derived 
closed-form solutions for the modal characteristics and seismic re
sponses of the base-isolated structure with an additional inerter. They 
found that there is a critical inertance such that the modal participation 
factor equals zero. Thus, the modal response induced by the second 
mode vanishes at the critical inertance. They proposed an optimal range 
of inertance to accomplish the trade-off for the displacement mitigation 
of the isolation layer and superstructure. By connecting the inerter with 
spring, damping and mass elements, inerter systems composed of 
different mechanical layouts (e.g., the tuned viscous mass damper 
(TVMD) [54] and the tuned inerter damper (TID) [55]) are proposed for 
performance improvement of base-isolated structures based on the 
closed-form design procedures. Note that all the previous studies are 
concentrated on the base-isolation structures using elastomeric bearing 
systems with linear behavior (i.e., represented by the spring and dashpot 
connected in parallel). However, for the sliding isolation system, its 
mechanical behavior is highly nonlinear due to the hysteretic behavior 
of the friction force and the existence of different motion states of stick 
and slippage along the sliding interface [5,56]. Zhao et al. [57] and De 
Domenico et al. [58] proposed the optimal design of different inerter 
systems incorporated into FPS isolation structures, and the corre
sponding seismic performances were also investigated based on the 
numerical analysis results. In their studies, the stochastic linearization 
approach was employed to approximately deal with the nonlinear 
behavior of the FPS represented with the ideal Coulomb friction model, 
which is only valid when slippage occurs for the sliding isolation system 
[59]. However, the stick state also exists for a sliding isolator under 
ground excitation. In addition, unlike the inerter-added base isolation 
systems with linear behavior whose theoretical investigation has been 
conducted in depth, there is no analytical solution reported for the 
sliding isolation system enhanced with an inerter, which can be useful in 
understanding the working mechanism and making design decisions of 
this system. For a sliding isolation structure, the analytical solutions that 
assist in understanding its inherent mechanism have been explored 
previously. Tsiavos et al. [60] investigated the analytical responses of 
base-isolated structures with deformable sliding layers under harmonic 
and pulse ground motions. The influence of the deformability of the 
sliding layer on the stick-slip behavior ranges, sliding displacement and 
acceleration responses are included in their studies. Hu and Nakashima 
[61] derived analytical solutions for the maximum acceleration 
response of a two-degrees-of-freedom sliding base system under har
monic ground motions. In these studies, the inerter technique was not 
examined. 

The topic of this study is the analytical solution of the inerter-added 
sliding isolation structures with the goal of performance improvement, 
which can be beneficial to explore the role the additional inerter played 
in an inerter-added sliding isolation system. The fundamental system for 
the sliding isolation technique, i.e., the pure-friction system, with an 
additional inerter is employed for investigation under harmonic ground 
motions. Although this system has the limitation of the absence of the 
restoring force, it contains the critical components of the inerter-added 
sliding isolation structures, and a corresponding analytical study can 
provide more in-depth insight into the inherent mechanism of this type 
of structure. With the goal of theoretical investigation, pure friction 
systems have been employed extensively in the past [61,62]. The nov
elties of the paper compared to previous studies [5,57,58] are employ
ment of the inerter technique for performance improvement of sliding 
isolation structures, analytical solutions for the dynamic responses and 
explicit expressions for conditions of motion modes of inerter-added 
sliding isolation structures that assist in understanding the role of the 
additional inerter. 

In this study, closed-form solutions for the dynamic characteristics 
and responses of inerter-added sliding isolation structures are derived. 
The explicit expressions for the occurrence conditions of the three 
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fundamental motion modes (i.e., the stick-stick mode, the stick-slip 
mode and slip-slip mode reported in [63]) of the pure friction system 
with an additional inerter are derived based on the steady-state 
response. Numerical analyses are conducted to validate the explicit ex
pressions. According to the derivations presented above, the influences 
of the added inerter on the motion mode, the maximum acceleration of 
the superstructure and the amplitude of the isolation displacement of the 
pure-friction isolation structure are investigated. 

This paper is structured as follows. Section 2 presents the governing 
equations of motion for both the stick and sliding phases of the inerter- 
added sliding isolation structures. Then, the corresponding analytical 
solutions of the structural responses are provided. In Section 3, the 
conditions of the three fundamental motion modes of the inerter-added 
sliding isolation structures are derived and verification studies are per
formed. Section 4 gives parametric analyses of the dynamic responses of 
the inerter-added sliding isolation structures. Conclusions are presented 
at the end of this paper. 

2. Theoretical basis 

To facilitate analytical solutions of the inerter-added sliding isolation 
structure, an appropriate mechanical model needs to be built to illus
trate its dynamic behavior. The governing equations of motion for the 
inerter-added sliding isolation structure are derived under ground mo
tion excitations using an appropriate mechanical model in this section. 
By solving the governing equations of motion, explicit expressions for 
the dynamic responses of the structure are obtained. Then, based on the 
structural dynamic responses, the characteristics for motions of the 
inerter-added sliding isolation structure are illustrated. The details of 
this section are given below. 

2.1. Governing equations of motion 

Fig. 1 shows the mechanical model of the inerter-added sliding 
isolation structure. The pure-friction system with an additional inerter is 
incorporated between the isolated base and the ground. The super
structure is simplified as a single degree of freedom (SDOF) system, 
which is commonly used as an equivalent of an isolated object [24,53]. 
Note that for the whole system, the inerter-added sliding isolation 
structure is a two-degrees-of-freedom system. This can also be seen from 
the derivation of equations of motion for the whole structure below. The 
additional inerter employed here is to improve the performance of the 
sliding isolation structure, such as the displacement performance of the 
isolation layer. Due to the apparent mass effect, the inerter can realize 
the performance adjustment of the sliding isolation structure with a 
quite small gravitational mass that can be ignored. 

In Fig. 1, m, c and k denote the mass, damping coefficient and stiff
ness of the superstructure, respectively; mb is the mass of the isolated 
base; xs denotes the relative displacement between the primary mass and 

the isolated base, and yb denotes the relative displacement between the 
isolated base and the ground; x, y and z are the absolute displacements of 
the primary mass, the isolated base and the ground, respectively; and min 
is referred to as the inertance (also called apparent mass) of the inerter. 
The inerter is a recently developed two-terminal inertial element whose 
output force is proportional to the relative acceleration of its two ends. 
Assuming that the accelerations of the two ends of the inerter are ẍ1 and 
ẍ2, as shown in Fig. 2, the output force Fin of the inerter can be written as 

Fin = min

(

ẍ2 − ẍ1

)

(1) 

In addition, the relationships between displacements expressed in 
Fig. 1 are as follows: 

x = z + yb + xs (2)  

y = z + yb (3) 

According to the dynamic equilibrium approach, the governing 
equations of motion for the inerter-added sliding isolation structure 
under ground motion excitations can be expressed as follows: 
{

mẍ + cẋs + kxs = 0
mbÿ + minÿb + mẍ = f (4)  

where f is the friction force along the sliding interfaces between the 
isolated base and the ground. The first equation of Eq. (4) is the dynamic 
equilibrium of the superstructure, whereas the second equation can be 
seen as the dynamic equilibrium of the isolated base. The ideal Coulomb 
model is adopted here to describe the friction force, which is simple and 
appropriate for the derivation of analytical solutions. The mechanical 
behavior of the ideal Coulomb model is shown in Fig. 3. The friction 
force f can be expressed as 

|f | ≤ μ(m+mb)g (5)  

where μ is the friction coefficient, and g denotes the acceleration of 
gravity. 

The condition of the stick motion of the inerter-added sliding isola
tion structure is as follows: (1) the absolute value of f is no more than 
μ(m + mb)g, and (2) the sliding velocity ẏ and the sliding acceleration ÿ 
are equal to the velocity ż and the acceleration z̈ of ground motions, 
respectively. When sliding occurs, the friction force f is calculated as 

Fig. 1. Modeling of the inerter-added sliding isolation structure, where an inerter is employed at the base isolation layer for performance improvement: (a) Three- 
dimensional representation and (b) two-dimensional representation with key parameters. 

Fig. 2. Mechanical model of the two-terminal inerter.  
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f = μ(m+mb)g⋅sgn(ż − ẏ) (6)  

where sgn (•) is the signum function. Based on friction forces during the 
stick and sliding motion phases illustrated above, the governing equa
tions of motion for these two phases can be derived as follows. 

(ⅰ) During the stick phases, the corresponding governing equations of 
motion expressed as Eq. (4) can be written with a dimensionless form as 
⎧
⎨

⎩

ẍs + 2ζ0ω0ẋs + ω2
0xs = − z̈

αẍs + z̈ = f/(m + mb),where|f | ≤ μ(m + mb)g
(7)  

where ω0 and ζ0 are the natural frequency and damping ratio of the 
superstructure, respectively, and α is the ratio of the mass of super
structure to the total mass. They are expressed as 

ω0 =
k
m
, ζ0 =

c
2mω0

, α =
m

m + mb
(8) 

Combining the two expressions in the second equation of Eq. (7) 
gives 
⃒
⃒
⃒αẍs + z̈

⃒
⃒
⃒ ≤ μg (9) 

Eq. (9) is the condition of the stick phases of the inerter-added sliding 
isolation structure. When contrary to this condition, sliding motion 
starts. 

(ii) During the slippage phases, the corresponding governing equations 
of motion can be written with a dimensionless form by substituting Eq. 
(6) and the relationships of the displacements expressed in Eqs. (2) and 
(3) into Eq. (4) as 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẍs + 2ζ1ω1ẋs + ω2
1xs = −

μg
1 + β − α⋅sgn(ż − ẏ) −

β
1 + β − αz̈

ÿ = μ 1
1 + β

g⋅sgn(ż − ẏ) −
α

1 + β
ẍs +

β
1 + β

z̈
(10)  

where β denotes the ratio of the inertance to the total mass and ω1 and ζ1 
are the natural frequency and the damping ratio of the superstructure 
during slippage phases, respectively. They can be expressed as 

β =
min

m + mb
,ω1 = ω0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + β

1 + β − α

√

, ζ1 = ζ0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + β

1 + β − α

√

(11) 

Since the time of initiation of the slippage phase is infinitesimally 
close to the time of the end of the stick phase, the condition for initiation 
of slippage can be expressed as 
⃒
⃒
⃒αẍs + z̈

⃒
⃒
⃒ ≥ μg (12) 

The condition for reattachment of the isolated base and the ground is 
written as 

ẏ = ż, and
⃒
⃒
⃒αẍs + z̈

⃒
⃒
⃒ ≤ μg (13) 

Note that the dimensionless mathematical framework adopted in 
Eqs. (7) and (10) can substantially reduce the number and complexity of 
the fundamental parameters required for describing the responses of the 
whole system. The parametric analyses illustrated in Section 5 can also 
be conducted more conveniently. 

Based on the derivations above, it can be seen that during the stick 
phases, the governing equation of motion for the superstructure in an 
inerter-added sliding isolation structure is equivalent to that of a fixed 
base SDOF structure subjected to ground motions. Hence, it is said that 
the inerter does not function in stick phases. This is consistent with the 
working mechanism of the inerter that a nonzero relative acceleration 
should exist between its two ends. Meanwhile, adding an inerter has no 
impact on the condition for the stick phases, as described in Eq. (9). 

During the slippage phases, the vibration of the superstructure be
haves with an adjusted frequency of ω1 and an adjusted damping ratio of 
ζ1, which are related to the values of α and β, as shown in the first 
equation of Eq. (10). In addition, the corresponding excitation for the 
vibration of the superstructure shows a combination of a step force and a 
reduced ground motion. As a result, the responses of the structure are 
altered due to the additional inerter. When β = 0 (i.e., the inerter is not 
added at the sliding isolation structure), Eq. (10) can be degraded to the 
governing equations of motion of a sliding isolation structure without an 
inerter. For this isolation structure, the natural frequency and damping 
ratio of the superstructure during slippage phases have been derived as 
ω0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1/(1 − α)

√
and ζ0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1/(1 − α)

√
, respectively, in [56]. These can also 

be obtained by substituting β = 0 into Eq. (11) in this study. Since the 
value of α is less than 1 and β is nonnegative, the value of 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(1 + β)/(1 + β − α)

√
is less than the value of 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1/(1 − α)

√
. Hence, add

ing an inerter can decrease the frequency and damping ratio of the 
sliding isolation structure during the slippage phase. 

2.2. Responses of inerter-added sliding isolation structures 

According to the governing equations of motion of the inerter-added 
sliding isolation structure illustrated above, the analytical solutions for 
the stick and slippage phases under harmonic ground excitations are 
discussed here. During the stick phases, the first equation of Eq. (7) is 
equivalent to the governing equation of an SDOF structure under ground 
motion excitations. The analytical solutions for such a structure have 
been addressed in the textbook on dynamics of structures. During the 
slippage phases, the first equation of Eq. (10) is the governing equation 
of an SDOF structure with a frequency of ω1 and damping ratio of ζ1 
subjected to the combination of a step force and a reduced ground 
motion excitation. Assuming the external excitation is written as z̈ =

a0sinωt, where a0 and ω are the amplitude and frequency of the ground 
motion, respectively, the solution of this equation can be expressed as 

Fig. 3. Mechanical behavior of the Coulomb model representing motions between sliding interfaces of inerter-added sliding isolation structures, where the sliding 
and stick motion states are indicated: (a) Force versus velocity and (b) force versus displacement. 
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[
xs(t)
ẋs(t)

]

= As(τ)
[

xs(ti)

ẋs(ti)

]

+ Bs(τ) (14)  

where t denotes the global time for the structural responses, ti is the 
moment when sliding starts in the ith slippage phase, τ = t − ti is the 
local time, and 

As(τ)=e− ζ1ω1τ

⎡

⎢
⎢
⎢
⎣

cos(ω1dτ)+ ζ1̅̅̅̅̅̅̅̅̅̅̅̅

1 − ζ2
1

√ sin(ω1dτ) 1

ω1

̅̅̅̅̅̅̅̅̅̅̅̅

1 − ζ2
1

√ sin(ω1dτ)

−
ω1
̅̅̅̅̅̅̅̅̅̅̅̅

1 − ζ2
1

√ sin(ω1dτ) cos(ω1dτ)− ζ1̅̅̅̅̅̅̅̅̅̅̅̅

1 − ζ2
1

√ sin(ω1dτ)

⎤

⎥
⎥
⎥
⎦

(15)  

Bs(τ) = Bs,1(τ) + Bs,2(τ) (16)  

Bs,1(τ)=
μg

ω2
1(1+β − α)⋅sgn(ż− ẏ)

⎡

⎢
⎢
⎢
⎢
⎣

e− ζ1ω1τ

(
ζ1̅̅̅̅̅̅̅̅̅̅̅̅

1 − ζ2
1

√ sinω1dτ+cosω1dτ
)

− 1

−
ω1
̅̅̅̅̅̅̅̅̅̅̅̅

1 − ζ2
1

√ e− ζ1ω1τsinω1dτ

⎤

⎥
⎥
⎥
⎥
⎦

(17)     

ω1d = ω1

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ζ2
1

√

(19)  

p = −

(
1 − ω2

ω2
1

)
cosωti + 2ζ1

ω
ω1

sinωti
(

1 − ω2

ω2
1

)2
+
(

2ζ1
ω
ω1

)2 (20)  

q = −

(
1 − ω2

ω2
1

)
sinωti − 2ζ1

ω
ω1

cosωti
(

1 − ω2

ω2
1

)2
+
(

2ζ1
ω
ω1

)2 (21) 

For the solution expressed by Eq. (14), the first term on the right- 
hand side involves the free vibration of the corresponding structure 
with initial conditions, whereas the second term involves the vibration 
induced by a step force and a reduced ground motion excitation that are 
further expressed by Eq. (17) and Eq. (18), respectively. When β = 0, Eq. 
(14) is equivalent to solutions of the superstructure of the sliding 
isolation structure without an inerter. 

By integrating the second equation of Eq. (10) once and determining 
the initial velocity of the isolated base ẏ(ti) in the ith slippage phase 
(equal to ż(ti)), the velocity y(t) is calculated as 

ẏ(t) = μ 1
1 + β

g⋅sgn(ż − ẏ)τ − α
1 + β

(ẋs(t) − ẋs(ti)) +
β

1 + β
(ż(t) − ż(ti))

+ ẏ(ti)

(22) 

Then, Eq. (22) is integrated again to obtain the displacement of the 

isolated base y(t), written as 

y(t) =
1
2

μ 1
1 + β

g⋅sgn(ż − ẏ)τ2 −
α

1 + β
(xs(t) − xs(ti) − ẋs(ti)τ)

+
β

1 + β
(z(t) − z(ti) − ż(ti)τ) + ẏ(ti)τ + y(ti)

(23)  

where y(ti) denotes the displacement of the isolated base at time ti. 
The ith slippage phase stops when the velocity y(t) in this phase is 

equal to the velocity of the ground ż(t) again. When this round of the 
slippage phase ends, the inerter-added sliding isolation structure may 
continue to slip or change to stick, which is determined by the condition 
of Eq. (13).The solutions derived above in slippage phases show that the 
parameter of the inerter can impact the responses of the sliding isolation 
structure, and therefore the condition of the moment when the ith 
slippage phase stops (determined by Eq. (13)). 

2.3. Illustration of three motion modes of sliding isolation structures 

It has been demonstrated that the motion of the sliding isolation 
structure has three different modes: the stick-stick mode, the stick-slip 
mode and the slip-slip mode [63]. In the stick-stick mode of a sliding 
isolation structure, only stick motion phases occur. This mode usually 
occurs for a sliding isolation structure under ground excitation with a 
small amplitude. In contrast, in the slip-slip mode, only slip motion 

phases occur for a sliding isolation structure, and this mode occurs under 
ground excitation with large amplitude. When both the stick and slip 
phases occur in one whole motion period, the motion mode of the sliding 
isolation structure is called the stick-slip mode. Since the additional 
inerter proposed in this study adjusts the dynamic characteristics of the 
sliding isolation structure and thus improves the performance of this 
structure, the inherent working mechanism of the sliding isolation sys
tem remains unchanged. Hence, these three motion modes also exist at 
the inerter-added sliding isolation structure. Compared to the stick-slip 
mode, the slip-slip mode is preferred for the motion of the sliding 
isolation structure based on the characteristics of the structural re
sponses [7,61]. For a more comprehensive understanding, we give an 
overview in detail about these three motion modes herein. 

Previous studies found that the periodic motions will be observed in 
steady-state responses of sliding isolation structures subjected to har
monic excitations [56]. Fig. 4 shows the schematic velocity and accel
eration of the isolated base and ground in one cycle for the steady-state 
responses of the inerter-added sliding isolation structure with the same 
period of ground motion excitations. Note that the curves shown in 
Fig. 4 are presented qualitatively and obtained based on the derivations 
in Section 2.2 for a certain case, where t0 is the start moment of the stick 
motion, ti is the end of this stick motion as well as the start of slip motion, 
and tf is the end of this slip motion. The motion of the inerter-added 
sliding isolation structure in Fig. 4(b) includes both the stick and slip 
motions, which is the so-called stick-slip mode. When the moment ti 
coincides with t0, the stick-slip mode is transformed into the slip-slip 
mode (see Fig. 4(c)). Only slip motion phases exist in the slip-slip 
mode of the structure. In contrast, the stick-stick mode occurs when 
the moment ti coincides with tf, which only includes the stick motion for 

Bs,2(τ) =
βa0

(1 + β − α)ω2
1

⎡

⎢
⎢
⎢
⎣

e− ζ1ω1τ

[

− q

(
ζ1̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ζ2
1

√ sin(ω1dτ) + cos(ω1dτ)
)

−
pω
ω1d

sin(ω1dτ)
]

+ psin(ωτ) + qcos(ωτ)

e− ζ1ω1τ

[
qω1
̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ζ2
1

√ sin(ω1dτ) + pω
(

ζ1̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ζ2
1

√ sin(ω1dτ) − cos(ω1dτ)
)]

+ pωcos(ωτ) − qωsin(ωτ)

⎤

⎥
⎥
⎥
⎦

(18)   
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the inerter-added sliding isolation structure (see Fig. 4(a)). 
Based on the derivations in Section 2.2, several time history re

sponses are presented in Figs. 5 and 6 to show the motions of inerter- 
added sliding isolation structures with stick-slip and slip-slip modes, 
respectively, which can provide a visual demonstration of the illustra
tions above and some basis for the investigations of the following sec
tions. The initial displacement and velocity of the structure are set as 
zero. The parameters of the inerter-added sliding isolation structure in 
Fig. 5 are μ = 0.1, T0 = 2π /ω0 = 0.5s, ζ0 = 0.05, α = 0.5, β = 0.1, a0 =

0.2g and T = 2π /ω = 1s, where T0 and T are the periods of the super
structure and the ground motion, respectively. The absolute acceleration 
of the superstructure ẍ (related to the base shear force) and the 
displacement of the isolation layer yb are selected to be exhibited here, 
which are concerned with the performances of isolation structures. An 
extensive investigation of these two responses is also performed to 
evaluate the performances of inerter-added sliding isolation structures 
in Section 4. Fig. 5 shows that the responses of the structure converge to 
steady state after several motion cycles whose period is the same as the 
harmonic ground motion. Each cycle of the steady-state response con
tains two stick and slip motion intervals. For the two slip motion in
tervals in one cycle, the structure slides in opposite directions. Under a 
certain excitation frequency, the motion of a certain isolation structure 
with the stick-slip mode will transfer into the motion of the slip-slip 
mode when the amplitude of the excitation exceeds the threshold 
value. Under an increased ground motion amplitude of 1.2g, the re
sponses for the motion of the slip-slip mode are shown in Fig. 6 for the 
inerter-added sliding isolation structure with the same parameters as 
those in Fig. 5. There are no stick phases, and the sliding direction 
changes after a slippage phase ends in one cycle. In Figs. 5 and 6, yb,ap 
denotes the amplitude of the displacement of the isolation layer during 
the steady-state response, which is adopted as an index to evaluate the 
performance of the inerter-added sliding isolation structure involving 
the isolation displacement in the section below. Under harmonic ground 
motion excitations, the maximum isolation displacements accumulate 
due to the transient responses before the periodic steady-state motion. 

Hence, the maximum isolation displacements are strongly dependent on 
the initial acceleration of the ground excitation. Consequently, the 
amplitude of the isolation displacement, yb,ap, rather than its maximum 
value, is selected as the evaluation index. When the acceleration of the 
ground motion is small enough, the stick-stick mode occurs for the 
motion of the isolation structure. Since the responses of the inerter- 
added sliding isolation structure in this mode are the same as those of 
the familiar fixed base structure, it is not shown here. 

3. Occurrence conditions for three motion modes 

The explicit expressions for the occurrence conditions of the three 
modes illustrated above are derived in this section based on steady-state 
responses of inerter-added sliding isolation structures. Using these 
derived explicit expressions, numerical integration will not be necessary 
for determining the mode of the inerter-added sliding isolation struc
ture. Since the motion and condition of the sliding isolation structure is 
not impacted by the additional inerter during stick phases, the boundary 
between the stick-stick mode and the stick-slip mode is the same for the 
sliding isolation structure with inerter and without inerter, which has 
been derived in [56]. This is also verified by the numerical analysis 
exhibited at the end of this section. Hence, only the boundary that 
separates the regions of the stick-slip mode and the slip-slip mode is 
derived in detail here. 

Based on the derivations in Section 2.1 for sliding phases of the 
inerter-added sliding isolation structure, the first equation of Eq. (10) is 
equivalent to the governing equation of an SDOF structure with fre
quency ω1 and damping ratio ζ1 subjected to the combination of a step 
force and a reduced ground motion excitation. For one cycle of periodic 
motion in slip-slip mode, the structure slides in one direction for half of 
the period of the ground motion and then in the opposite direction for 
the other half of the period, as shown in Fig. 6. Assuming the harmonic 
ground motion, the combining excitation in the first half of one cycle has 
the same absolute values but contrary signs with that of the other half 
cycle, so are the steady-state solutions of the first equation of Eq. (10) for 

Fig. 4. Schematic representation of the velocity and acceleration responses of the isolated base and ground in an inerter-added sliding isolation structure with 
different motion modes: (a) Stick-stick mode, (b) stick-slip mode, and (c) slip-slip mode. 

S. Xue et al.                                                                                                                                                                                                                                      



International Journal of Mechanical Sciences 231 (2022) 107568

7

the two half cycles. At the beginning of the slip-slip mode, the time in
terval between ti (which coincides with t0) and tf is equal to π /ω (i.e., tf 
− ti = π /ω). Taking into account the relationships of the solutions 
above, letting t = tf and substituting tf − ti = π /ω into Eq. (14), this 
equation can be rewritten as 
[

xs
(
tf
)

ẋs
(
tf
)

]

= As

(π
ω

)[ xs(ti)

ẋs(ti)

]

+ Bs

(π
ω

)
= −

[
xs(ti)

ẋs(ti)

]

(24) 

Following Eq. (24), the displacement xs(ti) and the velocity ẋs(ti) can 
be calculated as follows: 
[

xs(ti)

ẋs(ti)

]

= −
[
As

(π
ω

)
+ I
]− 1

Bs

(π
ω

)
(25)  

where denotes the identity matrix. Based on the expressions of As(τ) and 
Bs(τ) in Eqs. (15)–(21), xs(ti) and ẋs(ti) can be expressed as 

xs(ti) =
βa0

(1 + β)ω2
0

q +
μgsgn(ż − ẏ)
(1 + β)ω2

0
⋅
sinhφ − sinψ ζ1̅̅̅̅̅̅̅

1− ζ2
1

√

coshφ + cosψ (26)  

ẋs(ti) =
βa0ω

(1 + β)ω2
0

p +
μgsgn(ż − ẏ)
(1 + β)ω2

0
⋅

sinψ
coshφ + cosψ⋅

ω1
̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ζ2
1

√ (27)  

where p and q are defined in Eqs. (20) and (21), respectively, and 

φ =
πζ1ω1

ω ,ψ =
πω1d

ω (28) 

At the initiation of the slippage phase (i.e., t = ti), the condition 

expressed by Eq. (12) is satisfied and written as 
⃒
⃒
⃒αẍs + z̈

⃒
⃒
⃒ =

⃒
⃒α
[
− 2ζ0ω0ẋs(ti) − ω2

0xs(ti) − a0sin(ωti)
]
+ a0sin(ωti)

⃒
⃒ ≥ μg

(29) 

Substituting Eqs. (26) and (27) into Eq. (29), this inequality can be 
expressed as follows through a rearrangement: 
⃒
⃒
⃒
⃒
⃒
⃒
(1+ β − α)[γ1sin(ωti) − γ2cos(ωti)]⋅

a0

μg
−

αsgn(ż − ẏ)
1 + β

⋅
sinψ ζ1̅̅̅̅̅̅̅

1− ζ2
1

√ + sinhφ

cosψ + coshφ

⃒
⃒
⃒
⃒
⃒
⃒

≥ 1
(30)  

where 

γ1 =

4ω2ζ2
1

ω2
1

+
(

1 − ω2

ω2
1

)(
1 + (α − 1) ω2

ω2
0

)

[(
1 − ω2

ω2
1

)2
+
(

2ωζ1
ω1

)2
]

(1 + β)
(31)  

γ2 =

2αβζ0ω3

(1+β)ω3
0[(

1 − ω2

ω2
1

)2
+
(

2ωζ1
ω1

)2
]

(1 + β)
(32) 

At the beginning of the slippage phase, the sign of (z − y) is deter
mined by 

Fig. 5. Responses of an inerter-added sliding isolation structure behaving in stick-slip motion mode, computed for μ = 0.1, T0 = 0.5s, ζ0 = 0.05, α = 0.5, β = 0.1, T 
= 2π /ω = 1s and a0 = 0.2g, where the closed-form solutions during different motion states are employed: (a) Acceleration time history response and (b) 
displacement time history response. 
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sgn(ż − ẏ) =
αẍs + z̈
⃒
⃒
⃒αẍs + z̈

⃒
⃒
⃒

(33) 

Then, considering that the expression in the sign of the absolute 
value of Eq. (30) is the variant of (αẍs + z̈)/μg, Eq. (30) can be rewritten 
with the help of Eq. (33) as follows: 

[γ1sin(ωti) − γ2cos(ωti)]
2⋅
⃒
⃒
⃒
⃒
a0

μg

⃒
⃒
⃒
⃒

2

≥ F2
0 (34)  

where 

F2
0 =

1
(1 + β − α)2

⎛

⎝1 +
α

1 + β
⋅
sinψ ζ1̅̅̅̅̅̅̅

1− ζ2
1

√ + sinhφ

cosψ + coshφ

⎞

⎠

2

(35) 

In addition, at the moment that the stick-slip mode switches to the 

slip-slip mode, the velocity of the isolated base equals that of the ground 
motion. This is expressed as follows at time t = ti: 

ẏ(ti) = ż(ti) (36) 

According to the periodic characteristics of the solutions in the slip- 
slip mode, we have 

ẏ
(
tf
)
= − ẏ(ti) (37) 

In a half cycle of the steady-state motion of the structure with slip- 
slip mode, letting t = tf, τ = tf − ti = π /ω and considering the relations 
in Eqs. (36) and (37), Eq. (22) can be rewritten as 

2a0

ω cos(ωti) = μg⋅sgn(ż − ẏ)
π
ω + 2αẋs(ti) (38) 

Substituting Eq. (27) into Eq. (38) yields  

Fig. 6. Responses of an inerter-added sliding isolation structure behaving in slip-slip motion mode, computed for μ = 0.1, T0 = 0.5s, ζ0 = 0.05, α = 0.5, β = 0.1, T 
= 2π /ω = 1s and a0 = 1.2g, where the closed-form solutions during different motion states are employed: (a) Acceleration time history response and (b) 
displacement time history response. 

2a0

ω

[

cos(ωti) −
αβω2

(1 + β)ω2
0

p
]

=

[

μg⋅

(
π
ω+

2α
(1 + β)ω2

0

sinψ
coshφ + cosψ⋅

ω1
̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ζ2
1

√

)]

⋅sgn(ż − ẏ) (39)   
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Eq. (39) can be expressed as follows through a rearrangement: 
a0

μg
[γ1cos(ωti)+ γ2sin(ωti)] = γ3 (40)  

where 

γ3 =

[
1

1 + β

(
π
2
+

αω
(1 + β)ω0

⋅
sinψ

coshφ + cosψ⋅
ω1

ω0

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ζ2
1

√

)]

⋅sgn(ż − ẏ) (41) 

Combining Eq. (34) and the square of Eq. (40), it is derived by 
eliminating the harmonic terms of sin(ωti) and cos(ωti) as 
⃒
⃒
⃒
⃒
a0

μg

⃒
⃒
⃒
⃒ ≥

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

γ2
1 + γ2

2

√

⋅
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

γ2
3 + F2

0

√

(42) 

Eq. (42) is the explicit form of the occurrence condition of the slip- 
slip mode for inerter-added sliding isolation structures. The explicit 
expressions of the conditions of the stick-stick mode are the same for the 
sliding isolation structure with an inerter and without an inerter ac
cording to the corresponding governing equations of motion, which 
have been derived by Westermo and Udwadia [56]. Consequently, the 
expressions for the conditions of the three modes of the inerter-added 
sliding isolation structure can be summarized as follows:  

(1) Conditions of the stick-stick mode 
⃒
⃒
⃒
⃒
a0

μg

⃒
⃒
⃒
⃒ ≤

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

(γ4 + 1)2
+ γ2

5

√

(43)    

(2) Conditions of the stick-slip mode 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
γ2

1 + γ2
2

√

⋅
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

γ2
3 + F2

0

√

≤

⃒
⃒
⃒
⃒
a0

μg

⃒
⃒
⃒
⃒ ≤

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

(γ4 + 1)2
+ γ2

5

√

(44)    

(3) Conditions of the slip-slip mode 
⃒
⃒
⃒
⃒
a0

μg

⃒
⃒
⃒
⃒ ≥

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

γ2
1 + γ2

2

√

⋅
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

γ2
3 + F2

0

√

(45)  

where 

γ4 =
α ω2

ω2
0

(
1 − ω2

ω2
0

)

(
1 − ω2

ω2
0

)2
+
(

2ωζ0
ω0

)2 (46)  

γ5 =
− 2 ω3

ω3
0
ζ0α

(
1 − ω2

ω2
0

)2
+
(

2ωζ0
ω0

)2 (47)  

When β = 0, Eqs. (44) and (45) agree with the corresponding derivations 
given by Iura et al. [63] for the sliding isolation structure without an 
inerter. To verify the explicit forms for the conditions of the three modes 
in Eqs. (43)–(45), these analytical results are compared with the nu
merical results for two inerter-added sliding isolation structures with 
different parameters. The boundaries between the three modes are 
depicted through relationships between the frequency ratios ω/ω0 and 
normalized accelerations a0/μg, as shown in Fig. 7. Using the solid 
boundary line obtained by Eqs. (43)–(45), the regions for the three 
modes of inerter-added sliding isolation structures are clearly separated. 
The numerical results obtained using the solutions in Section 2 are 
shown in Fig. 7 with a scatter plot for several frequency ratios. Fig. 7(a) 
is obtained for structures with parameters of ζ0 = 0.05, α = 0.2 and β =
0.2, and the corresponding parameters for Fig. 7(b) are ζ0 = 0.05, α =
0.5 and β = 0.4. The theoretical and numerical results show good 
agreement in both figures. Hence, the derived explicit expressions of 
occurrence conditions are verified. The boundaries represented by the 
normalized excitation amplitude a0/μg in Fig. 7(b) are generally larger 

Fig. 7. Regions for three modes of inerter-added sliding isolation structures, computed for the damping ratio of the superstructure of ζ0 = 0.05, where both the 
numerical simulation and analytical solutions expressed by Eqs. (43)–(45) are used: (a) structural parameters with α = 0.2 and β = 0.2, and (b) structural parameters 
with α = 0.5 and β = 0.4. 
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than those in Fig. 7(a). This means that the slip-stick and slip-slip modes 
occur harder for a larger value of α. A large value of α usually indicates 
that the weight of the sliding base is large. Hence, a large value of the 
friction force is required to start the slippage of the sliding system. The 
slippage-related motion modes of the sliding system occur harder for a 
larger value of α. Since this study is focused on the object of an addi
tional inerter, detailed parametric analyses involving the mass ratio α 
are not presented. Scholars interested in this point can see the in
vestigations in the literature [61,63]. In addition, since the boundaries 
between the stick-stick and stick-slip modes indicated by both the 
analytical and numerical results match well in Fig. 7, this also validates 
that adding an inerter will not alter the occurrence conditions of the 
stick-stick mode of sliding isolation structures. 

4. Influence of additional inerter in sliding isolation structures 

Based on the derivations above, the dynamic characteristics of 
structures are adjusted during slippage phases, and the structural motion 
modes are affected by adding an inerter in sliding isolation structures. 
To provide a qualitative study, in this section, the influences of the 
additional inerter on the motion modes and the significant responses of 
the sliding isolation structure are investigated through extensive para
metric analyses based on the derived closed-form solutions. Some design 
recommendations are also provided. 

4.1. Influence of the inerter on the conditions for motion modes 

It is indicated that the additional inerter will not affect the boundary 
between the stick-stick and stick-slip modes of the sliding isolation 
structure according to the analyses above. Hence, the influences of the 
additional inerter on the boundaries between the stick-slip and slip-slip 
modes are only analyzed here. For inerter-added sliding isolation 
structures with parameters of α = 0.5 and ζ0 = 0.05, the boundaries 
between the stick-slip and slip-slip modes are shown in Fig. 8 by 
depicting relationships between the frequency ratio ω /ω0 and 
normalized excitation amplitude a0/μg for different inertance-to-mass 
ratios β. The shapes of the boundaries between the stick-slip and slip- 
slip modes are similar for different values of β. These boundaries 
exhibit multiple peaks when ω/ω0 is less than 1, and the maximum peak 
values of a0/μg occur for values of ω/ω0 between 1 and 2. The bound
aries for sliding isolation structures without an inerter (i.e., β = 0) have 
the largest a0/μg for most values of ω/ω0 less than 1. In addition, for 
these regions of ω/ω0 less than 1, boundaries represented by a0 /μg 

decrease with the increase of β for fixed ω/ω0. This indicates that the 
slip-slip mode of the inerter-added sliding isolation structure can occur 
with a lower excitation amplitude by increasing the inertance of the 
inerter for most values of ω/ω0 less than 1. With the increase in the 
amplitude of the harmonic ground excitation under a specific frequency 
for a sliding isolation system, the rate of increase of the relative sliding 
displacement during the slip-slip mode is smaller than that during the 
stick-slip mode. The relevant analyses are shown in the subsequent 
section in detail. Similar results can also be found in previous work [61]. 
In this regard, the slip-slip mode is preferred compared to the stick-slip 
mode for a sliding isolation system [7,61]. Consequently, adding an 
inerter is beneficial for sliding isolation structures in most situations of 
ω/ω0 less than 1. When the values of ω/ω0 are far larger than 1, the 
boundaries for different values of β are almost coincident. This means 
that the additional inerter has little influence on the occurrence condi
tions of the slip-slip mode for sliding isolation structures when the values 
of ω/ω0 are far larger than 1. For ω /ω0≫1, the frequency of the su
perstructure is quite small, i.e., the superstructure is very flexible. For 
such a structure with a sliding base, the acceleration of this system is 
small and not sensitive to the ground motion excitation. Since the output 
force of the inerter is acceleration dependent, the influence of the 
additional inerter on the response of such a sliding system is weak. 
However, considering that seismic isolation technology is usually not 
recommended for long-period structures, application scenarios of 
inerters in such structures are rare. 

4.2. Influence of the inerter on the responses of sliding isolation structures 

Adding an inerter can adjust the structural dynamic characteristics of 
sliding isolation structures during slippage phases. As a result, the 
structural responses are impacted by the additional inerter. The absolute 
acceleration of the primary mass ẍ (related to the structural base shear 
force) and the displacement of the isolation layer yb are two aspects of 
the performance of isolation structures in this study. For convenience of 
analyses, the performance indices involving these two responses are 
defined with dimensionless forms. For the index of ẍ, the normalized 
maximum acceleration Ap/μg is adopted for evaluation, which is 
calculated as 

Ap

μg
=

max|ẍ|
μg

(48)  

where Ap is the maximum value of the absolute acceleration ẍ. For the 
index of yb, the normalized isolation displacement amplitude 
yb,ap/(a0 /ω2

0) is employed to evaluate the structural performance, where 
a0/ω2

0 denotes the amplitude of the ground motion displacement. Ana
lyses conducted here are focused on the influences of additional inerters 
and the characteristics of harmonic ground motions on the responses of 
inerter-added sliding isolation structures. All the analyses below are 
performed using the solutions in the structure steady state. 

4.2.1. Maximum pseudoacceleration of superstructure 
According to the solutions of the inerter-added sliding isolation 

structures given in Section 2.2, the structural responses are related to the 
values of α, μg, ζ0, β, ω/ω0 and a0. Fig. 9(a) shows the relationships 
between the normalized maximum acceleration Ap/μg and frequency 
ratio ω/ω0 for different values of β with α = 0.5, ζ0 = 0.05 and a0 /μg =

2. Several resonant frequency ratios exist for inerter-added sliding 
isolation structures when sliding occurs, which is quite different from 
fixed base structures. In Fig. 9(a), the resonant frequency ratios shift 
toward lower values of ω/ω0 as β increases. This is because the fre
quency ω1 = ω0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(1 + β)/(1 + β − α)

√
during the slippage phase de

creases with increasing β. For the largest several (especially the largest 
two) resonant frequency ratios, the corresponding peak values of Ap/μg 
for the inerter-added sliding isolation structure are larger than those of 
the sliding isolation structure without an inerter (i.e., β = 0). Except for 

Fig. 8. Boundaries between the stick-slip and slip-slip motion modes of the 
inerter-added sliding isolation structures for different values of β with the 
structural parameters of α = 0.5 and ζ0 = 0.05, where the analytical solution for 
determining structural motion modes in Eq. (42) is adopted. 
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the largest resonant frequency ratio, the peak values of Ap /μg in the 
corresponding resonant frequency ratios decrease with increasing β for 
inerter-added sliding isolation structures. Additionally, in the region of 
small frequency ratio ω/ω0 (ω /ω0 ≤ 1), the values of Ap /μg for inerter- 
added sliding isolation structures are lower than those of the sliding 
isolation structure without an inerter (i.e., β = 0), and Ap /μg decreases 
with the increase of β for a certain ω/ω0. In the region of large ω /ω0, the 
values of Ap/μg are almost the same for different values of β for a specific 
ω/ω0. This phenomenon can be attributed to the flexible superstructure 
for ω /ω0≫1. The acceleration of a flexible structure isolated with the 
sliding base is usually small and not sensitive to the ground motion 
excitation. Considering that the mechanical behavior of the inerter is 
acceleration dependent, the influence of the additional inerter on the 
response of such a sliding system is weak. In some regions of 
0.1 ≤ ω /ω0 ≤ 1, the performance of inerter-added sliding isolation 
structures regarding Ap/μg are superior to those of the sliding isolation 

structure without an inerter (i.e., β = 0) but worse in the other regions of 
0.1 ≤ ω /ω0 ≤ 1. Hence, with the goal of reducing the responses of 
Ap/μg, it is recommended to move the frequency ratio ω/ω0 away from 
these regions of worse performance and resonant frequency ratios 
(especially the largest two). 

The relationships between Ap/μg and ω/ω0 for different values of a0/

μg are shown in Fig. 9(b) by setting α = 0.5, ζ0 = 0.05 and β = 0.2. The 
curves for large a0/μg also have several resonant frequency ratios in 
which sliding occurs. The values of resonant frequency ratios are almost 
the same for values of a0/μg equal to 2, 4 and 8 because the values of α 
and β that are related to the structural frequencies are unchanged. Since 
the stick-stick mode appears mainly for a0/μg equal to 0.5 and 1, there 
are single resonant frequency ratios for these two curves. In addition, the 
value of Ap/μg for a specific ω/ω0 increases with increasing a0/μg for the 
inerter-added sliding isolation structure. 

Fig. 10(a) and Fig. 10(b) show the relationships between Ap/μg and 

Fig. 9. Relationships between normalized maximum acceleration Ap/μg and frequency ratio ω/ω0 for inerter-added sliding isolation structures, where the derived 
closed-form solutions for structural responses are used: (a) Different values of β for α = 0.5, ζ0 = 0.05 and a0 /μg = 2, and (b) different values of a0 /μg for α = 0.5, ζ0 
= 0.05 and β = 0.2. 

Fig. 10. Relationships between the normalized maximum acceleration Ap/μg and normalized excitation amplitude a0/μg for inerter-added sliding isolation struc
tures, where the derived closed-form solutions for structural responses are used: (a) Different values of β for α = 0.5, ζ0 = 0.05 and ω /ω0 = 0.5; (b) different values of 
ω/ω0 for α = 0.5, ζ0 = 0.05 and β = 0.2. 
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a0/μg for different values of β and ω/ω0, respectively. The boundaries 
between stick-stick and stick-slip modes and boundaries between stick- 
slip and slip-slip modes are marked in the relationship curves using 
circle and triangle symbols, respectively. Consequently, these curves in 
Fig. 10 are separated into three regions that are related to motions with 
stick-stick, stick-slip and slip-slip modes. In Fig. 10(a), the Ap /μg versus 
a0/μg curves for different values of β with stick-stick mode are straight 
lines and overlap. The boundaries for the stick-stick and stick-slip modes 
are also the same for different β. This supports the previous conclusions 
that adding an inerter in sliding isolation structures will not affect the 
responses of structures in stick phases and boundaries between stick- 
stick and stick-slip modes. For the sliding isolation structure without 
an inerter (β = 0), the value of Ap/μg is constant in the region of the slip- 
slip mode, whereas for inerter-added sliding isolation structures, the 
values of Ap/μg for a specific βincrease with increasing a0 /μg. Addi
tionally, the corresponding increase rates of these curves with slip-slip 
mode increase with the increase in Ap/μg, as well as the value of β. 

Hence, a larger β is not always beneficial for reducing the response with 
respect to Ap/μg, especially under ground motions with large ampli
tudes. In Fig. 10(b), the value of Ap/μg for the curve of ω /ω0 = 1 is 
larger than the other curves for a certain a0/μg. For the curves of 
ω /ω0 = 2 and ω /ω0 = 3, the values of Ap/μg are smaller than the other 
curves for a certain a0/μg. This is due to the resonant phenomena that 
exist for ω /ω0 < 1 and the largest peak for the resonant frequency ratio 
near ω /ω0 = 1. 

4.2.2. Amplitude of the relative displacement of the sliding base 
Fig. 11(a) shows the relationships between the normalized isolation 

displacement amplitude yb,ap/(a0 /ω2) and frequency ratio ω/ω0 for 
different values of β with α = 0.5, ζ0 = 0.05 and a0 /μg = 2. It can be seen 
that the values of yb,ap/(a0 /ω2) for the sliding isolation structure 
without an inerter (i.e., β = 0) are larger than those for the inerter-added 
sliding isolation structures. The values of yb,ap/(a0 /ω2) decrease with 
the increase in β for a certain ω/ω0 in most regions of ω/ω0 < 1. In a 

Fig. 11. Relationships between the normalized isolation displacement amplitude yb,ap/(a0 /ω2) and normalized excitation amplitude ω/ω0 for inerter-added sliding 
isolation structures, where the derived closed-form solutions for structural responses are used: (a) Different values of β for α = 0.5, ζ0 = 0.05 and a0 /μg = 2; (b) 
different values of a0/μg for α = 0.5, ζ0 = 0.05 and β = 0.2. 

Fig. 12. Relationships between the normalized isolation displacement amplitude yb,ap/(a0 /ω2) and normalized excitation amplitude a0/μg for inerter-added sliding 
isolation structures, where the derived closed-form solutions for structural responses are used: (a) Different values of β for α = 0.5, ζ0 = 0.05 and ω /ω0 = 0.5; (b) 
different values of ω/ω0 for α = 0.5, ζ0 = 0.05 and β = 0.2. 
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small region of ω/ω0 near 1, the values of yb,ap/(a0 /ω2) increase as the 
value of β increases. In general, the additional inerter can effectively 
reduce the displacement of the isolation layer. The zero value of yb,ap 

/(a0 /ω2) indicates the stick-stick motion mode of the inerter-added 
sliding isolation structure, which occurs in the same region of large 
values of ω/ω0 for curves with different β in Fig. 11(a). This is because 
the additional inerter does not affect the occurrence condition of the 
stick-stick mode. Fig. 11(b) shows the relationships between yb,ap 

/(a0 /ω2) and ω/ω0 for different values of a0/μg with α = 0.5, ζ0 = 0.05 
and β = 0.2. Sliding occurs more easily for values of ω/ω0 close to 1 
(seen curves of a0 /μg = 0.5 and a0 /μg = 1 in Fig. 11(b)). The influence 
of the values of ω/ω0 on the normalized isolation displacement ampli
tude yb,ap/(a0 /ω2) is not significant for a large a0/μg when ω/ω0 < 1. 
After the value of ω/ω0 exceeds 1, the value of yb,ap/(a0 /ω2) decreases 
notably as ω/ω0 increases. This is consistent with the results in Fig. 8, 
where the occurrence condition of the stick-slip mode indicated by a0 /

μg increases with the increase in ω/ω0 after ω/ω0 exceeds 1. When ω/ω0 
continuously increases beyond a critical value, the value of yb,ap 

/(a0 /ω2) tends to increase as ω/ω0 increases for large a0 /μg. This is also 
consistent with the curve in Fig. 8, where the condition of the slip-slip 
mode expressed by a0/μg decreases as ω/ω0 increases in the region of 
large ω/ω0. 

The relationships between yb,ap/(a0 /ω2) and a0/μg for different 
values of β with α = 0.5, ζ0 = 0.05 and a0 /μg = 2 are shown in Fig. 12 
(a). For a larger β, the value of yb,ap/(a0 /ω2) is smaller for a fixed a0 /μg 
in both regions of the stick-slip and slip-slip modes. The additional 
inerter can be beneficial for reducing the isolation displacement when 
sliding occurs. Fig. 12(a) shows the relationships between yb,ap /(a0 /ω2)

and a0/μg for different values of ω/ω0 with α = 0.5, ζ0 = 0.05 and a0 /μg 
= 2. It is seen that the value of yb,ap/(a0 /ω2) for the curve of ω /ω0 = 1 is 
the largest for the presented curves with different values of ω /ω0. For 
the curves of ω /ω0 = 2 and ω /ω0 = 3, the values of yb,ap /(a0 /ω2) are 
smaller than the other curves for a certain a0/μg. These tendencies of the 
normalized isolation displacement amplitude yb,ap/(a0 /ω2) for different 
ω/ω0 are similar to those of the normalized maximum acceleration Ap 

/μg. In addition, the value of yb,ap/(a0 /ω2) increases with increasing a0 

/μg for all the curves in Fig. 12. The corresponding increase rate of the 
curve in the slip-slip mode is clearly smaller than that in the stick-slip 
mode. From this perspective, the slip-slip mode will be preferred 
compared to the stick-slip mode considering the increasing tendency of 
isolation displacement. Hence, an easier occurrence condition of the 
slip-slip mode induced by adding an inerter can be beneficial for 
reducing the isolation displacement. However, an additional inerter 
with a large β is not desired for mitigating the normalized maximum 
acceleration considering the rapid increase in Ap/μg in the slip-slip 
mode, as shown in Fig. 10(a). Hence, an appropriate value of β for the 
additional inerter rather than a large β is recommended for application 
considering the trade-off of performances between the isolation 
displacement and acceleration. 

Using the sliding isolation structure with α = 0.5 and ζ0 = 0.05 as an 
example, we give a detailed illustration for selecting the value of iner
tance of the additional inerter in the design scenario herein. In Figs. 11 
(a) and 12(a), the isolation displacements decrease with increasing β for 
a certain ω/ω0 in most regions of ω/ω0 < 1. In addition, a clear reduc
tion of the isolation displacements is shown for β ≥ 0.2. Hence, 
considering the reduction of the isolation displacement, the value of the 
inertance to mass ratio β should be selected as large as possible and 
larger than 0.2. However, for the acceleration response of the sliding 
isolation structure, the rates of increase for the curves during slip-slip 
mode regions in Fig. 10(a) increase with the increase in the value of β. 
When the value of β is larger than 0.4, the acceleration response of the 
inerter-added sliding isolation structure is larger than that of the sliding 
isolation structure without inerter (β = 0), as shown in Fig. 10(a). Hence, 
to not amplify the acceleration response, a value of β less than 0.4 is 

recommended. As a result, the recommendation for the range of the 
value of β is from 0.2 to 0.4 considering the tradeoff between the 
reduction of isolation displacement and acceleration. For a better 
reduction of the isolation displacement, the value of β is recommended 
close to 0.4, whereas for a better reduction of the acceleration, the value 
of β is recommended close to 0.2. Note that the design consideration 
above is illustrated based on the parametric analyses within the range of 
the frequency ratio of ω/ω0 < 1. 

5. Conclusions 

This study has addressed the analytical solutions of inerter-added 
sliding isolation structures subjected to harmonic ground motions, 
which assists the understanding of the inherent mechanism of the 
additional inerter in a sliding isolation structure. For the inerter-added 
sliding isolation structure, the inerter installed between the base floor 
and the ground is adopted to improve the structural performance 
compared to the traditional sliding isolation structure. The mechanical 
model of the inerter-added sliding isolation structure is built, and the 
corresponding governing equations of motion are derived for both the 
stick and slippage phases of the structure. The dynamic characteristic 
parameters of the inerter-added sliding isolation structure indicate the 
likely superiority of structural performance over traditional sliding 
isolation structures. Closed-form solutions for dynamic responses are 
obtained by solving the governing equations of motion. Subsequently, 
the three motion modes of the inerter-added sliding isolation structure 
(i.e., the stick-stick, stick-slip and slip-slip modes) are described. By 
employing the steady-state responses of the structure, explicit expres
sions for the occurrence conditions of these three modes are derived. 
Parametric analyses are conducted to analyze the influence of the inerter 
on the occurrence conditions of structural motion modes. To assess the 
performance of the inerter-added sliding isolation structure, structural 
responses, including superstructure acceleration and displacement of 
the sliding base, are analyzed for different values of inertance and 
different loading parameters, in which the response indicators are of 
significant interest in design scenarios for engineers. 

Throughout the paper, the investigations are conducted based on the 
derived closed-form solutions of the inerter-added sliding isolation 
structure, which is considered useful for exploring the working mecha
nism of the additional inerter but not carried out previously for such 
structures. Adding an inerter to the sliding isolation structure can reduce 
the ground motion excitation transferred to the superstructure. By 
increasing the inertance of the additional inerter, the slip-slip mode of 
the inerter-added sliding isolation structure will occur at a lower 
amplitude of the harmonic ground motion. This reveals the role of the 
additional inerter played in a sliding isolation system that makes the 
slip-slip mode occur more easily. The analysis results indicate that the 
inerter-added sliding isolation structure exhibits several resonant fre
quencies when sliding occurs. The increase in the inertance of the inerter 
leads to a decrease in the isolation displacement in both the stick-stick 
and slip-slip modes of the inerter-added sliding isolation structure. 
However, a large inertance of the inerter causes a rapid increase in the 
maximum acceleration as the amplitude of the ground motion increases 
in the slip-slip mode. As a result, the structural frequency should be 
moved away from the observed resonant frequencies for designing an 
inerter-added sliding isolation structure. Considering the trade-off of the 
isolation displacement and maximum acceleration for determining the 
inertance of the additional inerter is recommended. 

The conclusions of the inerter-added sliding isolation structures ob
tained in this study are limited to the harmonic ground motion excita
tions. When the structures are subjected to earthquake excitations, the 
responses of inerter-added sliding isolation structures can be different 
from those obtained under harmonic ground motions. The analytical 
solutions derived in this study are not applicable for earthquake exci
tations. However, the exploration of the analytical solutions for the 
inerter-added sliding isolation structure under harmonic ground 

S. Xue et al.                                                                                                                                                                                                                                      



International Journal of Mechanical Sciences 231 (2022) 107568

14

motions can provide insight into how this structure will respond to 
earthquake excitations. Furthermore, the theoretical results of the 
inerter-added sliding isolation structure obtained under harmonic 
ground motions can be used to make design decisions for the structure 
under earthquake excitations. Research involving the analytical solu
tions of inerter-added sliding isolation structures under seismic excita
tions deserves further investigation in the near future. 
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