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Abstract
Wireless sensors are the key components of structural health monitoring systems. During the signal transmission, sensor
failure is inevitable, among which, data loss is the most common type. Missing data problem poses a huge challenge to the
consequent damage detection and condition assessment, and therefore, great importance should be attached. Con-
ventional missing data imputation basically adopts the correlation-based method, especially for strain monitoring data.
However, such methods often require delicate model selection, and the correlations for vehicle-induced strains are much
harder to be captured compared with temperature-induced strains. In this article, a novel data-driven generative ad-
versarial network (GAN) for imputing missing strain response is proposed. As opposed to traditional ways where
correlations for inter-strains are explicitly modeled, the proposed method directly imputes the missing data considering the
spatial–temporal relationships with other strain sensors based on the remaining observed data. Furthermore, the intact and
complete dataset is not even necessary during the training process, which shows another great superiority over the model-
based imputation method. The proposed method is implemented and verified on a real concrete bridge. In order to
demonstrate the applicability and robustness of the GAN, imputation for single and multiple sensors is studied. Results
show the proposed method provides an excellent performance of imputation accuracy and efficiency.
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Introduction

In recent decades, an increasing number of structural health
monitoring (SHM) systems have been deployed on civil
infrastructures with the aim of monitoring and evaluating
the operational performance of the structures.1–5 A com-
prehensive SHM system always requires a large quantity of
sensors. Considering strain responses play a crucial role in
tracking down structural conditions,6–11 collected strain
responses are concerned in this article. Sensor-based SHM
system produces a large amount of data every day, which
underlies the damage detection and condition assessment
technique. However, the abnormal data can undermine the
reliability of the overall monitoring and evaluating process.
The anomaly often occurs because of improper installation,
environmental noise, raw weather, and other factors that are

beyond our control. Among all the anomaly types, data loss
is the most pervasive one.

Data loss is a challenging issue which will inevitably
impede the analysis of the structure condition. For instance,
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the long-term field static strain measurements can be ap-
proximately conceptualized by a linear regression model
with a sinusoid component, and such model acts as a
baseline for reliability assessment and early warning
technique.12 If the sensor malfunction occurs and results in
data loss, then the safety and serviceability will not be
correctly estimated and ensured. Furthermore, if there is a
vast amount of missing data, the model proposed will not
even be workable. One may wonder the substitution of the
normally functioning strain sensors for the faulty ones
will address such problem; however, it will not be the
case we expect. As the sensor fails, there still exists vari-
ation of strain (caused by temperature, vehicle, creep, etc.),
and the substitution sensor is not able to capture this offset
when installed.13

Therefore, in order to overcome the missing data
problem, efficient missing data imputation or data loss
reconstruction techniques are widely adopted, and most of
them are correlation-based methods. Chen et al.14 correlated
two strain sensors located at different positions on the bridge
using functional data analysis technique. The inter-sensor
correlations were composed of three parts: correlations for
temperature-induced strain, correlations for vehicle-induced
strain, and correlations for stochastic excitation–induced
strain. These three correlations were separately modeled in
explicit ways and then combined together to impute the
continuous loss of data. The imputation result was satis-
factory, while the delicate model selection was required.
Huang et al.15,16 imputed static strain data utilizing corre-
lations between strain sensors and correlations between
strain and temperature sensors. Correlations were modeled
by LS-SVM and extreme learning machine. In this case,
sampling frequency was much lower so that the monitoring
dataset was smooth without erratic fluctuation caused by
vehicle; thus, many imputation methods are capable of
fulfilling the task. Lu et al.17 successfully reconstructed
strain measurements via correlation-based model of partial
least square approach. Zhang and Luo18 interpolated
missing stress measurements by analyzing spatial correla-
tions of different strain sensors. They also pointed out that
continuous missing data are harder to be imputed compared
with discrete missing data, and the ratio of the data loss
should not exceed 30%.

With the rapid development of technology, artificial
intelligence (AI) flourishes and enjoys the most promising
discipline. Deep learning method is one of the emerging AI
techniques which can handle complex data in large volume
and has been applied in SHM filed in recent years. However,
most imputation methods based on deep learning algorithms
are used to reconstruct dynamic acceleration or speed
measurements19–22 and very few of them concern strain
measurements.13 Fan et al.20 reconstructed dynamic ac-
celeration data using convolutional neural networks (CNNs)
even when the loss ratio reaches 90%. Jeong et al.21

reconstructed vibration data through bidirectional recurrent
neural network (RNN) which implicitly took spatial and
temporal correlations among sensors into account. Perez-
Ramirez et al.22 presented a novel RNN to accurately
predict the vibration response of large buildings under
seismic excitations and ambient vibrations. Oh et al.13

trained a CNN model to restore the faulty strain sensor
only using functioning sensors. In the study, datasets were
arranged in 2D grayscale grid to be fed into the CNN and the
final input size was properly set as a full square grid format.
Fan et al.23 designed a densely connected CNN, with skip
connection and dense block techniques carefully applied,
and accurately reconstructed dynamic responses in both
time and frequency domain. Wan and Ni24 adopted Bayesian
multitask learning methodology for reconstruction of both
temperature and acceleration responses, showing its advan-
tages when the dataset is too limited.

It is found that conventional machine learning or statistic
methods can hardly capture the correlations for dynamic
strain measurements unless the model is well-chosen. Deep
learning–based models are qualified for discovering po-
tential dynamic changing relationships among sensors
owing to their astonishing learning capacity of neural
networks. However, conventional methods mentioned
above usually require complete and intact datasets for
training, in another word, lacks capacity to impute an in-
complete dataset directly. In many cases, data loss is an
inherent structure of the system and obtaining complete
dataset is challenging and sometimes impossible. In this
article, a novel unsupervised leaning imputation method by
adapting generative adversarial networks (GANs) is pre-
sented. The proposed network only requires incomplete
datasets for training, and missing data will be reconstructed
directly based on the remaining observed data, that is to say,
imputation for each sensor is basically taking the strain
distribution upon the bridge into account rather than itself or
correlation with another sensor. In this case, the imputation
quality is guaranteed and convincible. In this article, ground
true data are only demonstrated for comparison with the
imputed value and will not be processed through the
framework. In the remaining sections, GAN technique will
be introduced and the architecture of the network is es-
tablished. Then, datasets obtained from a real concrete
bridge located in China is analyzed. In the analysis, both
single-sensor imputation and multiple-sensor imputation
results with various loss ratios are exhibited. Considering
discrete data loss can be easily imputed using interpolation-
or correlation-based methods; continuous missing data are,
therefore, only concerned in this article.

GAN-based imputation method

Generative adversarial network is one of the cutting-edge
deep learning methods and its astounding capacity of
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generating entirely new data has attracted extensive at-
tention. When GAN was first proposed by Goodfellow
et al.25 in 2014, many research studies have been devoted to
the field, including data generation, style transfer, image
enhancement and other applications.26 As for data gener-
ation, training whatever algorithms mentioned above or
even conventional GANs27 for imputation require real and
fully observed data, which is not always an easy case es-
pecially for wireless sensor–based SHM systems. Thus, in
recent years, more and more incomplete data-based im-
putation algorithms have emerged, and most of them are
implemented by GANs considering its powerful generation
capacity.28–31 Although with advanced methods being de-
veloped, most GAN-based methods are used to detect
damage occurrence and evaluate the health condition of the
bridge. Generative adversarial network–related imputation
methods32 are rarely adopted and mostly based on computer
vision techniques which also require complete dataset. In
fact, monitoring data tends to be easily affected by the
variation of ambient environment and these algorithms will
not work stably. In this article, we leverage the idea of GAN
imputation and present a novel GAN framework which only
requires incomplete data that are applicable for SHM.

GANs for imputation

Generative adversarial network is a type of unsupervised
generative model, and a generative model is generally used
to summarize the distribution of data. However, unlike
many other conventional generative models, including
Latent Dirichlet Allocation,33 restricted Boltzmann ma-
chines,34 and deep belief networks,35 which all have serious
limitations and require quite a few parameters to represent
underlying distributions, GAN-based generative models
have a much better generalization ability. Typically, a GAN
is composed of two halves: a generator and a discriminator.
Generator is trained to generate examples of real data, and
discriminator is trained to distinguish the generated ex-
amples from true ones. In the GAN-based imputation
framework, we propose the generator takes the original
observed strain distribution, a random noise matrix, and a
mask matrix which indicates which part is real or fake and

then imputes the missing data. The discriminator takes the
generated data according to the generator and a hint matrix
which reveals partial information of the mask matrix and
determines which components are imputed or real. In this
framework, the generator’s objective is to impute the loss
data accurately as possible as it can so as to “confuse” the
discriminator, and the discriminator’s objective is to ac-
curately distinguish the imputed data from real one as
possible as it can. Finally, the missing data are properly
generated when the discriminator is incapable of telling
the real samples from the fake ones. In another word, the
generator has to maximize the misclassification rate of
the discriminator and the discriminator aims to minimize the
misclassification rate. In such adversarial training process,
the generator finally imputes missing data in high accuracy
even for highly missing rate. The diagram of the imputation
architecture based on GAN is depicted in Figure 1.

Architecture of the presented GAN

The monitoring data imputation experiment conducted in
this study is based on a real concrete box girder bridge,
located in China. The sensor deployment of the bridge is
shown in Figure 2, and 15 strain sensors are selected to
conduct the imputation job as plotted in green dots. The
main goal of the imputation strategy is to complete the
continuous or block missing data, both for single sensor and
multiple sensors. Continuous data missing is a very com-
mon faulty type in long-term bridge monitoring; continuous
missing data are much harder to be imputed compared with
discrete missing data because discrete data can be easily
imputed by interpolation methods or correlation-based
methods. However, as for continuous missing data, con-
ventional imputation methods cease to work because of
their limitations in complexity description. Therefore, in
this study, continuous data missing will be focused.

Considering 15 strain sensors that form the dataset, we
define a 15-dimensional random variable X ¼ ðX1,X2,…,
X15Þ, which is a collection of strain measurements from
15 sensors at a same time point. Therefore, the dataset can
be arranged asD ¼ ðX1,X2,:::,XnÞT , where n is the number
of total sampling points. Suppose thatM ¼ ðM1,M2,:::,M15Þ

Figure 1. Imputation architecture of the generative adversarial networks.
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is a 15-dimensional random variable, namely, mask vector
which represents the indices of the missing data and takes
the value either 0 or 1. Therefore, we define the incomplete
dataset ~D ¼ ð~X1, ~X2,:::, ~XnÞT , where ~X ¼ ð~X 1, ~X 2,:::, ~X 15Þ
is a random variable and is masked by M

~X i ¼
�
Xi, if Mi ¼ 1
nan, if Mi ¼ 0

(1)

where nan is the abbreviation of “not a number” which
represents the missing data. The form of the dataset is
demonstrated in Figure 3. In this study, only incomplete
data ~D are used to train and then impute the missing data.
The original fully observed dataD are only for verifying the

accuracy of the algorithm. The whole process is conducted
under unsupervised learning, thus, model based on the
entity or the signal itself is not required.

In the imputation framework, our main goal is to impute
the missing data for each ~X according to PðXj~X ¼ ~xÞ,
where ~x is one realization of ~X; thus, the imputation strategy
is based on the conditional distribution ofX given by ~X ¼ ~x
rather than the expectation of X only. Therefore, the GAN
framework proposed attempts to model the conditional
distribution and then generate the missing data.

Generator network. The generator network takes the samples
of ~X, M, and a random noise variable Z (same dimension
with ~X andM, as shown in Figure 4(a)),Z ¼ ðZ1,Z2,:::,Z15Þ.

Figure 3. Simple demonstration of the dataset and its corresponding mask matrix: (a) data matrix and (b) mask matrix.

Figure 2. Sensor deployment of the structural health monitoring system.
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It is noted that the random noise is included in the missing
components for initializing and generating complete
dataset.

Then, the imputed data and the complete data are defined
as follows

X ¼ G
�
~X,M,ð1�MÞÄZ

�
(2)

bX ¼ MÄ ~Xþ ð1�MÞÄX (3)

where X is the imputed data vector, and G represents the
computation of the generator network. bX represents the
complete data finally obtained. Specifically, the observed
data are directly outputted unchangeably and the missing
data are processed during the generator network and then
outputted. Ä denotes element-wise multiplication.

The architecture of the generator neural network is
demonstrated in Figure 5 and the generator is composed of
two fully connected layers. The activation functions for the
hidden layers and the output layer are Rectified Linear Unit
(ReLU)36 and sigmoid,37 respectively. 128 represents the
batch size for each iteration and 15 represents the number
of sensors. ReLU and sigmoid functions are formulated
as follows

ReLU : f ðxÞ ¼ maxð0, xÞ ¼
�
xi, if xi ≥ 0
0, if xi < 0

(4)

Sigmoid : f ðxÞ ¼ 1

1þ exp�x
(5)

Discriminator network. Unlike the discriminator in conven-
tional GAN framework which only outputs the binary label:
either fake or real, in this study, partial values are real
(actually observed measurements) and partial values are
fake (imputed data), so a more flexible classification dis-
criminator is required. In this framework, the discriminator
outputs another mask matrix that indicates which part is real
or fake; in another word, the discriminator attempts to
output the predefined mask matrix mentioned above.

In order to ensure the imputation quality, a hint mecha-
nism24 which delivers partial information of the loss distri-
bution to the discriminator was introduced. The hint matrix is
also predefined and dependent on the mask matrix, a simple
demonstration of the hint matrix is shown in Figure 4(b).
Therefore, the discriminator takes the final imputed data bX,

Figure 4. Simple demonstration of the random noise matrix and hint matrix: (a) random noise matrix and (b) hint matrix.

Figure 5. Architecture of the generator network.
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the hint matrix H, and then attempts to predict the mask
matrix bM. The discriminator shares the same network ar-
chitecture with the generator as depicted in Figure 6.

Hint mechanism. In order to ensure the generator actually
captures the distribution feature of the real data,24 a hint
mechanism H is introduced. The realization of H is de-
pendent on the distribution HjM and will be fed into the
discriminator network. In another word, partial information
of the mask matrix is known to the discriminator and
provides a “hint” for it. In mask matrix, 0 represents missing
data and 1 represents observed data. The discriminator of
GAN tries to output the matrix like “mask matrix” in
Figure 3(b), which means the discriminator tries to dis-
tinguish the missing data (represented by 0) from the ob-
served data (represented by 1). However, a large amount of
continuous missing data without any information provided
will affect the accuracy of the imputation, and GAN will
output different imputation results every time. Therefore, a
hint is provided as shown in Figure 4(b). The hint matrix is
passed to the discriminator with many 0s and 1s. It is just
like the discriminator has been told most answers to the
questions: 0 is missing data, 1 is observed data, and should
focus on the unknown answers (represented by 0.5, and it
could be either missing data or observed one) by learning
from known answers. Thus, data represented by 0.5 are
what discriminator should distinguish by itself. After iter-
ations, discriminator finally understands the distribution of
the data piece by piece and outputs a very satisfactory result
no matter how large the amounts of data are missing. H can
be specified with different amount of known information
of M and enables the discriminator to concentrate on the
given hints and improves the quality of imputation ac-
cording to the generator.

Objective function. In the imputation architecture of the
GAN, the discriminator is trained to maximize the accuracy
of bM, and the generator is trained to minimize the accuracy
of the discriminator predicting bM. This adversarial training
process ensures the imputation quality. Technically, it is still
a binary classification problem that should be solved.
Therefore, binary cross entropy is adopted to score the
distance between the predicted probabilities and actual

labels, which is either 0 or 1. As the discriminator outputs
the estimated mask matrix with the aid of hint matrix, the
objective function of the GAN architecture can be written as
follows

min
G

max
D

E bX,M,H

h
MT log bMþ ð1�MÞT log

�
1� log bM�i

(6)

where log represents the element-wise logarithm operation
and bM is the predicted mask matrix, which can be denoted
as bM ¼ DðbX,HÞ. Also, considering the primitive binary
cross entropy loss functionLðx, yÞ is formally defined as the
negative expectation of the log of corrected predicted
probabilities. It has the form of

Lðx, yÞ ¼
Xn

i¼1

½xi logðyiÞ þ ð1� xiÞlogð1� yiÞ� (7)

Then, equation (6) can be rewritten and simplified as

min
G

max
D

E

h
L
�
M, bM�i

(8)

Algorithm implementation
and verification

In order to validate the effectiveness of the GAN imputation
framework, some numerical experiments are conducted,
including single-sensor imputation and multiple-sensor
imputation. The target structure is a five-span continuous
concrete box girder bridge with 25 m long for each span.
The investigated 15 sensors are demonstrated in Figure 2
(sensors are only installed on the mid-span section). In this
article, imputation performance for several different loss
ratios (ranging from 1 h to 23 h) is investigated. As
mentioned before, conventional imputation methods for
sensor reconstruction often require complete dataset which
is often a troubling issue when selecting complete dataset. In
our study, only incomplete dataset is needed and the missing
values are imputed directly based on remaining observed
data in the framework.

Figure 6. Architecture of the discriminator network.
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Preparation of dataset

In the modern SHM system, vast amounts of data are
generated every day, which accord with the requirements of
deep neural networks: the more data are used, the better
imputation result will be obtained. In our case, data col-
lected in 1 day from 15 sensors are investigated to im-
plement the imputation and the sampling frequency of the
strain sensors is 1 Hz. Considering the fully observed data
are only for comparison and validating the effectiveness, we
manually appoint the continuous random missing values on
the complete dataset by utilizing the mask matrix mentioned
above.

Before feeding the incomplete dataset into the GANs, the
preprocessing of the data is also necessary for improving the
imputation efficiency and evaluating the imputation per-
formance under the same metric. The strain data are first
processed by min–max normalization, which maps the data
into 0 to 1. The normalization equation is as follows

strainnormalized ¼ strain�minðstrainÞ
maxðstrainÞ �minðstrainÞ (9)

The field monitoring data chosen in 1 day are used to
demonstrate the proposed algorithm. For single-sensor
imputation, continuous missing data over 1 h, 2 h, 4 h,
8 h, 16 h, and 23 h are, respectively, investigated. For
multiple-sensor imputation, random missing data (with
different time intervals taken) over 1 hour for 5 sensors, 10
sensors, and 15 sensors are, respectively, investigated. The
incomplete dataset will be fed into the neural network after
preprocessing. During the network, the missing component
is indexed by the mask matrix and automatically detected

by the network; after the adversarial unsupervised training,
the network outputs the full dataset with observed data
unchanged and missing data imputed. Actually, each sensor
represents one dimension in the network, and the network
implicitly captures the relationships between sensors and
then outputs the missing components. Hence, the GAN-
based algorithm is very applicable to imputation task in real
time which perfectly meets the requirements of bridge
managers and stakeholders.

Single-sensor imputation

The proposed GAN imputation framework is implemented
in TensorFlow. The workstation used is configured with two
Intel Xeon(R) E5-2696 v4 CPUs, a 256 GBmemory, and an
NVIDA TITAN X (Pascal) GPU. The training process is
conducted through GPU acceleration.

Only for illustration purpose, strain data collected from
Sensor S5 on 9 April 2017 are employed. As can be seen
from Figure 7, 1-h data are missing in Figure 7(b) which is
represented by the vacancy, and the ground truth is depicted
in Figure 7(a). The aim of the study is to impute the 1-h
missing data of Sensor S5 based on the remaining data of all
15 sensors. As mentioned above, the complete dataset for
training is unnecessary and the ground truth data are only for
comparison purpose.

The 1-h missing data imputation result is depicted in
Figure 8(b), and the results show an excellent performance
of the algorithm, and the imputed data are superimposed on
the ground truth except for few peaks. In Figure 8(c), the
details about the imputation result are shown: the stationary
section represents the temperature-induced strain and the

Figure 7. Investigated strain sensor S5 for demonstrating generative adversarial network–based imputation method, and the blank
space represents the missing data: (a) fully observed data and (b) 1-h missing data.
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nonstationary section represents the vehicle-induced strain.
As demonstrated, the vehicle-induced strain data are per-
fectly imputed, which means the GAN framework actu-
ally captures the inter-sensor relationships distributed at

different locations even for vehicle-induced response. It is
noted that the sampling frequency for strain sensor is 1 Hz,
which may not capture the whole vibration characteristics
caused by the moving vehicles. However, the dynamic

Figure 8. Results of imputation for investigated strain sensor S5. (a) Overall imputation result, (b) 1-h imputation result, and (c) details
about imputation result.
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Figure 9. Results of imputation for different loss ratio of sensor S5: (a) 1-h missing, (b) 2-h missing, (c) 4-h missing, (d) 8-h missing,
(e) 16-h missing, and (f) 23-h missing.
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responses caused by vehicles (represented by spikes) can
still be easily distinguished from the static responses
(represented by the stationary parts). In this sense, it still can
capture the (quasi) dynamic responses both for GAN and
physical reality. As mentioned previously, conventional
methods often require very delicate model to impute the
dynamic response caused by the vehicles. Therefore, GAN-
based imputation algorithm is capable of imputing dynamic
response in real time. The final outputted data are shown in
Figure 8(a) with observed data unchanged and missing data
imputed properly.

This article also investigates the imputation result for
missing components ranging from 1 h to 23 h. The results
are demonstrated in Figure 9, respectively. In the cases of 1-,
2-, and 23-h imputation, the missing data form into one
continuous missing part; while in the cases of 4-, 8-, 16-h
imputation condition, the missing data are divided into two

separate continuous parts in order to generalize GAN’s
ability in multiple missing parts imputation. It is noted that
from Figures 9(a) to (d), which indicate 1-h missing to 8-h
missing, the GAN framework generates quite excellent
imputation results. The imputation signals almost overlap
the original signals with very limited deviation. When the
loss ratio reaches up to 16 h and 23 h (Figures 9(e) and (f)),
the error does exist and some peaks and valleys fail to be
captured. However, the imputation accuracy is also within
in a tolerable extent. The trend and the nonstationary parts
are mostly imputed with high accuracy, and the amplitude
deviates around the ground truth in a satisfying threshold.
The quantitative imputation errors will be analyzed later.

In order to clarify the imputation performance under
small time scale, the imputation details of 200 sampling
points (200 s) for missing data ranging from 1 h to 23 h are
demonstrated in Figure 10. As demonstrated, when the data

Figure 10. Results of imputation details of sensor S5 for: (a) 1-h missing, (b) 2-h missing, (c) 4-h missing, (d) 8-h missing, (e) 16-h missing,
and (f) 23-h missing.
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lack less than 8 h, the GAN framework provides outstanding
results with both stationary and nonstationary parts care-
fully recovered. The errors are even too subtle to be
identified. For the data under 16- and 23-h missing ratio,
errors are relatively much bigger compared with above
scenarios, but still are very small. The recovered responses
also vary with limited extent and can be tolerated for both
academic research and engineering application.

The GAN framework imputes the missing components
based on the observed data and trains the network to obtain
the mask matrix rather than the measured strain data (see
equation (4)). Thus, GAN framework does not need
complete and intact dataset to establish a baseline model and
is able to impute missing parts with any incomplete data fed
into. The training process of six sensors is demonstrated
in Figure 11. Apparently, for each sensor, the loss value

decreases dramatically in first 200 epochs, and then sta-
bilizes till the training finishes. The training process is
accelerated by GPU: TITAN X, and 1000 epochs are
completed within 150 s. In this case, we are able to impute
the missing data in real time and acquire higher accurate
result for later analysis.

In the field monitoring data, strain sensors are dis-
tributed at different locations and data values are often not
in the same magnitude. So, in order to evaluate and
comprehend the imputation errors, the data are first pre-
processed by normalization (see equation (9)). It is noted
that the imputation results shown above have been re-
normalized to the origin scale. In the following error
analysis, the strain data are mapped into 0� 1 με, and two
metrics are used to evaluate the imputation errors, namely,
root mean square error (RMSE) performance and L2-norm

Figure 11. Training loss over 1000 epochs for: (a) sensor S1, (b) sensor S2, (c) sensor S3, (d) sensor S4, (e) sensor S5, and (f) sensor S6.
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error. It is noted that because of baseline shifting (which is
common in in situ monitoring data, like S7 and S8), the
metric “error” will become very small when mapped back
and loses its meaning (although is physically mean-
ingful).Also, RMSE is tightly related to the magnitude
(amplitude variation) of the original data, while all sensor
readings vary in a unique magnitude, which makes it hard
to be compared in the original scale. Such metrics are,
therefore, calculated in the normalized scale rather than the

Figure 12. RMSE performance and recovery error between the ground truth data and imputation data: (a) RMSE performance over
23 h and (b) recovery error over 23 h. RMSE: root mean square error.

Figure 13. Results of 5-sensor imputation over 1-h continuous missing data.

Table 1. RMSE performance and recovery error for 5-sensor
imputation over 1-h continuous missing data.

Sensor RMSE Error (%) Sensor RMSE Error (%)

S5 0.0097 1.7 S8 0.0148 6.5
S6 0.0197 3.1 S9 0.0081 4.3
S7 0.005 2.9

RMSE: root mean square error.
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original scale. The two metrics are, respectively, calculated
as follows

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i¼1ðyi � byiÞ2
m

s
(10)

Error ¼ ky�byk
kyk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i¼1ðyi �byiÞ2q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i¼1y
2
i

p (11)

Figure 14. Results of 10-sensor imputation over 1-h continuous missing data.

Table 2. RMSE performance and recovery error for 10-sensor
imputation over 1-h continuous missing data.

Sensor RMSE Error (%) Sensor RMSE Error (%)

S5 0.0154 6.8 S10 0.0091 3.6
S6 0.0238 7.2 S11 0.0080 5.7
S7 0.0134 7.8 S12 0.0095 8.8
S8 0.0262 12.4 S13 0.0214 13.7
S9 0.0070 3.7 S14 0.0282 16.0

RMSE: root mean square error.
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where yi represents the ground truth data, byi represents the
imputed data, and m is the number of missing points. The
corresponding RMSE performance and recovery error are
illustrated in Figure 12. When the missing data are less than

8 h, the GAN framework generates small RMSE loss and
recovery error with only about 0:015 με deviation and 5%
imputation error. Although a sharp increasing exists after
8 h, in consistent with above intuitive analysis, the RMSE

Figure 15. Results of 15-sensor imputation over 1-h continuous missing data.
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loss is still within 0:04 με and recovery error is controlled in
15% which is tolerable for such vast missing ratio.

Multiple-sensor imputation

As is often the case in SHM, data loss problem happens
among multiple sensors rather than only single one, and
sometimes sensors share the same missing components,
which makes the imputation much more challenging. In this
article, random 1-h missing data for 5, 10, and 15 sensors
(with different time intervals taken) are investigated to
evaluate the proposed GAN imputation framework.

Results of sensor S5 to S9 imputation performance over
1-h continuous missing data are illustrated in Figure 13: All
the sensors share the successful imputation result, and the
imputed signals almost overlap the original ones except for
some countable peaks that are hard to reach. For sensor S5
and S6, there are dense nonstationary parts caused by
ambient excitations like vehicles in 1 h, and the GAN
framework successfully captures these excitations and
imputes the result with high accuracy.

The RMSE performance and recovery error based on
L2-norm are listed in Table 1. Similarly, these metrics are
also evaluated after the data being normalized to 0� 1 με.
As can be seen from the table, the RMSE losses are under
0:02 με, and the recovery error is under 7% for each sensor,
a comparatively big increase compared with single-sensor
imputation under the same condition (as shown in
Figure 12). However, the result will not impede the aca-
demic research because it still provides quite satisfactory
imputation performance.

Figure 14 demonstrates the imputation results for sensor
S5 to S14 over 1-h missing data. Compared with 5-sensor
imputation above, the amplitudes of nonstationary parts are
imputed with smaller values, especially for sensor S5, S6,
S8, and S14. The GAN framework provides very similar
waveform and pattern of the vehicle-induced strain data
despite with some minor peaks compared with the ground
truth ones. The corresponding RMSE and recovery errors
are listed in Table 2. Several RMSE losses have exceeded
0:02 με and errors exceeded 10%; however, the majority of
the losses are controlled in good limits. Generally, the re-
sults for 10-sensor imputation are still workable and within
the tolerable extent.

The imputation results for 15 sensors that lack 1-h data
(with different time intervals taken) are depicted in
Figure 15. Some severe problems occur: for sensor S2, S5,
S6, S8, and S14, more amplitudes are hard to be imputed
with high accuracy; for S9 and the end part of S4, the
stationary parts have been deviated from the baseline; for
S9, only the peaks are imputed and the valleys of the signals
are ignored; for S1, the periodic bumps of the signal are not
able to be imputed due to its own characteristics of the
sensor or other abnormal types. The corresponding RMSE

loss and recovery error performances are demonstrated in
Table 3, where the majority of the RMSE losses are within
the extent of 0:025 με and the recovery errors within 10%;
several RMSE losses and recovery errors exceeds 0:025 με
and 10%, respectively; for sensor S9, there is a baseline
divergence between the imputed signals and the original
ones, so the RMSE loss is over 0:03 με and the error is over
20%. Overall, the imputation results that GAN framework
generate are acceptable considering 0:025 με loss and 10%
error. Thus, for all sensors that lose 1-h data, the proposed
deep learning network successfully meets the requirements
of missing data imputation.

Discussion

In the above examples, considering the burden of data
storing, transmitting, and computing for the long-term bridge
monitoring, sampling frequency of 1 Hz is adopted and data

Table 3. RMSE performance and recovery error for 15-sensor
imputation over 1-h continuous missing data.

Sensor RMSE Error (%) Sensor RMSE Error (%)

S1 0.0215 9.2 S9 0.0336 21.9
S2 0.0271 8.1 S10 0.0123 4.8
S3 0.0236 3.0 S11 0.0102 7.2
S4 0.0301 9.2 S12 0.0107 9.8
S5 0.0222 7.2 S13 0.0219 11.6
S6 0.0159 12.5 S14 0.0280 14.9
S7 0.0070 4.1 S15 0.0155 6.2
S8 0.0204 11.9

RMSE: root mean square error.

Figure 16. Imputation result for 1-h missing data at frequency of
10 Hz: (a) imputation result for 1-h missing data; (b) details.
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imputation has been discussed and demonstrated. Even
though the sampling frequency is fairly low, we are still able
to distinguish the dynamic responses caused by vehicles
(represented by spikes) from the static responses (repre-
sented by the stationary parts), which shows that it still
could capture the (quasi) dynamic responses both for GAN
and physical reality. In this case, it takes only 150 s to train
and generate complete datasets, which is quite prompt and
efficient. It should be noted that the proposed method can
also be applied to higher frequency cases only with more
training epochs and time taken. From the view of the signal
processing itself, the algorism just deals with such a series
of the data points and higher sampling frequency merely
means more data points for a certain period of time. An
example of imputation for 1-h missing data with higher
sampling frequency of 10 Hz is demonstrated in Figure 16.
As is obviously shown, the dynamic responses caused by
vehicles and static responses caused by temperature are
both imputed with high accuracy. However, the imputation
takes about 12 min (4000 epochs) to process and lacks
promptness in the practical application albeit it implies that
GAN performs well for both lower and higher sampling
frequency situation.

Conclusion

This article presents a novel data-driven approach based on
GANs for imputing missing data in SHM field. The theory
and the architecture of the network are discussed in detail.
The main characteristics and advantages of the proposed
approach are (1) avoid delicate model selection and pa-
rameter settings; (2) only require incomplete dataset; (3)
avoid expert knowledge in engineering mechanics or bridge
engineering; and (4) imputation in real time with high
accuracy and efficiency. The applicability of the method is
conducted on a real concrete bridge in China with 15 strain
sensors located at different positions considered. Single-
sensor imputation and multiple-sensor imputation are both
investigated. These imputations are based on the observed
data through the GAN framework proposed.

For single-sensor imputation, missing data ranging from
1 h to 23 h are investigated, and the experiments demon-
strate the excellent performance of the GAN imputation
framework. Although with the increasing of the number of
the missing data, the errors increase, the accuracy is con-
trolled in a very satisfactory limit with RMSE loss under
0:04 με and recovery error under 15% in the 23-h missing
data situation. For multiple-sensor imputation, 1 h missing
data for 5, 10, and 15 sensors are investigated. The results
show that the presented method also provides acceptable
and decent imputation values, although compared with the
single-sensor imputation, the errors have increased and
other problems occur for some individual sensors. It can be
concluded that the GAN framework can be used to impute

the incomplete field monitoring data in real time, especially
for single sensor and can also be adopted to impute multiple
sensors with satisfactory results.
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