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Summary

The robust design of a tuned mass damper (TMD) with hybrid aleatory and

epistemic uncertainties is proposed in this study. In this method, the aleatory

uncertainty involved in the external excitation is represented with the white

noise in stochastic theory. The epistemic uncertainties derived from fragmen-

tary statistical data and incomplete preknowledge of structural model and site

condition are fully captured with the discrete multi-intervals in evidence the-

ory. In order to overcome the computational bottleneck related to the uncer-

tainty propagation of epistemic uncertainties, a parallel-efficient global

optimization (parallel-EGO) method is proposed to approximate the bounds of

structural response for joint focal elements. Then, a robustness objective func-

tion, with the aim to minimize the worst system response of the primary struc-

ture, is presented to search the optimal parameters of TMD. Finally, case

studies for a single-degree-of-freedom (SDOF) system and a multi-degree-

freedom (MDOF) system validate that the designed TMD not only significantly

reduces the worst seismic responses but also improves the robustness of the

primary structure.
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1 | INTRODUCTION

Passive control devices are widely used to eliminate structural system responses and improve structural performances
under earthquake and wind excitation. With the simplest format and robust performance, tuned mass dampers (TMDs)
have been extensively implemented in real-life applications.1,2 Significant progress has been made in performance
improvement of TMDs.3,4 On the one hand, advanced elements,5,6 control strategies,7–9 and topology configurations10,11

were developed to enhance the robustness of TMDs. On the other hand, as emphasized in this work, considerable
efforts were devoted to develop design methods to improve the performance of TMDs.12–14

Since Den Hartog12 pioneered a closed-form formula of a TMD for an undamped single-degree-of-freedom (SDOF)
system, many optimal methods have been proposed to enhance the performance of TMD.15,16 Later, the inherent
damping of primary structure was included by several studies.17,18 It is worth noting that the closed-form formulas
might be not suitable for the heavy mass ratio of a TMD.19 Alternatively, the optimal design of a TMD for the damped
structure has been obtained with numerical optimization methods.13,20–22 For the methods mentioned above, the opti-
mal results were obtained by assumptions of deterministic structural parameters and external excitations. However, the
deterministic assumptions of a structural system and excitation may lead to a considerable reduction of the design
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performance.23,24 Therefore, the so-called robust design of a TMD was highlighted in Zang et al. and Marano et al.25,26

The probabilistic theory seems a rational way for modeling structural uncertainties27–32 with sufficient data and perfect
priori knowledge. Unfortunately, in the preliminary design stage, the statistical information and prior knowledge may
not be sufficient to construct a precise probabilistic distribution. In other words, an excessively optimistic result
obtained from probabilistic theory would not afford to extremes or epistemic uncertainties. Alternatively, the
non-probability-based robust design of a TMD was developed by the researchers to handle the uncertainty existence
with ambiguous, incompleteness, and fuzziness.

In the domain of the non-probability-based robust design of a TMD, endeavors have been conducted, such as by
Bhattacharjya and Chakraborty,33 who developed an interval-based performance indicator to search the optimal param-
eters of the TMD. Chakraborty and Roy34 gave an interval-based reliability indicator to optimize the size of a TMD, con-
sidering the epistemic uncertainties of a filter model and a structural system. Schmelzer et al. and Adam et al.35,36

investigated the influences of the interval-based epistemic uncertainties in TMD parameters on the seismic performance
primary structure with random set and Tchebycheff's inequality. Marano et al.37 proposed a fuzzy-based and interval-
based optimal framework that modeled the uncertainties of structures and an environment. Mrabet et al.38,39 presented
a performance index and reliability index-based optimal design framework for the uncertainties in a structure system
that seemed to have given bounds but not a concrete distribution form. As mentioned above, the fuzzy expression of
uncertainty may resort to the precise formulation of the fuzzy numbers of a variable,40 while the interval model
of uncertainties may lead to an overconservative result that loses feasibility for civil engineering.

Apart from two extreme scenarios of uncertainty modeling techniques as mentioned above, other interpretations of
epistemic uncertainty were developed that might balance the computational cost and accuracy of uncertainty quantifi-
cation, such as imprecise probability,41 probabilistic box,42 and evidence theory.43,44 Among these interpretations, evi-
dence theory demonstrates more powerful applicability because its flexible framework depends on a theoretical
background. The evidence theory was developed in the recent half century,43,44 and it could be seen as the transitional
state between interval theory and probability theory, as well as the generalized model of possibility theory.45 With the
flexibility of a theoretical body, evidence theory-based uncertainty quantification for dynamic analysis46 and reliability
analysis47 have been conducted in recent years.

To improve the efficiency of uncertainty propagation in evidence theory framework, the perturbation method,48 the
subinterval Taylor expansion,35,36 the differential evolution method,49 and the interval Monte Carlo method50 have
been proposed in recent years. The constraints for these methods are obvious. The perturbation method cannot afford a
precise result for the higher level of nonlinear problem, the computational cost of artificial intelligent algorithm
increases rapidly with the increase of dimensions, the number of expansion points of Taylor series may trap into an
exponential increase for the high-dimensional problems, and the interval Monte Carlo method is constrained by the
deficiencies of the interval method and Monte Carlo simulations. Compared with the methods mentioned above,
the uncertainty propagation method assisted by the surrogate model can improve the accuracy of computations without
the loss of efficacy of the computation effort. Among the developed surrogate models, the kriging model51,52 is widely
used in the uncertainty quantification and optimization domain.53–55 In this work, active learning function efficient
global optimization (EGO) with respect to the kriging model was employed to alleviate the computation burden of epi-
stemic uncertainties with evidence theory. Moreover, we use the parallel computational techniques to enhance the
computational performance of the EGO. Then, a parallel-efficient global optimization (parallel-EGO) method has been
proposed to overcome the computational cost of the uncertainty quantification of the system response for a structure
equipped with a TMD.

This paper aims to develop a robust design method of TMDs that simultaneously accounts for the hybrid aleatory
and epistemic uncertainties. Aleatory uncertainty is intrinsically random nature of earthquake occurring, whereas
epistemic uncertainty is derived from the incomplete prior knowledge and insufficient statistical information of site
condition and structural model. The robust optimization problem is solved by searching the worst performance
indicators under the influences of uncertainties. The proposed parallel-EGO is employed to propagate the uncertainties
in structural model and external excitation to system response. The remaining parts of this paper are organized as
follows: Section 2 gives the basic concepts of equations of motion of a structure equipped with TMD and the
evidential representation of the epistemic uncertainties rooted in the structural model and external excitation. The
uncertainty quantification with parallel-EGO method is presented in Section 3. The framework of the robust design of
the TMD is given in Section 4. Section 5 describes how an SDOF system and a multi-degree-of-freedom (MDOF) system
were used to validate the feasibility and efficiency of the proposed method. Conclusions and discussions are listed
in Section 6.
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2 | HYBRID UNCERTAINTY ANALYSIS OF A TMD SYSTEM

In this section, the stochastic analysis of a structural system equipped with a single TMD is introduced. Then, a brief
review of evidence theory and evidential representation of a system response with epistemic uncertainty are given.

2.1 | Governing equations of a structural system equipped with a TMD

In this work, a TMD is installed on the top of structure to mitigate the vibration responses under an earthquake excita-
tion. Without loss of generality,56 the governing equations of this combined system can be written as follows:

M αð Þ€u α,β, tð ÞþC αð Þ _u α,β, tð ÞþK αð Þu α,β, tð Þ¼ f α,β, tð Þ, ð1Þ

where u(α, β, t) = [uT(α, β, t), us(α, β, t)]
T is the displacement response vector of a structural system equipped with

TMD, uT(α, β, t) and us(α, β, t) are respectively the displacement of TMD and structure, and €u α,β, tð Þ and _u α,β, tð Þ are
the related acceleration and velocity vectors, respectively. The vector f(α, β, t) is the force representation of external exci-
tation, and the time-invariant vectors α= [α1, α2,…, αN]T and β= [β1, β2,…, βL]T are independent epistemic vectors in
structural system and external excitation, respectively. In the expression, N and L denote the dimension of vectors α
and β, respectively. The superscript T denotes the transformation operation. The mass matrix M(α), damping matrix C
(α), and stiffness matrix K(α) of a structural system are given as follows38:

M αð Þ¼ 0 0

0 Ms αð Þ

� �
þmTaa

T C αð Þ¼ 0 0

0 Cs αð Þ

� �
þ cTbb

T K αð Þ¼ 0 0

0 Ks αð Þ

� �
þkTbb

T, ð2Þ

where Ms(α), Cs(α), and Ks(α) denote the mass, damping, and stiffness matrixes of primary structure with n � n
elements; mT, cT, and kT denote the mass, damping, and stiffness of the attached TMD; and the vectors
a = [1,0,0,…,0n]T and b = [1, � 1,0,…,0n � 1]

T are the location vectors of the mass, damping, and stiffness of the TMD.

2.2 | System response under stochastic excitation with uncertain parameters

In stochastic dynamics,56 the seismic excitation €ug tð Þ can be represented by a stationary filtered white noise.
Specifically, the Kanai–Tajimi model57 is used to characterize the properties of site conditions:

€ug β, tð Þ¼ €uf β, tð Þþ €uw tð Þ¼�2ζf βð Þωf βð Þ _uf β, tð Þ�ω2
f βð Þuf β, tð Þ

€uf β, tð Þþ2ζf βð Þωf βð Þ _uf β, tð Þþω2
f βð Þuf β, tð Þ¼�€uw tð Þ , ð3Þ

where ζf and ωf are the efficient damping ratio and the dominant frequency of the ground, respectively. €uw tð Þ is station-
ary Gaussian white noise, and it satisfies the following conditions:

Exp €uw tð Þf g¼ 0 Exp €uw tð Þ€uw tþ τð Þf g¼ S0δ τð Þ , ð4Þ

where Exp{�} is the expectation operator, S0 is the intensity of a two-sided power spectral density matrix, and δ(τ) is the
Dirac delta function. Introducing the state vector Y α,β, tð Þ¼ u α,β, tð Þ,uf β, tð Þ, _u α,β, tð Þ, _uf β, tð Þ� �T

, output matrix Γ, and
observation vector Z(α, β, t), the state equation is given in Equation (5):

_Y α,β, tð Þ¼A α,βð ÞY α,β, tð ÞþB€uw tð Þ
Z α,β, tð Þ¼ΓY α,β, tð Þ

(
, ð5Þ
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where the state system matrix A(α, β) and input vector B denote the state system matrix and input vector, respectively.
Then, the covariance matrixes RYY(α, β) and RZZ(α, β) are computed with the stochastic vibration theory58:

A α,βð ÞRYY α,βð ÞþRYY α,βð ÞAT α,βð Þþ2πBS0BT ¼ 0

RZZ α,βð Þ¼ΓRYY α,βð ÞΓT
: ð6Þ

As shown in Equation (6), the covariance matrix RYY(α, β) can be estimated by using the numerical solution of the
Lyapunov equation.58 As indicated in Equation (6), the estimation of covariance matrix RZZ(α, β) implies that
the parameters related to structural system and filter model are deterministic. To capture the influences of epistemic
uncertainties rooted in the structural system and filter model on the seismic performance of the combined structural
system, an extension of Equation (6) needs to developed. Herein, the evidence theory is used to represent the sparse
uncertain information to capture the worst system responses and avoid excessively conservative quantification results.

2.3 | Evidential representation of the epistemic uncertainty

To formulate the uncertain information with a uniform formula, the uncertain vectors α and β are collected as the com-
bined vector θ = [α, β]T. The evidential representation of the uncertain component θi,i � 8 [1,N+L] consists of the
focal element θIi,ji and the corresponding mass function mi,ji :

θIi,ji ,mi,ji

n o
¼ θi,ji ,

�θi,ji

h i
,mi,ji

n o
, ji � 8 1,Ji½ �, i� 1,NþL½ � , ð7Þ

where θi,ji and
�θi,ji denote the lower bound (LB) and upper bound (UB) of the focal element θIi,ji and Ji denotes the num-

ber of focal elements of the uncertain component θi. According to the evidence theory,43,44 all of subset θIi,ji comes from
the power set 2θi and the related mass function mi,ji satisfies the following:

m ;ð Þ¼ 0, mi,ji ≥ 0,
XJi

ji¼1
mi,ji ¼ 1 : ð8Þ

The mass function mi,ji denotes the degree of support of the certain element θi,temp belonging to the subinterval θIi,ji ,
which can also be called the basic belief assignment (BBA) of θIi,ji . For the construction of the evidential representation
of uncertain input, the evidential propagation of uncertainties is conducted. A joint BBA of the uncertain vector is con-
structed using a Cartesian product:

θIq ¼ θI1,j1 ,…,θ
I
i,ji
,…,θINþL,jNþL

h iT
, mq ¼

YNþL

i¼1
mi,ji , q� 1,

YNþL

i¼1
Ji

h i
, ð9Þ

in which ji � 8 [1, Ji], i � 8 [1,N+L], θIq is the joint focal element of the uncertain input, and mq is the joint BBA
corresponding to θIq . According to the above description, the evidential representation of the covariance for structural
response Zk(θ),k� [1, 2n] of interesting can be given by

RZkZk
θIq

� �
, �RZkZk θIq

� �h i
,mq

n o
, ð10Þ

where RZkZk
θIq

� �
and �RZkZk θIq

� �
denote the LB and UB for focal element RZkZk θIq

� �
. In order to alleviate the computa-

tional burden, the parallel-EGO-based uncertainty propagation is implemented. The approximation of the bounds of a
system response for each joint focal element was transformed as two optimal problems for searching the minimum and
maximum values of the system response.
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3 | PARALLEL-EGO-BASED UNCERTAINTY QUANTIFICATION

The kriging model was derived from geological engineering to estimate the distribution of minerals. In combination
with the design of experiment (DOE), the kriging model was developed as a surrogate for the complexity and large-scale
analysis. A brief summary of the kriging model is introduced in Appendix A, and a more detailed information of kriging
is presented in Lophaven et al.52 The parallel-EGO-based uncertainty propagation and evidential measurement of the
system response are given in the following.

3.1 | Evidential uncertainty propagation using parallel-EGO

The EGO algorithm was proposed by Jones et al.51 to estimate the optimal value of a system response. The EGO pro-
vides infill measures for which the observed point is I xð Þ¼max ymin� ŷ xð Þ,0f g , where ymin is the minimum value in
the current design point set, ŷ xð Þ is the estimated value. The expectation improvement (EI) is defined as the maximum
value of expectation Exp{I(x)}. The formulation of EI is expressed as follows:

Exp I xð Þf g¼ ymin� ŷ xð Þð ÞΦ ymin� ŷ xð Þ
s y xð Þð Þ

� �
þ s y xð Þð Þϕ ymin� ŷ xð Þ

s y xð Þð Þ
� �

, ð11Þ

in which Exp{�} denotes the expectation operator, Φ(�) and ϕ(�) denote the cumulative distribution function (CDF) and
probability density function (PDF) of the Gaussian distribution, s(y(x)) denotes the square root of var(y(x)). According
to the formula as shown in Equation (11), the optimal process using EGO is a sequential DOE of the kriging model.
The stop criteria of EGO are set either when the value of Exp{I(x)} is less than a threshold value or when a maximum
number of steps are reached. The evidential uncertainty propagation is an evaluation processes for searching the maxi-
mum and minimum values in each joint focal element θIq . The objective function of the optimization procedure is
defined as the system response of interest. Thus, the uncertainty propagation of the system response RZkZk

θIq

� �
and

�RZkZk θIq

� �
can be rewritten in the following:

find min RZkZk θq
� 	
 �

s:t: θq ≤ θq ≤ �θq
, ð12Þ

find max RZkZk θq
� 	
 �

s:t: θq ≤ θq ≤ �θq
: ð13Þ

With the characters of the evidence theory-based uncertainty propagation, the EGO-based interval optimization can
be enhanced using parallel computational works. A detailed procedure of the parallel-EGO-based evidential uncertainty
propagation is given in Figure 1.

As shown in Figure 1, the evidence theory-based uncertainty propagation employs a twice parallel-EGO process in
each joint focal element to search the LB and UB of system responses. The evaluation process in each joint focal ele-
ment of the parallel-EGO-based kriging model may use at most hundreds of calls to the performance function. This is
meaningful for very high computational demanding simulation models. After the uncertainty propagation, the eviden-
tial covariance of a system response is represented as the focal element and mass function, RZkZk

θI1
� 	

, �RZkZk θI1
� 	� �

,m1
� 	

,
…, RZkZk

θIQ

� �
, �RZkZk θIQ

� �h i
,mQ

� �
.

3.2 | Uncertainty measurement with evidence theory

In evidence theory, the uncertainty measurement of a system response is obtained via two functions, the belief function
(Bel) and the plausibility function (Pl). The Bel and Pl are respectively used to denote the degree of total belief and
degree of partial support for a proposition. The mathematical representation of Bel and Pl of the system response
RZkZk θð Þ for a given threshold value Rthre is expressed as follows:
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Bel Rthreð Þ¼
X

�RZkZk θIqð Þ≤Rthre
mq, Pl Rthreð Þ¼

X
RZkZk

θIqð Þ≤Rthre
mq : ð14Þ

Then the Bel and Pl for a series of incremental Rthre construct the cumulative belief function (CBF) and cumulative
plausibility function (CPF). Therefore, the quantile values of CPF and CBF are transformed to the LB and UB of with
quantile probability for a given Rthre. Using the statistical moment concept in classical probability theory, the evidential
expectation of RZkZk is formulated as follows:

Exp RZkZk θð Þf g¼ PQ
q¼1RZkZk

θIq

� �
�mq,

PQ
q¼1

�RZkZk θIq

� �
�mq

h i
: ð15Þ

As shown in Equation (15), the expectation of performance indicator using the evidential form is obtained, and the
corresponding result is represented by the LB and UB.

4 | OPTIMUM TMD PARAMETERS WITH ROBUST DESIGN

In line with above sections, the robust design procedure of a TMD with uncertain parameters is presented in this sec-
tion. The traditional EGO algorithm was employed to search for the best candidate in design space. In this work, the
objective function of the robust design was defined using the first-order statistical moment with evidential
representation:

object function : J η,θð Þ¼
XQ

q¼1
�RZkZk θIq,η

� �
�mq, ð16Þ

where the objective function is the measurement to quantify the worst case of the covariance response under the sto-
chastic excitation. In other words, the optimal result may have captured the extreme scenario of the detuning effect of
TMD and the incomplete knowledge of the external excitation. Based on the above considerations, the optimal problem
of the TMD parameters is given as follows:

FIGURE 1 Pseudo-codes of the parallel-EGO-based uncertainty propagation
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find design variable : η¼ η1,η2,…,ηd½ �T
minimize : J η,θð Þ

s:t:
η
i
≤ ηi ≤ �ηi, i� 8 1,d½ �

mT ¼ μTms

, ð17Þ

where ms is the total mass of primary structure, and η
i
and �ηi are the LB and UB with respect to ith design variable ηi.

μT denotes the mass ratio of the TMD with respect to the total mass of the primary structure. The optimal design pro-
cess involved two loops of searching for the global optimal value. The inner optimization process, the parallel-EGO
method, was used to approximate the UB of the first-order statistical moment as mentioned in Equation (16). In the
uncertainty propagation, the Cartesian product was distributed to the parallel-EGO processes, and the results were
combined using the uncertainty measurement. Then, the uncertainty quantification result was used to update the train-
ing set of the outer loop of the optimal process. In order to illustrate above iterative process, we plotted the complete
procedure of the optimal design of the TMD using the evidence theory, as shown in Figure 2.

As indicated in Figure 2, the initial training set of the kriging model was generated using Latin hypercube sampling
(LHS)-based DOE. The EGO and parallel-EGO methods started with a small size for the training set, and the train set
was enriched step by step. The iterative process illustrated in Figure 2 was dependent on the estimation of the current
optimization seed using the parallel-EGO algorithm. It is worth noting that the minimization performance indicator EI
could be solved with a differential evolution algorithm for dimensions less than 100. Additionally, Figure 2 shows that

FIGURE 2 Flowchart of the robust design of the TMD with parallel-EGO
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the results of the uncertainty quantification were used to enrich the training set of the kriging model for optimal pro-
cess. The global optimal design result was obtained by judging whether the stop criterion was satisfied. Consider the dif-
ferent degree of uncertain level for each joint focal element, the stop criterion with threshold value of Exp{I(x)} may
lead to a large divergence of approximation value with respect to the extreme value of system response. Therefore, the
stop criterion used in this work was the maximum number iterative generations, namely, Nmax = 100.

5 | CASE STUDY

As described in this section, an SDOF system and a 10-story benchmark model equipped with a TMD were used to
investigate the feasibility and efficiency of the proposed method.

5.1 | Optimal uncertain SDOF system with a TMD

As described in Figure 3, a TMD was installed on the top of an SDOF system to control the displacement response us.
34

The seismic input was modeled as the Kanai–Tajimi model,57 where the dominant frequency ωf and the damping ratio
ζf were assumed to be the epistemic uncertainty. The fundamental frequency and the damping ratio of the primary
structure were also assumed to be uncertain variables. The detailed information of these variables is listed in Table 1.
In the context of the robust design procedure, the mass ratios of the TMD were set as 0.01 and 0.03.

Table 1 shows the uncertain vector of structural system αI = [(ωs)
I, (ζs)

I]T and the uncertain vector of external exci-
tation βI = [(ωf)

I, (ζf)
I]T. The joint focal element of the uncertain system input could be constructed with the Cartesian

product, and joint BBA was given as

θIq ¼ ωsð ÞIj1 , ζsð ÞIj2 , ωf
� 	I

j3
, ζf
� 	I

j4

h iT
, mq ¼mj1 �mj2 �mj3 �mj4 , q� 8 1,Q½ � , ð18Þ

where ji � 8 [1, Ji] denotes the number of focal elements of each uncertain variable, i � 8 [1,4] denotes the number of
dimensions of the uncertain inputs, and Q¼Q4

i¼1Ji ¼ 27 denotes the number of joint focal elements. Using the above
information, the uncertainty propagation process could be conducted using the parallel-EGO algorithm. For the

FIGURE 3 SDOF system equipped with TMD

TABLE 1 Evidential representation of the uncertain parameters

ωs (rad/s) ζs ωf (rad/s) ζf

Focal element BBA Focal element BBA Focal element BBA Focal element BBA

[7.67, 11.86] 0.163 [0.04, 0.06] 1 [10.24, 15.83] 0.156 [0.22, 0.34] 0.176

[11.86, 16.04] 0.680 [15.83, 21.41] 0.687 [0.34, 0.46] 0.678

[16.04, 20.23] 0.157 [21.41, 27.00] 0.157 [0.46, 0.58] 0.146
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uncertainty propagation stage, the initial points of the DOE were set as p= 5� 6= 30, the iteration stop was set as
70, and the total iterative number was 100. According to the evidential measurements as descripted in Section 3.2, the
uncertainty propagation results obtained from the parallel-EGO method are plotted in Figure 4 with CPFP-EGO and
CBFP-EGO. To validate the accuracy of the parallel-EGO optimum process, the baseline results were presented with
Monte Carlo simulation with 105 and 106 sampling, respectively. The corresponding uncertainty measure results are
plotted in Figure 4, with CPFMC1 , CPFMC2 , CBFMC1 , and CBFMC2 . Furthermore, Figure 4 shows a probabilistic result
with a blank line that is employed to illuminate the relationship between the aleatory uncertainty and epistemic uncer-
tainty. The probabilistic distributions of uncertain parameters ωs, ωf, and ζf were modeling with norm distribution with
coefficients of variation 0.15. The uncertain parameter ζs follows uniform distribution ranges from 0.04 to 0.06. Then,
the probabilistic result of Rusus,0 θð Þ was estimated from the Monte Carlo simulation with 106 sampling.

Figure 4 shows that the CBF and CPF obtained from the uncertainty propagation with evidence theory envelope the
CDF curve obtained from probabilistic model. The gap located between CBF and CPF denotes the incomplete of statisti-
cal information of uncertain variables in Table 1. On the other hand, the CDF denotes the uncertainty propagation
result obtained from the aleatory uncertainty with perfect knowledge of distribution form and complete statistical infor-
mation of uncertain variable. It is obviously found that the gap between CBF and CPF reduces to the CDF with the
gradual accumulation of uncertain information.

Figure 4 illustrates that the gap between CBF and CPF curves obtained by using Monte Carlo simulations with 106

sampling was wider than 105 sampling that denotes the accuracy of Monte Carlo simulation is improved with the added
the samples. Figure 4 also shows that the parallel-EGO-based propagation result was wider than the Monte Carlo simu-
lation with 105 and 106 sampling, which means that the parallel-EGO algorithm gave a more accurate uncertainty prop-
agation result than the above Monte Carlo simulations. Additionally, the LB and UB of the expectation of the
covariance of the displacement response were given by Equation (15) as Exp Rusus,0 θð Þ
 �

,Exp �Rusus,0 θð Þf g� �
were

[1.31,6.83]� 10�3, [1.29,6.93]� 10�3, and [1.26,7.11]� 10�3 m2 for Monte Carlo simulations with 105 and 106 samples
and parallel-EGO, respectively.

In addition to investigate the accuracy of the proposed method, the computational efficiency was the other indicator
that is considered. The evidence theory-based uncertainty propagation requires 200, 105, and 106 calls of performance
function by employing parallel-EGO and two kinds of Monte Carlo simulations. In this work, a computational server
with 18 parallel works, provided by two Intel Xeon CPU E5-4627, was employed to conduct the parallel computation of
uncertainty propagations. The Monte Carlo simulation with 106 sampling spends 266 s, and the proposed parallel-EGO
costs 26 s to finish the uncertainty quantification. With a higher accuracy for approximation of uncertainty influences
and smaller numbers of calls to performance function and computational cost, it could be determined that the parallel-
EGO-based optimization algorithm was efficient and accurate. Moreover, such a large difference between the LB and

FIGURE 4 Results obtained by parallel-EGO and the Monte Carlo simulations
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UB of Exp Rusus,0 θð Þf g demonstrates the significant influence of epistemic uncertainties on the performance of primary
structure. Therefore, it was necessary to perform the optimization that fully considered the influences of the epistemic
uncertainty.

Given the mass ratios μT = 0.01,0.03 and the design space of optimal parameters being set to ωT � [0,30], ζT � [0,1],
the optimal convergence histories were illustrated in Figures 5 and 6. In order to illustrate the suppressing effect of the
TMD, the mitigation factor αm was defined as follows:

αm ¼Exp �Rusus,T θ,ηð Þf g=Exp �Rusus,0 θð Þf g, ð19Þ

where Exp �Rusus,T θ,ηð Þf g and Exp �Rusus,0 θð Þf g denote the expectation of the UB of the evidential representation of the
first-order statistical moment of the system response covariance with or without the TMD. As shown in Figures 5 and
6, the smaller value of αm implied the excellent performance of the TMD. To elucidate the effectiveness of proposed
method, the optimal results and contours of the mitigation ratio in the space design parameter were also plotted in
Figures 5b and 6b.

FIGURE 5 (a) Convergence history and (b) contours of the mitigation ratio with a mass ratio of μT = 0.01

FIGURE 6 (a) Convergence history and (b) contours of the mitigation ratio with a mass ratio of μT = 0.03
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As indicated in Figures 5a and 6a, the optimal value close to the final optimal results for the iteration numbers that
were less than 25 and 10. For the case of μT = 0.01, the optimal value of Exp �Rusus,T θ,ηð Þf g and the optimal parameters
of ωT and ζT were 0.0057, 11.67, and 0.054. The optimal parameters ωT and ζT and the optimal value of
Exp �Rusus,T θ,ηð Þf g for the case of μT= 0.03 were 11.32, 0.108, and 0.0049. Figures 5b and 6b show that the global optimal
results occurred in the valley of the contour plots, which meant that the proposed two-loop optimization process could
access the global optimal results.

Apart from searching the optimal parameters of the designed TMD for an SDOF system with specified nominal
parameters, we also extended this procedure into general SDOF systems. The nominal value of structural period Ts

ranges from 0.1 to 5 s, and the variation of dynamic system keeps constant. Given mass ratio μT = 0.03 and 0.05, we got
a series of optimal values of ωT and ζT as shown in Figure 7. Additionally, we plotted the corresponding mitigation
ratios to investigate the seismic performance of the designed TMD.

As shown in Figure 7a, the optimized frequency of TMD ωT decreases with structural period. The well-matched cur-
ves of optimal ωT for cases μT = 0.03 and 0.05 illustrate that the tuned frequency of TMD mainly depends on the varia-
tion of structural period, which is compatible to the tuned characteristics of fixed-point theory. The fluctuation of
damping ratio of TMD in Figure 7b may ascribe to the multi-global optimal value of the objective function. In addition
to discuss the variation of designed parameters, Figure 7c indicates that the proposed method provides a robust optimal
result regardless of the change of structural period. As shown in the above subsections, the proposed robust design
method can efficiently suppress the system response of primary structure. In the next subsection, the investigation of
the efficiency of the robust design of the TMD in the MDOF system is described.

5.2 | Optimal design of the TMD installed in the 10-story building

A 10-story shear building equipped with a single TMD is illustrated in Figure 8.38 The mass ratio of the TMD was cho-
sen with a prior value as 3% with respect to the total mass of the structure, and the optimal parameters were assumed
to be the stiffness and damping coefficient of the TMD. The objective function Rdmaxdmax θ,ηð Þ of the optimal process was
defined as the expectation of the maximum inter-story drift of the primary structure under the stationary excitation.
For primary structure, the nominal values of the mass, stiffness, and damping coefficient were mi= 360� 103 kg,
ki= 650� 106 N/m, and ci= 6.2� 106 kN�s/m, i= 1,2,…,10. The uncertain information of these three parameters is sum-
marized in Table 2. In optimal process, the LB and UB of the stiffness and damping coefficient of the TMD were set to
0–4000 kN/m and 0–1000 kN�s/m, respectively. The Kanai–Tajimi filter model was also employed in order to consider
the site condition of the outside excitation. The nominal values of the Kanai–Tajimi filter model were set to
ωf= 37.3 rad/s and ζf= 0.6. The coefficients of variation of these three variables were set to 10%, and considering the
scarcity of these data, the LB and UB were set to μ±3σ, where μ and σ denote the mean value and the standard deriva-
tion, respectively.

According to the uncertainty information listed in Table 2, the joint focal element of the uncertain system input was

constructed by a Cartesian product θIq ¼ kið ÞIj1 , mið ÞIj2 cið ÞIj3 , ωf
� 	I

j4
, ζf
� 	I

j5
, S0ð ÞIj6

h iT
, ji � 8 1,Ji½ �, i� 1,6½ �,q� 1,Q½ �, where the

number of joint focal elements was Q¼Q6
i¼1Ji ¼ 18 . Then the uncertainty propagation was implemented by using

FIGURE 7 (a) Optimized ωT, (b) optimized ζT, and (c) mitigation ratio with respect to structural period Ts
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the parallel-EGO algorithm. For this case, the number of initial DOE was determined to be 30, and the stop criterion
was set to 100 calls to the performance function. The uncertainty propagation results for performance indicator without
TMD Rdmaxdmax,0 θð Þ are plotted in Figure 9 with CPFP-EGO and CBFP-EGO. The baseline results presented by the Monte
Carlo simulation with 105 and 106 sampling and the corresponding uncertainty measure results are plotted in Figure 9.
For these results, CPFMC1 , CPFMC2 , CBFMC1 , and CBFMC2 were used to test the accuracy of the parallel-EGO-based
results of the uncertainty propagation. A comparison of the uncertainty quantification results of performance indicator
Rdmaxdmax,0 θð Þ was plotted in Figure 9 to elucidate the relationship between evidence theory framework and probabilistic
model. In this case, the probabilistic models of structural parameters were assumed same with case study 1. Then, the
probabilistic result represented with CDF in Figure 9 was obtained from the Monte Carlo simulation with 106

sampling.
As indicated in Figure 9, the Monte Carlo simulation results with 105 and 106 sampling may have provided a larger

value for the CPF estimation and a smaller value for the CBF estimation of Rdd,0(θ). Meanwhile, the proposed parallel-
EGO gave a wider distance for the CPF and CBF than the two Monte Carlo simulations did. For the performance

FIGURE 8 Schematic of the MDOF system equipped with a TMD

TABLE 2 Evidential representation of the uncertain parameters of the structural system and the site condition

ki (� 106 N/m) mi (� 103 kg) ci (� 106 N�s/m) ωf (rad/s) ζf S0 (m
4/s2)

Focal
element BBA

Focal
element BBA

Focal
element BBA

Focal
element BBA

Focal
element BBA

Focal
element BBA

[358, 553] 0.165 [252, 324] 0.157 [5.58, 6.20] 0.5 [26.11, 48.49] 1 [0.51, 0.69] 1 [0.035, 0.065] 1

[553, 748] 0.683 [324, 396] 0.681 [6.20, 6.82] 0.5

[748, 943] 0.153 [396, 468] 0.161
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indicator Exp Rdmaxdmax,0 θð Þf g , the uncertainty quantification results that were obtained using parallel-EGO and the
Monte Carlo simulations with 105 and 106 samples were [2.25� 10�4,0.0013]�m2, [2.39� 10�4,0.0012]�m2, and
[2.46� 10�4,0.0012]�m2. Compared with the SDOF system, as described in first section, the influence of the epistemic
uncertainty was enhanced with the increase of the number of degrees of freedom. In line with the previous case study
for SDOF system, the CDF curve is employed to illustrate distribution of performance indicator under the influences of
uncertain parameters with aleatory uncertainty. It is obviously found that the probabilistic model is in the gap between
CBF and CPF curves. Furthermore, the comparison between probabilistic result and evidential results indicated that an
overoptimistic model (e.g., probabilistic model) might lose the capacity to handle with the worst case denoted by the
CBF and to keep the robustness of the design under the impact of epistemic uncertainties. Thus, a synthetic optimal
framework of TMD that fully concerning the effect of epistemic uncertainty is significant to realize the robustness of
seismic performance of designed TMD.

Given the mass ratio of μT = 0.03 and the range of optimal parameters of kT � [0,4000] kN/m and
cT � [0,1000] kN�s/m, the optimal convergence history is plotted in Figure 10. To validate the effectiveness of the pro-
posed method, Figure 10b gives the contour plots and optimal value of the mitigation ratio in the space design.

FIGURE 9 Comparison of the parallel-EGO results with the Monte Carlo simulations

FIGURE 10 (a) Convergence history and (b) contour plot of the mitigation ratio with a mass ratio of μT = 0.03
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Figure 10a shows the initial value of the mitigation factor αm of the inter-story drift hold of about 0.48, which was
reduced quickly with the increment of iterations. The performance indicator stayed constant when the iteration num-
ber was larger than 120. The optimal parameters were as shown in Figure 10b, kT = 3143 kN/m and cT = 191.5 kN/m,
the optimal value of the performance indicator was Exp �Rdmaxdmax,T θ,ηð Þf g¼ 5:55�10�4 m2 , and the relative mitigation
factor was αm= 0.427. The location of the parameter combinations validated the effectiveness of the proposed method.
It should be noted that for the traditional optimization method based on the “fixed point,” the optimal results should
have been consistent with the fundamental frequency of the structure. However, the stochastic vibration method con-
trolled the vibration using the integral in the frequency domain, which led to a global control effect. To validate the
seismic performance of designed TMD, a series of the time history analysis was conducted.

5.3 | Time history validation for the optimal results with the selected ground motions

In this part, four ground motions consist of the general ground motions (El Centro and Taft) and near-fault ground
motions with long-period pulse (Kobe and Chi-Chi). In order to illustrate the reduction of the designed TMD with a fair
way and avoid the influences of intensity of ground motions, the peak ground accelerations (PGAs) of four ground
motions were rescaled to 300 gal. The absolute acceleration response spectrums of the scaled ground motions were
reported in Figure 11. In order to illuminate the seismic performance of designed TMD under ground motion excita-
tions, we also plot the LB and UB of the expectation of fundamental period of the primary structure as gray bond in
Figure 11.

Because the aleatory and epistemic uncertainties were involved in the structural system and external excitation, the
time history validation was separated as two aspects, one was to investigate structural responses with nominal value
and the other was to explore the structural responses that with uncertainties. The root-mean-square (RMS) values and
MAX values of roof displacement u10, ninth absolute acceleration €u9,0, and fifth inter-story drift d5 of primary structure
were employed to explore the seismic performance of the designed TMD. Meanwhile, a reduction factor with negative
percentages was used to approximate the mitigation of the designed TMD compared to the original structural system.

5.3.1 | Validation of mitigation effect of the designed TMD with deterministic parameters

In the first scenario, the nominal values of structural parameters were employed to estimate the system responses
subject to the selected ground motions. The RMS values of the performance indicators were reported in Table 3.

As reported in Table 3, the mitigation percentages of the roof displacement u10 are from 26% to 40%, and ninth abso-
lute acceleration is from 22% to 36% for the selected ground motions. The similar reductions of fifth inter-story drift
were observed in Table 3. Table 3 implies that the installation of the designed TMD leads to an excellent mitigation for
the RMS values of primary structure. Furthermore, the comparison of time history of the system responses u10, €u9,0 ,
and d5 of primary structure subjected to the El Centro and Chi-Chi waves were listed in Figure 12.

FIGURE 11 Response spectrum of the selected ground motions
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As illustrated in Figure 12a–f, the time histories of performance indicators reduce obviously by equipping the
designed TMD. It emerges that the MAX value of u10 reduces from 0.0165 to 0.011 m and related reduction factor was
almost �33% under the El Centro ground motion. Moreover, the absolute acceleration €u9,0 achieves an excellent reduc-
tion, and the related reduction factors were �24% and �20% for cases of El Centro and Chi-Chi ground motions. The
mitigation of d5 is also manifested in Figure 12e,f. To date, the time history investigation manifests the excellent perfor-
mance of the designed TMD for MDOF system with nominal values.

TABLE 3 List of RMS value of system response of MDOF system attached with the designed TMD

Events u10 (mm) €u9,0 (m/s2) d5 (mm)

El Centro 21.6 (�31%) 0.90 (�29%) 2.2 (�31%)

Taft 19.2 (�26%) 0.87 (�22%) 2.0 (�25%)

Kobe 23.2 (�40%) 1.00 (�36%) 2.4 (�39%)

Chi-Chi 20.5 (�26%) 0.79 (�27%) 2.1 (�26%)

FIGURE 12 Time history of the (a, b) roof displacement, (c, d) ninth absolute acceleration responses, and (e, f) fifth inter-story drift of

MDOF system
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5.3.2 | Seismic performance validation of the designed TMD with uncertain parameters

In this part, the seismic performance of the designed TMD was explored by considering the uncertainties rooted in the
primary structures. Because the epistemic uncertainties were represented by the discrete intervals as mentioned above,
the mitigation of the designed TMD shall be divided as two aspects. On the one hand, the reduction of the worst case of
system responses should be investigated, which is expressed as the reduction of UB of system responses. On the other
hand, the enhancement of robustness of structural system also needs to be investigated, because the robustness of con-
trol effect reflects the capability of TMD for the extreme condition. Generally speaking, the robustness of system
response can be expressed as the gap between the LB and UB of system responses. To illustrate the control effect of the

TABLE 4 List of the UBs of the RMS values of the system responses

Events �σu10 (mm) �σ€u9,0 (m/s2) �σd5 (mm)

El Centro 24.9 (�39%) 1.29 (�37%) 2.6 (�39%)

Taft 23.0 (�36%) 1.24 (�32%) 2.4 (�35%)

Kobe 25.5 (�44%) 1.35 (�29%) 2.7 (�43%)

Chi-Chi 30.6 (�51%) 0.93 (�56%) 3.1 (�51%)

FIGURE 13 MAX values of the displacement responses of MDOF system

FIGURE 14 MAX values of the absolute acceleration responses of MDOF system
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designed TMD, we compared the UBs and LBs of the performance indicators as noted above. The joint focal element
with respect to the ki, ci, and mi [553,748] � 106 N/m, [324,396] � 103 kg, and [5.58,6.2] � 106 N�s/m were selected to
conduct the time history analysis. A Latin hypercube design with 1000 samples was employed to evaluate the UBs and
LBs of system responses. As defined in Equation (19), the mitigation for MDOF system attaching with the designed
TMD subjected to the selected ground motions was reported in Table 4.

Table 4 illustrates that the designed TMD results in an excellent release of the UB of performance indicator, where
the reduction of the UB of RMS value of u10 was as much as 51% under Chi-Chi wave. Moreover, the reductions of the
UB of RMS value of €u9,0 and d5 calculated from the El Centro and Taft excitations were 37%, 32% and 39%, 35%, respec-
tively. It is interesting to observe that the designed TMD achieves a better performance for Kobe and Chi-Chi ground
motions than the other two ground motions. That can be explained by using Figure 11. Because the expectation interval
of fundamental period of the primary structure ranges from 0.88 to 1.15 s, the designed TMD can perform excellently in
this interval due to the tuned mechanics. Furthermore, we found that the response spectrum of Kobe and Chi-Chi gro-
und motions yields a higher value in this period interval. Therefore, the designed TMD can achieve a significant reduc-
tion for these two ground motions. In order to manifest the mitigation effect of designed TMD with a comprehensive
way, we also compared the interval formed MAX values of the performance indicators. The comparisons of the MAX
values of the displacement responses and absolute acceleration responses of the primary structure with or without the
designed TMD were depicted in Figures 13 and 14.

As illustrated in Figures 13 and 14, the MAX values of the displacement responses and absolute acceleration
responses of primary structure were represented by the intervals. It is worthy to note that the gaps between the UBs

FIGURE 15 Time history of the (a, b) displacement responses, (c, d) the ninth absolute acceleration responses, and (e, f) the fifth inter-

story drift of MDOF system
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and LBs of system responses plotted in Figures 13 and 14 were reduced significantly by equipping the designed TMD.
Therefore, we can conclude that the system robustness of primary MDOF system was improved remarkably by
attaching the designed TMD. Additionally, we compared the LBs and UBs of the structural responses u10, €u9,0, and d5 of
MDOF system subjected to El Centro and Taft ground motions in Figure 15.

As depicted in Figure 15, the roof displacement, ninth absolute acceleration, and fifth inter-story drift were reduced
in the whole-time range. The intervals of performance indicators with the time steps highlight that the designed TMD
by considering the epistemic uncertainties keeps effectiveness and efficacy subjected to the natural ground motions.

5.4 | Time history validation for the optimal results with the selected ground
motion set

A set of ground motions that consists of 44 records of the far-field ground motions and 28 records of the near-field gro-
und motions with strong pulse was selected from the FEMA P-695 report59,60 to test the seismic performance of the
designed TMD. The MAX value and RMS value of expectation of roof displacement u10 and ninth absolute acceleration

FIGURE 16 Comparisons of seismic performance indicators: (a) MAX value of the roof displacement u10, (b) MAX value of the ninth

absolute acceleration €u9, (c) RMS value of the roof displacement u10, and (d) RMS value of the ninth absolute acceleration €u9 under

44 records of far-field ground motions
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€u9 were used to illustrate the improvement of seismic performance of MDOF system by installing the designed TMD.
Figure 16 collects four performance indicators of primary structure under the selected far-field excitations. Further-
more, the median values of the LBs and UBs of the performance indicators were indicated with dash line and solid line,
respectively.

As shown in Figure 16, the installation of the designed TMD results in an excellent reduction for the selected perfor-
mance indicators of the primary structure. For performance indicator u10, the installation of designed TMD yields a
reduction of the MAX value and RMS value from 2% to 36% and from 12% to 45%, respectively. Meanwhile, the reduc-
tion of the MAX value and RMS value of €u9 achieves from 2% to 33% and from 18% to 48%, respectively. Additionally,
Figure 16 shows that the reduction of median value of four performance indicators is 20%, 16%, 33%, and 36%, respec-
tively. Therefore, results shown in Figure 16 indicate that, as expected, the reductions of worst cases and the improve-
ments of robustness of performance indicators are achieved simultaneously. Apart from the investigation of seismic
performance designed TMD under the far-field ground motions, Figure 17 gives a collection of the performance indica-
tors of primary structure subjected to the near-field ground motions with strong pulse.

Figure 17 shows that the performance indicator of primary structure significantly reduced by installing the designed
TMD. The reduction of median of performance indicators yields 13%, 13%, 33%, and 37%. It is worthy to note that the

FIGURE 17 Comparisons of seismic performance indicators: (a) MAX value of the roof displacement u10, (b) MAX value of the ninth

absolute acceleration €u9, (c) RMS value of the roof displacement u10, and (d) RMS value of the ninth absolute acceleration €u9 under

28 records of near-field ground motions with strong pulse
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amplitudes of the LB and UB of median performance indicators are considerably reduced as shown in Figures 16 and
17. That is used to validate the improvement of robustness of primary structure with the designed TMD. To summarize
above, the designed TMD not only can reduce the worst cases but also can improve the robustness for the structural
responses that include the effect of epistemic uncertainties.

6 | CONCLUSIONS

The main contribution of this work is to propose a robust design method for a TMD with consideration of the hybrid
uncertainties rooted in the external excitation, site conditions, and structural model. In this method, the aleatory uncer-
tainty of external excitation was expressed with white noise, and the epistemic uncertainty related to incomplete knowl-
edge of the parameters of site conditions and primary structure was well modeled with the evidence theory. The
proposed parallel-EGO effectively releases the computational burden of the uncertainty propagation with evidence the-
ory. By precisely approximating the UB of the first-order statistical moment of system responses, a robust design frame-
work for a TMD was presented in Section 4.

The case studies for an SDOF system and MDOF system equipped with the designed TMD highlight the following
characteristics for the proposed method:

• The proposed parallel-EGO holds a higher precision than the Monte Carlo simulations with 106 samples in evidential
uncertainty propagation. On the other hand, the computational burden for the robust design of a TMD with consid-
ering aleatory and epistemic uncertainties was drastically alleviated by employing the parallel-EGO.

• The fast convergence history and contour plot of the mitigation factor αm as reported in Section 5 shows that the pro-
posed robust design framework can capture the global optimum set exactly.

• The time history analysis results in Sections 5.3 and 5.4 proves that the designed TMD can mitigate the worst system
responses and improve the robustness of primary structure, simultaneously.

To the end, the robust design method presented in this study ensures the efficacy and effectiveness of the designed
TMD. The further step for research work will aim to expanding the study to the life cycle cost of the passive control
devices.
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NOMENCLATURE
€ug acceleration of the external excitation
€uw acceleration of the stationary Gaussian white noise
Ms, Cs, Ks mass, damping coefficient, and stiffness matrixes of the primary structure
RYY, RZZ covariance matrix of the state vector and observation vector
S 0 intensity of a two-sided power spectral density function
c T damping coefficient of the TMD
k T stiffness of the TMD
m T mass of the TMD
u T displacement response of the TMD
us, _us, €us vectors for displacement, velocity, and acceleration of the primary structure
α m mitigation factor of the structural response
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ζ f efficient damping ratio related to the Kanai–Tajimi model
μ T mass ratio of the TMD
ω f dominant frequency related to the Kanai–Tajimi model
A, B state space matrix and input vector of structural system
b location vector of damping and stiffness of the TMD
M, C, K mass, damping coefficient, and stiffness matrixes of structural system equipped with TMD
Y, Z state vector and observation vector of the state space equation
a location vector of mass of the TMD
f external excitation of the structural system
u, _u, €u vectors for displacement, velocity, and acceleration of structural system equipped with TMD
Γ output selection matrix of the state space equation
α N � 1 independent variable related to the structural system
β L � 1 independent variable related to the external excitation
η design vector related to robust design
θ (N+L) � 1 complete uncertain vector
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APPENDIX A

A.1 | Kriging interpolation technique
In the kriging model, the system response y(x) is represented as the combination of the global trend term and the error
term:

y xð Þ¼ gT xð Þκþ z xð Þ, ðA1Þ

in which gT(x)κ offers the trend term of the kriging model. g(x) = [g1(x), g2(x), …, gk(x)]T is the basis function and κ =

[κ1, κ2, …, κk]T is the coefficients vector of the regression. The residual process z(x) is defined with a zero mean and the
following covariance between two points x1 and x2:

Cov z x1ð Þ,z x2ð Þð Þ¼ σ2R x1,x2,ωð Þ, ðA2Þ

where Cov(�) is the covariance operator, σ2 is the variance of the stochastic process, and R(x1, x2, ω) is the correlation
function of x1 and x2 with the parameter vector ω. Given a design of experiments of system input XD = {x1, x2, …, xm}
and a corresponding system output yD = (y1, y2, …, ym)T. The fitting process of the kriging model is the estimation of
the parameters vector φ = [ω, κ, σ2]T. The approximation of the parameter ω is computed by maximizing the likelihood
function of the posterior distribution y(x), which is converted to minimize the following equation:

ω̂¼ argmin
ω

ψ ωð Þ¼ R ωð Þj j1=mσ̂2
n o

: ðA3Þ

With an optimal parameter ω̂ , the value of R x1,x2,ω̂ð Þ is determined. Then the parameter vector κ is given as
follows:
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κ̂¼ GTR�1 ω̂ð ÞG
 ��1
GTR�1 ω̂ð ÞyD, ðA4Þ

in which G = {g(x1), g(x2), …, g(xm)}. The covariance function σ2 is approximated as follows:

σ̂2 ¼ 1
m

yD�Gκ̂ð ÞTR�1 ω̂ð Þ yD�Gκ̂ð Þ: ðA5Þ

Then the estimation of y(x) is given by the expectation of the Gaussian process:

ŷ xð Þ¼ gT xð Þκ̂þ rT x,ω̂ð ÞR�1 ω̂ð Þ yD�Gκ̂ð Þ: ðA6Þ

Additionally, the corresponding variance of y(x) is obtained as follows:

var y xð Þð Þ¼ σ̂2 1þνT GTR�1 ω̂ð ÞG
 ��1
ν� rT x,ω̂ð ÞR�1 ω̂ð Þr x,ω̂ð Þ

� �
, ðA7Þ

where ν¼G�1Rr x,ω̂ð Þ�g xð Þ. As shown in Equations (A6) and (A7), the predicted results of the kriging model include
the expectation and variance, which can be used to define the unique Gaussian process.

24 of 24 LI ET AL.


	Robust design of tuned mass damper with hybrid uncertainty
	1  INTRODUCTION
	2  HYBRID UNCERTAINTY ANALYSIS OF A TMD SYSTEM
	2.1  Governing equations of a structural system equipped with a TMD
	2.2  System response under stochastic excitation with uncertain parameters
	2.3  Evidential representation of the epistemic uncertainty

	3  PARALLEL-EGO-BASED UNCERTAINTY QUANTIFICATION
	3.1  Evidential uncertainty propagation using parallel-EGO
	3.2  Uncertainty measurement with evidence theory

	4  OPTIMUM TMD PARAMETERS WITH ROBUST DESIGN
	5  CASE STUDY
	5.1  Optimal uncertain SDOF system with a TMD
	5.2  Optimal design of the TMD installed in the 10-story building
	5.3  Time history validation for the optimal results with the selected ground motions
	5.3.1  Validation of mitigation effect of the designed TMD with deterministic parameters
	5.3.2  Seismic performance validation of the designed TMD with uncertain parameters

	5.4  Time history validation for the optimal results with the selected ground motion set

	6  CONCLUSIONS
	ACKNOWLEDGMENTS
	  AUTHOR CONTRIBUTIONS
	  NOMENCLATURE
	REFERENCES
	  Kriging interpolation technique



