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A B S T R A C T   

In the field of bridge health monitoring, it is ubiquitous to model the relationship for monitoring data. However, 
in many cases, especially for concrete bridge structures, field response data collected from sensors, such as strains 
and deflections, presents hysteresis phenomena due to the cyclic temperature variation. Such phenomena refer to 
the time-lag effect of the structure and impede the following correlation analysis because it will weaken the 
linearity among strains. In conventional methods, correlation analysis will be conducted after eliminating time- 
lag effect by using averaging method or simple phase shifting. In this paper, correlations between temperature- 
induced strain responses are investigated after the time-lag effect is accurately quantified by nonlinear phase 
shifting. In order to capture the features of nonlinear phase variation between responses, a novel approach, 
namely functional data analysis (FDA), is then proposed. Phase component is extracted through warping func-
tions in square-root slope framework (SRSF) under Bayesian inference, in which the warping functions reveal the 
time delay effect between quasi-static strain data. The deformation pattern of warping function is further studied 
through functional principal component analysis (FPCA) in tangent space. After the phase difference is elimi-
nated by the warping function, inter-relationship between strain data exhibits highly strong linearity instead of 
original hysteresis loop. To seek the underlying features of time-lag effect, hundreds of pairs of daily field 
measurements acquired from different locations on a long-span bridge have been analyzed to disclose statistical 
regularities. It is found that after the application of warping function, the time-lag effect has been remarkably 
eliminated and strong linearity of the responses emerges.   

1. Introduction 

With a rapid technological progress in structural health monitoring 
(SHM), increasingly more bridges have been implemented with SHM 
systems to gain practical understanding of bridge operation conditions 
[1–4]. Thermal actions, which act as a continuous and quasi-static 
external loading, lead to periodic variation of strain measurements on 
bridges. It is widely recognized that thermal actions play a crucial role in 
life cycle operation of bridges [5–8]. Once the correlations between 
quasi-static strain measurements being correctly modeled, bridge man-
agers will have a better understanding of the physical significance of the 
strain measurements, state assessment of the bridge and other more 
practical knowledge. A few studies have revealed the unsynchronized i. 
e., nonlinear variation between different strain sensor data on the bridge 
under thermal actions [5,6,9], which poses a challenge to properly 

model the relationships. With the aim of parsimoniously characterizing 
the relationships between strain measurements induced by ambient 
temperature, the methods or techniques to well model the relationships 
is imperative. 

Correlations between temperature-induced strain responses are very 
informative and have encouraged many pioneering researchers to 
devote themselves to investigating its variation mode. Catbas et al. [8] 
utilized linear regression model as well as a sinusoidal component to 
model the temperature-induced strain data via large amounts of moni-
toring data. Chen et al. [11] established a univariate linear regression for 
temperature and temperature-induced strain for the purpose of separa-
tion from vehicle-induced strain. Wang et al. [10] modeled the tem-
perature and temperature-induced strain by using multivariate linear 
regression after extracting principal components of the temperature 
distribution. Ding et al. [5] conducted correlation analysis on strain and 
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uniform temperature at night with the aim of damage detection and 
localization. Duan et al. [13] also pointed out the well-performed linear 
model for temperature and strain under thermal effects. Li et al. [14] 
mentioned the evident linear relationships between average tempera-
ture and strain measurements at the sampling frequency of 62.5 Hz. 

Aforementioned researches didn’t take time-lag effect into account , 
although it is a common case in a concrete bridge. Some researches 
attenuated the time-lag impacts by averaging temperature distribution 
over the bridge or adopting dimension reduction technique. Further-
more, generalization ability of the linear models presented above actu-
ally varies, and basically, linearity is moderate rather than sharp. Yang 
et al. [6] studied the time-lag effect between ambient temperature and 
temperature-induced strain and then enhanced the linearity via phase 
shifting by Fourier series expansion. Yang et al. [15] mitigated the time- 
lag effect for quasi-static deflection measurements by utilizing the cross- 
correlation technique, followed by a linear phase shifting process and 
correlation analysis. Guo et al. [16] found that a phase shifting of 45 min 
will amplify the correlation between displacement data and ambient air 
temperature. Brownjohn et al. [17] conceptualized the time-lag phe-
nomena as thermal inertia effect, which provided a theoretical expla-
nation rather than only experimental observation. Actually, heat 
transfer in concrete is very complicated due to its heterogeneity and 
forms a non-uniform temperature field in the structure. As the temper-
ature field can be deemed as ambient quasi-static load on the structure, 
the stress distribution caused by the temperature distribution is often 
nonlinear which is represented by the time-lag phenomenon. All of these 
studies have considered the time-lag effect caused by temperature 
before conducting correlation analysis, and the general method is to use 
linear phase shifting, which will improve linearity undoubtedly. How-
ever, the direct phase shifting wouldn’t properly characterize the 
essence of time-lag effect, therefore improvements in linearity are still 
needed. In addition, most researchers were inclined to concentrate on 
the relationships between input and output responses, i.e., ambient air 
temperature and strain data or deflection data. However, inter- 
relationships between sensor data were seldom analyzed although 
they also provide valuable information for condition assessment, sensor 
fault diagnostics and other more practical knowledge. 

Monitoring data, at its core, is a real-valued and continuous function 
or curve on a certain observation interval. Thus, statistical analysis on 
such issues can be addressed by functional data analysis (FDA) in prin-
ciple [18,19]. FDA has been widely applied in signal processing, image 
processing, neuroscience and geometry, which has a promising prospect 
to be a data-driven method in SHM. Chen et al. [9] investigated the 
correlations between strain measurements using the tool of phase- 
amplitude separation by FDA with the aim of data loss recovery. How-
ever, linearity was yet conspicuous after phase shifting, and statistical 
properties haven’t been explored further although time-lag effect has 
been mitigated explicitly. Chen et al. analyzed the correlation for 
probability distributions of strain data utilizing the functional principal 
component (FPCA), which is the most powerful and useful tool in 
functional data analysis [12]. 

The main objective of this paper is to model the relationships be-
tween temperature-induced strains via eliminating the time-lag effect. A 
well-performed model will be proposed to successfully eliminate time- 
lag effect caused by ambient air temperature, and is represented by 
warping functions in SRSF space. Statistical properties of warping 
functions will be further discussed by using FPCA tool in tangent space. 
Each component represents how temperature-induced strains correlate 
in one direction. By utilizing first several principal components, corre-
lation model of strain monitoring data will be finally established in 
original space. 

2. Inter-relationship modeling of field strains with functional 
data analysis 

As mentioned above, time-lag effect is actually the result of the non- 

synchronized variation of heat transfer in concrete because of the het-
erogeneity of the material. Temperature at different part of the bridge 
will not vary in a synchronous manner every day, hence there is a 
nonlinear time-lag phenomenon or phase difference between different 
locations, and so does the strain induced by such non-uniform temper-
ature field. How to quantify and eliminate the time-lag effect is the core 
of the research and will be studied in this paper. 

In this paper, strain monitoring data of a structure will be treated as 
functional data and later analysis will be made based on FDA. In order to 
eliminate the time-lag effect caused by temperature, function registra-
tion or alignment is adopted. The essence of function alignment is to 
separate amplitude variation from phase variation, i.e., align peak fea-
tures and valley features of the function observations.[20]. Quantities of 
research have further improved the theory, especially of automatically 
aligning target function curves based on shape analysis [20–23]. How-
ever, most of these researches didn’t apply Bayesian approach. 
Bayesian-based function registration provides a more robust and accu-
rate solution to this problem, for the reason that it explores more in-
formation from warping function and incorporates prior knowledge into 
the model [24,25]. Hence, a model to eliminate time-lag effect based on 
the Bayesian registration is proposed and detailed explanation is also 
presented. 

2.1. Mathematical representation of monitoring data 

Daily strain measurement pairs, which obtained from different lo-
cations on the bridge, are used to conduct FDA. In this paper, wavelet 
filtering is first adopted to extract temperature-induced stain, and daily 
temperature-induced strain pair is denoted as f1 and f2. These strains, f1 
and f2, are defined on the domain of time points determined by sampling 
frequencies of sensors. However, in order to meet the corresponding 
arrangement of FDA, we normalize the time period from [0 h, 24 h] to 
[0, 1] with no loss of generality. To obtain non-linear phase variation, 
also known as time lag between f1 and f2, warping function is to be 
estimated, which maps from the interval [0,1] to itself, although with 
different values taken: γ : [0, 1]→[0, 1]. Warping function is the core of 
aligning f2 and f1, via composition operation: f2◦γ , where the notation ◦

represents composition operation. Through the composition operation 
with γ, f2 takes values from itself in a nonlinear increment which in-
dicates nonlinear phase shifting of f2. Consequently, time-lag effect has 
been eliminated by utilizing warping function, and f1 holds and f2 is 
converted to f2◦γ. 

In this paper, we denote F to be the set of all functional data ob-
servations like f1 and f2: F = {f : [0, 1]→R}, where Rrepresents real 
numbers. Likewise, let Γ be the set of all warping functions γ: Γ = {γ : [0,
1]→[0,1]|γ(0) = 0,γ(1) = 1}. In topology, Γ is termed Lie group and is an 
orientation-preserved diffeomorphism with identity mapping element 
γid(t) = t, which suggests no time lag exists. To estimate γ,inf

γ∈Γ
‖f1, f2◦γ‖ is 

often considered as the cost function term. However, there exists a se-
vere problem of asymmetry of the alignment, i.e., 

inf
γ1 ,γ2∈Γ

‖f1
◦γ1, f2

◦γ2‖ ∕= inf
γ1

‖f1
◦γ1, f2‖ ∕= inf

γ2

‖f1, f2
◦γ2‖

where ‖⋅‖ stands for L2 norm. Physically speaking, γ provides asym-
metric solution to f2 aligning to f1 and f1 aligning to f2, which is unac-
ceptable. This problem was managed to be addressed since square-root 
slope function (SRSF) framework was introduced [20,21]. 

2.2. Functional space transformation 

With the advent of SRSF framework, monitoring functional obser-
vations f1 and f2 can be transformed to the corresponding SRSF repre-
sentations, followed by: 
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q(f ) : [0, 1]→R, q(t) = sign(ḟ (t))
⃒̅̅̅̅̅̅̅̅̅̅̅
⃒
⃒ḟ (t)

⃒
⃒
⃒

√

(1) 

Similarly, SRSF of f ◦γ is denoted as 

(q, γ) = q(f ◦γ) = q(f )(γ(t))
̅̅̅̅̅̅̅̅̅̅
|γ̇(t)|

√
(2) 

Actually, the mapping process implies an important property of 
isometry, followed by: 

‖q1 − q2‖ = ‖(q1, γ) − (q2, γ) ‖ (3)  

in which q1, q2are the corresponding SRSF of f1 and f2. With SRSF 
framework, warping function γ now provides a symmetric solution to 
aligning q2 with q1 and aligning q1 with q2. As long as γ is found to 
eliminate the time lag between q1 and q2, it is also the same function that 
eliminates the time lag between f1 and f2 in original space, also, both for 
aligning f1 with f2 and aligning f2 with f1. Set of functions q is termed 
quotient spaceL2/Γ. Hence, we now can align q1 with q2 and vice versa 
in quotient space, followed by an inverse mapping of Eq. (1), which 
would be a precise definite integral, to original space F , rather than 
seek an ill-conditioned warping function γ in F directly. 

In order to exploit more information about warping function γ(Γ is a 
nonlinear manifold, thus working on this space becomes difficult), and 
to incorporate Bayesian inference into the model, warping function γ is 
required to be projected onto another space, which should be a linear 
space. We denote ψ = q(γ) =

̅̅̅
γ̇

√
, and it can be easily verified that ψ is 

actually the SRSF of γ, and the mapping process is also invertible. One 
principal property of ψ is it has L2 norm which means: 

‖ψ‖2
=

∫ 1

0
ψ(t)2dt =

∫ 1

0
γ̇(t)2dt = γ(1) − γ(0) = 1 (4) 

Actually, the resulting space S∞ (ψ ∈ S∞) is termed unit sphere in 
the Hilbert space L2. The corresponding distance defined on this space is 
arc-length, and the mapping process also has the property of isometry. 
However, S∞ is yet to be linear (only in linear space can FPCA and 
Bayesian inference be conducted), and the last transformation is needed 
to be applied. 

Tangent space is what satisfies all our requirements and can be 
mapped back to S∞ and then to Γ.Tangent space is defined on a specified 
point residing on S∞, one common choice is 1 ∈ S∞, which is adopted in 
this paper. This very tangent space is denoted as follows: 

T1(S∞) =

{

g : [0, 1]→R|

∫ 1

0
g(t)dt = 0

}

(5) 

The following equations, which is termed exponential map and in-
verse exponential map, express the mapping process: 

T1(S∞)→S∞: exp1(g) = cos(‖g‖)+
sin(‖g‖)
‖g‖

g, (6)  

S∞→T1(S∞) : exp− 1
1 (ψ) = θ

sin(θ)
(ψ − cos(θ)), (7)  

θ = arccos(〈1,ψ〉), g ∈ T1(S∞). (8) 

Warping function in S∞ is transformed to tangent space T1(S∞)

based on Eq. (7), and can be mapped back via Eq. (6). In the above 
equations, gis the representation of warping function γ in tangent space, 
and θ is the vectorial angle between 1 and ψ. Till now, all later data 
analysis could be performed on the tangent space, which is a linear space 
with property of isometry and invertibility. Bayesian model will be 
established and FPCA will be performed in the rest of this section. 

2.3. Warping function estimated under Bayesian inference 

Bayesian model is based on the difference of q(f1)(t) − q(f2◦γ)(t) in 
the quotient space, which is actually a standard multivariate normal 

distribution. After being transformed into tangent space, the following 
reparametrized expression is obtained: 

q(f2
◦γ)(t) = q(f2)

(∫ t

0
exp2

1(g)(s)ds
)

exp1(g)(t) (9)  

where exp1 is the exponential map and has been defined in Eq. (6). 
Finally, the Bayesian model for warping function is established as 

follows: 

q(f1)(t) − q(f2)

(∫ t

0
exp2

1(g)(s)ds
)

exp1(g)(t)|g,σ2
1Ñ(0, σ2

1I) (10)  

gGP̃(0,Cg, I), σ2
1ĨG(a, b) (11) 

In Eq. (11), GP represents Gaussian process with determined 
covariance function Cg. IG (a, b) represents inverse gamma distribution 
with determined constants a and b, σ2

1I represents the covariance matrix 
of the normal distribution, where Iis the identity matrix. More details are 
referred to Lu Y et al. [24] where how to update prior distribution of 

(
g,

σ2
1
)

is fully explained. Since we have the Bayesian model, represented in 
Eq. (11), function g can be updated after each iteration using Metropolis- 
Hastings algorithm. Furthermore, warping function γ has the direct 
connection with g via exponential mapping and its inverse, hence γ is 
also updated after each iteration along with g to find a best solution to 
eliminate the time-lag effect. 

2.4. Functional principal component analysis 

So far, warping function γ has been determined via aforementioned 
SRSF model under Bayesian inference. Hence the way to eliminate time- 
lag effect has been utterly defined by γ. However, correlation model for 
strain measurements is implicitly expressed by warping function, thus 
an explicit and parsimonious correlation is imperative. To this aim, we 
perform functional principal component analysis (FPCA) on warping 
function γ in order to have a better understanding of how warping 
functions eliminate the time-lag effect and enhance the linearity of field 
monitoring strain measurements. Each principal component (PC) stands 
for an optimal direction to correlate two strain measurements, same as 
conventional principal component analysis (PCA), and at its core is a 
dimension reduction technique (infinite dimension to finite dimension). 
Therefore, by analyzing a long-term monitoring data, and extracting 
some main PCs of γ can adequately represent its variation mode. Since 
Γis a nonlinear manifold where FPCA can not be performed, FPCA will 
be performed on the tangent space (tangent space is a linear space). 

Let Xi(t) be a sample of X(t) restricted on the tangent space S∞, 
1⩽i⩽n. As mentioned in part 2.2, X(t) is exactly a set of warping func-
tions γ projected onto the tangent space. Thus, without detailed verifi-
cation (which is beyond the topic of this research), X(t) can be 
decomposed and represented by finite combination of principal com-
ponents: 

X(t) ≈ Xm(t) = μ(t)+
∑m

k=1
ξkφk(t) (12)  

where μ(t) = E(X(t)), and ξk is the principal component defined by the k- 
th eigenfunction φk: 

ξk =

∫

(X(t) − μ(t) )φk(t)dt (13) 

φ1,φ2, ... stand for orthonormal eigenfunctions. φk indicates the 
dominant variation mode of φ1,φ2, ...,φk− 1: 

φk = argmax
‖φ‖ = 1,〈φ,φj〉=0,j=1,2,...,k− 1

{

Var
(∫

X(t) − μ(t)
)

φ(t)dt
}

(14)  

where ‖φ‖ =
( ∫

φ(t)2dt
)1/2 

and 
〈
φ,φj

〉
=

∫
φ(t)φj(t)dt,
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for j = 1,2, ..., k - 1 . 
Hitherto, main and finite functional principal components have been 

estimated, the model for warping function γ can be reconstructed and 
represented by the combination of these PCs. Once the model for γ being 
established and generalized, the correlation among strain measurements 
has been finally determined. The aforementioned algorithm process is 
described in Fig. 1. 

3. Real application and analysis 

In this section, a dataset obtained from a real bridge located in China 
is used to validate the proposed FDA analysis. The method to eliminate 
the time-lag effect is verified and the warping function which contains 

the information of time-lag is modeled via FPCA. Finally, the correlation 
model defined by warping function is built and presented. 

3.1. Data description 

The monitoring strain data is acquired from a real asymmetric cable- 
stayed bridge in China (Fig. 2(a)). Although a sound SHM system has 
been implemented on this bridge to continuously and closely monitor 
the operation condition of the bridge, only monitoring strain data is 
considered in this paper. Therefore, other sensors installed on the bridge 
will be ignored in the diagram (Fig. 2(b)) of sensor deployment. Two 
sensors located on the sections B and E respectively are of interest and 
analyzed as an example. In each section, only one sensor is needed to 

(a) Photo of target bridge 

(b) Diagram of deployment of strain sensor studied in this paper. 

Fig. 2. Illustration of target bridge and sensor deployment.  

Fig. 1. Diagram of the algorithm implementation.  
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model the correlation model in the later analysis, and is depicted in 
Fig. 3. Sensors that are selected to demonstrate the algorithm are 
denoted as Sensor I and Sensor II. 

3.2. Extracting temperature-induced strain 

As mentioned above, the goal of this research is to properly model 
the correlation between strain measurements under thermal effects, thus 
original data should be processed in order to extract the temperature- 
induced strain, i.e., quasi-static strain measurements. In order to 
perform FDA, time domain in x-axis should be restricted to [0, 1] 
without loss of generality (see Section 2.1). The sampling frequency of 
Sensor I and II are 1/60 Hz which is quite low, thus some of other dy-
namic load effects have been eliminated, e.g. traffic load and wind load. 
It is generally accepted that the stationary or smooth parts represent the 
strain induced by temperature and the non-stationary parts represent 
the strain induced by vehicles or wind. However, noise (referred to other 
variation loads) still exists, shown in Fig. 4(a), a method to separate pure 
temperature-induced strain is also required. Many techniques are able to 
effectively meet this requirement, like wavelet transformation, low-pass 
filter and empirical mode decomposition (EMD). In this paper, wavelet 
decomposition is adopted to extract temperature-induced strain [26] as 
shown in Fig. 4(b). It should also be noted that there exits apparent time- 
lag in time domain between Strain I and Strain II, in another word, peak 
and valley of the curves for Strain I and II are not aligned. 

Fig. 4. Extraction of temperature-induced strain: (a) original strain measurements; (b) temperature-induced strain.  

Fig. 3. Deployment of strain sensors on section B and Section E.  

Fig. 5. Correlation plot of Strain I vs. Strain II and estimated linear model.  
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3.3. Correlation analysis for quasi-static strain using time warping 

As previously mentioned, cyclic temperature variation is the main 
reason that causes the time-lag effect. An archetypal example of corre-
lation plot of Strain I and II is presented in Fig. 5, the scatter plot forms a 
hysteresis loop in a single day, which further indicates the time-lag effect 
in the correlation domain. A statistical measure to interpret the strength 
of the correlations between sensor measurements is also adopted, named 
R-squared. The correlation between these measurements should have 
strong linearity in theory if thermal effects are eliminated properly. R- 
squared of the estimated linear regression model in Fig. 5 is 0.882, 
although it is a high linear relationship, a stronger linearity is still 
masked by the time-lag effect. 

In order to eliminate time-lag effect such that a stronger linear cor-
relation will emerge, warping function plays a crucial role. In FDA 
analysis, Strain I and II are deemed as functional sample observations, 
and are transformed into the quotient space in order to estimate the 

warping function. According to the theory described in sections 2.2 and 
2.3, warping function is estimated via SRSF framework under Bayesian 
inference. The corresponding result is demonstrated in Fig. 5. The solid 
red line in Fig. 6(a) represents the estimated warping function, which 
also implies the quantification of nonlinear phase variation between 
Strain I and II. The dashed black line represents non-phase variation 
between two curves, i.e., unnecessary to align two curves. After per-
forming composition operation of Strain II◦γ, Strain I and II are opti-
mally aligned in Fig. 6(b). Original and warped Strain II are plotted in 
dashed black line and solid blue line respectively, and the manifest 
phase difference emerges in the time domain which also known as time- 
lag effect. 

Hence the warping function has been estimated, time-lag effect is 
consequently eliminated, and the linearity between Strain I and II be-
comes much stronger than before, seen in Fig. 7. R-squared is up to 
0.997, which is a huge breakthrough compared with 0.882. The essen-
tial relationship between strain sensors has been revealed, and the 
correlation between them will inevitably become the key component for 
further analysis and condition assessment of the bridge. 

More daily archetypal examples to verify the method proposed are 
presented in Fig. 8, and one of the biggest features could be noticed from 
the diagram above is that all correlation scatter plots are transformed 
from hysteresis elliptical loop to almost a line. Moreover, statistical 
measure R-squared, which determines how well the linear regression 
model performs, all approaches 1. In this sense, warping function 
effectively reveal the relationship between monitoring strain measure-
ments. However, in order to seek the pattern how the warping function 
changes, warping function is modeled via FPCA in the rest of the section 
for this very purpose. 

3.4. Feature extraction using functional principal component analysis 

With the aim of obtaining deformation pattern of the warping 
function, FPCA technique is used to extract features of warping function, 
and 131 daily strain measurement pairs are fed into FPCA algorithm. 
Warping functions estimated from these strain measurements are 
demonstrated in Fig. 9(a) and (c), and because warping functions can 
only be performed by FPCA in linear space, and tangent space is the 
optimal choice to represent these warping functions shown in Fig. 9(b) 
and (d). 

So far, warping functions can be performed by FPCA algorithm to 
extract deformation mode, and first 9 functional principal components 
are presented in Fig. 10. Therefore, according to the theory discussed in 
Section 2.4, warping functions can be decomposed and reconstructed by 

Fig. 6. Elimination of time-lag effect using warping function: (a) warping function; (b) time-lag effect elimination process.  

Fig. 7. Correlation plot of Strain I vs. warped Strain II and estimated 
linear model. 
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finite combination of the principal components. Although the physical 
essence of each component is hardly interpretable (intrinsic drawback) 
in functional data analysis, these components provide an informative 
tool to effectively model the deformation mode of warping functions. 

In order to capture most of the variation mode of warping function, 
first 16 principal components are used to represent them. Furthermore, 
the quantification of variation captured by each component is measured 
by proportion of variance explained: πj = λj/

∑∞
j=1λj, j = 1,2, ...,16, λj 

is the eigenfunction of the warping functions, which has almost the same 
meaning with conventional PCA method. As can be seen in Fig. 11 and 
Table 1, first 16 PCs have explained 95.3% variation of the warping 
function, which interprets most of information contained in them. Thus, 
any warping function can be represented and reconstructed by these 16 
components properly. Otherwise, those can’t be properly fitted by 
principal components implies bridge operation condition has changed or 
sensor has failed or any other problem, which should be analyzed 
further. In another word, thermal effect, as well as time-lag effect can be 

practically modeled and eliminated properly the with the technique 
proposed. 

In order to validate the generalization of warping function recon-
structed by principal components, some test experiments are conducted 
shown in Fig. 12. The first column represents the true warping function 
in tangent space and the corresponding estimated one. There does exist 
some difference in tangent space, however, most features have been 
captured, i.e., peaks and valleys of the curve. When projected to original 
parameter space via exponential mapping, ground true warping func-
tions and estimated ones show well consistency. Finally, the estimated 
correlation line (time-lag effect has been eliminated) also superimposes 
on the ground true one. That is to say, any given a pair of temperature- 
induced strain measurements, correlation model is based on the warping 
function. And if the warping function can be properly fitted by finite 
combination of the functional principal components, this pair of quasi- 
static strain measurement is linearly correlated principally under ther-
mal effects. Hence, temperature-induced strain can be accurately and 

Fig. 8. More archetypal examples of correlation plot before and after warping.  
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Fig. 9. Warping functions for 131 daily strain measurements and corresponding representation in tangent space: (a) warping functions for one daily strain mea-
surements; (b) warping functions projected onto tangent space for one daily strain measurements; (c) warping functions for 131 daily strain measurements; (d) 
warping functions projected onto tangent space for 131 daily strain measurements. 
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elegantly eliminated, and further analysis such as correlations for traffic- 
induced strain and early warning for the bridge can be performed. 

4. Discussion 

Properly and parsimoniously modeling the relationship for strain 
measurement is imperative, especially when there are no decent ways to 
estimate the time-lag effect which weakens the linearity among strains 
and disturbs the structural analysis. It is the foundation for many other 
studies in SHM and should be paid adequate attention. In this paper, 
correlation for temperature-induced strain is modeled based on SRSF 
framework under Bayesian inference via functional data analysis. Time- 
lag effect is estimated by warping function and the deformation pattern 
of time-lag effect has also been discussed by utilizing the tool of FPCA. 
Conclusions can be summarized as follows:  

1. First, field strain measurements can be regarded as functional data 
observations and FDA can be performed. The main goal is to seek the 
warping function, which represents the time-lag effect, so that the 
phase variation between a pair of temperature-induced strains can be 
eliminated. SRSF framework under Bayesian inference are then 
introduced, and corresponding warping function is searched in 
tangent space. After the warping function being optimally searched, 
time-lag between temperature-induced strain disappears, and a 
strong linearity correlation emerges.  

2. In order to understand the deformation pattern of the warping 
function, FPCA is performed in tangent space. Hundreds of pairs of 
daily strain measurements are used to conduct this dimension 
reduction technique, and finally the variation mode of warping 
function can be represented and reconstructed by first several PCs, 
which explain over 95% of variance. In this way, any warping 
function between a pair of strain measurements can be fitted by these 
PCs. If the estimated fitting curve superimposes the ground true 
correlation plot (time-lag effect has been eliminated) or warping 
function curve, it implies this pair of strain measurements is only 

Fig. 10. Visualization for first 9 principal components of warping functions.  

Fig. 11. Cumulative fraction of variance explained by principal components.  

Table 1 
Variation explained by each principal component.  

PC Fraction 
(%) 

PC Fraction 
(%) 

PC Fraction 
(%) 

PC Fraction 
(%) 

1 13.8 5 7.6 9 4.7 13 2.8 
2 12.9 6 6.9 10 3.6 14 2.6 
3 10.3 7 5.5 11 3.5 15 2.3 
4 8.3 8 5.2 12 3.3 16 2.1  
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affected by the thermal effects, so that thermal effect and time-lag 
effect can be accurately and elegantly modeled, eliminated and 
further analysis can be carried out. 
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