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Abstract: The geotechnical materials formed by natural deposition usually have transverse isotropic properties, and the transverse
isotropic properties not only have a direct influence on the deformation of geotechnical materials but also have a nonnegligible influence
on their strength characteristics. In order to reasonably consider the influence of transversal isotropic properties on strength properties, the
soil’s failure properties of complete isotropic and transversal isotropic soils were compared. At the same time, a hypothesis was adopted,
that is, at the failure moment, the ratios of principal stresses corresponding to completely isotropic soil and transverse anisotropic soil had
linear relationships to each other, and the ratio coefficient β was assumed to be a transverse isotropic parameter. The proposed parameter
β was utilized to reflect the influence law of the original anisotropy on the shape of the failure curve on the deviatoric plane. The pro-
posed parameters were employed to reflect the influence law of the original anisotropy on the shape of the failure curve on the deviatoric
plane. For the relationship between the isotropic criterion and the transversal isotropic criterion, a kind of β transformation method is
proposed, which can realize the transformation of isotropic stress space and transversal isotropic stress space. Based on the isotropic
generalized nonlinear strength criterion (GNSC), the method of determining the transverse isotropic parameter β is given by making use
of the condition that the shape parameters �α and α of GNSC in the isotropic stress space and the transverse isotropic stress space,
respectively, are exactly the same. By comparing the strength test data under different Lode angles with the predicted results of the
generalized nonlinear criterion of transverse anisotropy, the results showed that the proposed anisotropy criterion can simply and
accurately reflect the failure law of the geotechnical materials under the true triaxial loading condition. DOI: 10.1061/(ASCE)GM.1943-
5622.0002084. © 2021 American Society of Civil Engineers.
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Introduction

There are various kinds of engineering materials widely distribu-
ted in natural sites, all of which have different degrees of anisot-
ropy, for example, wood, bamboo, rock, clay, sand, and so on.
The profile of these materials will form regular textures, joints,
or cracks due to the orientation of the internal components.
These macroscopic directional joints usually have a significant in-
fluence on the loading results in space. In general, high shear
strength will be formed when major principal stress is vertically
applied to the joint surface, while low shear strength will be
formed when major principal stress is parallel to the joint surface.
Different from other cohesive materials, geotechnical materials
are typical granular materials, which not only have obvious natu-
ral anisotropy properties but also have obvious stress-induced an-
isotropy. In other words, for isotropic soils, different generalized
deviatoric stress strengths will be generated due to different

intermediate principal stress coefficients. Casagrande and Carillo
(1944) distinguished the original anisotropy and secondary an-
isotropy, defining the original anisotropy as “the intrinsic physi-
cal property of the material, and completely independent of the
additional strain” and the secondary anisotropy as “the physical
properties only related to the strain caused by additional stresses.”
For geomaterials, due to the deposition of gravity, the long axis of
soil particles is usually parallel to the horizontal sedimentary sur-
face at the mesoscopic level, while the direction of the short axis
is perpendicular to the sedimentary surface. Moreover, due to the
random distribution of the long axis of particles in the horizontal
sedimentary plane, the characteristics of the soil material are
transversely isotropic at the macro level. A large number of test
results show that the shear strength of the loading direction paral-
lel to the deposition plane is significantly smaller than that perpen-
dicular to the deposition plane. However, the existing commonly
employed strength criteria fail to take into account the effect of
the original anisotropy on the strength reasonably. If the isotropic
strength criteria are used in engineering design, the strength design
value will be overestimated, which will cause great hidden trouble.
To solve this problem, the effect of the original anisotropy property
on shear strength needs to be taken into account, and it is a common
practice to suggest a strength criterion taking into account the effect
of original anisotropy. For the strength characteristics of trans-
versely isotropic materials, the research on this aspect has been a
focus and a difficult field till today. Generally, there are several
methods for studying transverse isotropy of geomaterials at present,
namely, (1) joint stress invariants method (Dafalias et al. 2004;
Dafalias and Taiebat 2014; Dafalias 2016; Li and Dafalias 2002),
(2) fabric tensor method (Kong et al. 2013; Oda 1972, 1981; Oda
and Nakayama 1989; Oda et al. 1978, 1998; Ochiai and Lade 1983;
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Lü et al. 2016); (3) classical strength criterion revising method (Pie-
truszczak et al. 1993; Lade and Musante 1978; Lade 2008; Lade
et al. 2014; Matsuoka et al. 1980, 1999; Nakai and Matsuoka
1983; Nakai and Mihara 1984; Chowdhury and Nakai 1998; Mor-
tara 2010; Liu and Indraratna 2011), (4) a modified method of the
strength criterion based on large principal stress (Gao et al. 2010;
Gao and Zhao 2012; Yang et al. 2016; Mirghasemi and Naeij
2015), and (5) a criterion revising method based on the physical sig-
nificance of the failure surface (Yao et al. 2004; Yao and Zhou
2013; Tian and Yao 2018; Lu et al. 2017, 2019). Although these
methods can be employed to consider some influence of original an-
isotropy on the strength criterion to a certain degree, they still have
advantages and disadvantages. Dafalias et al. adopted the method
of joint stress invariants, in which the transverse isotropic properties
of soil materials were characterized by mesoscopic fabric tensors
and the stress tensors and fabric tensors were formed into new
joint stress invariants through some operation, so the constitutive
model and strength criterion were established by using the joint
stress invariants. Although the aforementioned method considers
the effect of transverse isotropy on the stress–strain relationship to
some extent, its essence is still a modification of the traditional
stress. Moreover, this correction method still lacks theoretical
basis and mechanism explanation. The construction method of
structural stress joint invariants is still determined subjectively,
and the correctness of the construction method is yet to be proved.
The fabric tensor law is represented by Oda. Starting from the mi-
croscopic particles, some empirical formulas are obtained by ana-
lyzing the interactions between the particles and statistical means.
The method tries to obtain a method to describe the macroscopic an-
isotropy through the interaction of mesoscopic particles. This
method relies heavily on advanced test methods to determine the
soil parameters that cannot be inferred empirically, so there are
many objective limitations for its application. The classical strength
criterion modification method is to introduce parameters reflecting
anisotropy to modify common criteria in the past to obtain a uniform
criterion reflecting anisotropy. However, the aforementioned in-
troduction of anisotropy parameters is only used to determine
the strength test results under a certain path and usually only has
the description applicability of failure properties under some spe-
cific paths. For the failure conditions under various stress paths,
the universality cannot be achieved. It is a common practice, al-
though simple and direct, to use the angle between large principal
stress and the deposited surface. However, in fact, under the plane
strain condition, the strength value does not have a monotonic re-
lationship with the aforementioned included angle but will form a
“V”-shaped curve. Therefore, by taking the angle between the
large principal stress and the composition of the sedimentary
plane as the reference variable, the strength value is not unique.
Based on the failure surface with physical meaning, the mecha-
nism of material failure can be explained from the physical con-
cept, which is helpful to understand the process of material
failure and its formation reasons. However, some of the physical
concepts proposed are strongly subjective conjectures, which re-
lies heavily on the intuitive ability of the proposer, and therefore,
the aforementioned way to propose concepts lacks rigorous proof.
The generalized nonlinear strength criterion is a kind of strength
criterion that is applicable to describe the wide applicability
from metals to geotechnical materials. The linear interpolation
form of the von Mises criterion and spatial mobilized plane
(SMP) criterion was used in the deviatoric plane to describe all
kinds of destruction curves from circular to curved triangles. In
the meridian plane, the power function was used to describe the
nonlinear failure properties such as the hydrostatic pressure effect
on the meridian plane. However, the GNSC previously described

apply only to completely isotropic materials. It cannot be directly
applied to describe the failure characteristics of natural geotechni-
cal materials. Therefore, it is a natural choice to extend the GNSC
to a criterion that can describe the failure characteristics influenced
by anisotropy. Based on the GNSC, this paper attempted to estab-
lish the transformation process of the aforementioned two spaces
by using the hypothesis that the ratio of the two principal stresses
in the isotropic stress space and that of the transverse isotropic
stress space is a linear relationship. The aforementioned linear pro-
portional coefficient β is used as a new parameter to reflect trans-
verse isotropy. Then, it is assumed that the shape parameter �α of
the GNSC in the isotropic space is equal to the shape parameter
α in the transverse isotropic stress space to determine the new pa-
rameter β. The reflection of the criterion on anisotropy properties is
further explained by a series of analyses on the failure characteris-
tics of geotechnical materials.

Comparison of Transverse Isotropy versus Isotropy

For some fully isotropic properties of materials, for example, engi-
neering materials such as metal, glass, the aforementioned isotropic
material of a unit cell, the mechanical behavior of its different di-
rections is exactly the same and the modulus of elasticity, strength,
and deformation are exactly the same along the x-, y-, z-directions.
What we learn from the aforementioned phenomena is that a fully
isotropic material has the characteristic of having nothing to do
with the loading direction, namely, the loading direction of inde-
pendence. At the same time, there are kinds of transverse isotropic
materials, such as sedimentary rocks, stratified distribution of clay
or sand, wood, and other materials, that are typical transverse iso-
tropic materials. The properties are the same when the loading di-
rection is employed within a plane; meanwhile, the properties have
different characteristics when the loading direction is employed
along the vertical direction of the deposition plane. Elastic modulus
values are of major difference between the texture direction and
those perpendicular to the texture direction. The same is true for
compressive strength. For stratified clay, the modulus and strength
are usually the same in the horizontal direction, while the modulus
and strength are usually higher in the vertical direction perpendic-
ular to the deposition surface. For orthotropic and completely an-
isotropic materials, the deformation of orthotropic materials in
the direction of mutual vertical loading is noncoupled; that is, the
normal stress only causes the normal strain but not the shear strain,
while the shear stress only causes the shear strain but not the normal
strain. While completely anisotropic materials have the characteris-
tics related to the loading direction, deformation in the vertical
loading direction has coupling characteristics, that is, the normal
stress causes both the normal strain and the shear strain, while
the shear stress produces both the shear strain and the normal strain.
They have the coupling property of the loading direction. In this
paper, only transverse isotropy was considered. Transverse isot-
ropy is a special case of three-dimensional orthogonal anisotropy
with identical physical properties in two directions, while complete
isotropy is a special case of three-dimensional orthogonal anisot-
ropy with identical properties in three directions. In order to com-
pare the differences between completely isotropic and transversely
isotropic stresses, the constitutive equation differences of elastic
materials under the influence of the aforementioned two character-
istics are analyzed, and their strength descriptions are used as ana-
logical analysis.

As can be seen from Fig. 1, for pure elastic materials, Fig. 1(a) is
a completely isotropic material, while Fig. 1(b) is a transversely
isotropic material. According to the elastic theory, the elastic
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constitutive relation of completely isotropic elastic materials can be
expressed as follows:

σ11
σ22
σ33
σ12
σ23
σ31

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦
=

c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c44

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

ε11
ε22
ε33
2ε12
2ε23
2ε31

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

(1)

For transversely isotropic elastic materials, the elastic constitu-
tive relation can be expressed as follows:

σ11
σ22
σ33
σ12
σ23
σ31

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦
=

d11 d12 d13 0 0 0
d12 d11 d13 0 0 0
d13 d13 d33 0 0 0
0 0 0 d44 0 0
0 0 0 0 d66 0
0 0 0 0 0 d66

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

ε11
ε22
ε33
2ε12
2ε23
2ε31

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

(2)

Suppose the following relation exists:

d33 = k1d11
d13 = k2d12
d44 = k3d66

⎧⎨
⎩ (3)

Obviously, the relationship between isotropic and transversely
isotropic elastic stiffness matrix can be established, which can be
expressed as follows:

d11 d12 d13 0 0 0

d12 d11 d13 0 0 0

d13 d13 d33 0 0 0

0 0 0 d44 0 0

0 0 0 0 d66 0

0 0 0 0 0 d66

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

d11 d12 d12 0 0 0

d12 d11 d12 0 0 0

d12 d12 d11 0 0 0

0 0 0 d66 0 0

0 0 0 0 d66 0

0 0 0 0 0 d66

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

0 0 (k2 − 1)d12 0 0 0

0 0 (k2 − 1)d12 0 0 0

(k2 − 1)d12 (k2 − 1)d12 (k1 − 1)d11 0 0 0

0 0 0 (k3 − 1)d66 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

Obviously, isotropic elastic modulus can be expressed by trans-
verse isotropic modulus and can be expressed by Eq. (4):

d11 d12 d12 0 0 0

d12 d11 d12 0 0 0

d12 d12 d11 0 0 0

0 0 0 d66 0 0

0 0 0 0 d66 0

0 0 0 0 0 d66

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

d11 d12 d13 0 0 0

d12 d11 d13 0 0 0

d13 d13 d33 0 0 0

0 0 0 d44 0 0

0 0 0 0 d66 0

0 0 0 0 0 d66

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

0 0 (k2 − 1)d12 0 0 0

0 0 (k2 − 1)d12 0 0 0

(k2 − 1)d12 (k2 − 1)d12 (k1 − 1)d11 0 0 0

0 0 0 (k3 − 1)d66 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)

Assuming that the transformed stress space is a completely iso-
tropic stress state, the isotropic stress space can be expressed by the
transformed stress space:

d̃11 d̃12 d̃12 0 0 0

d̃12 d̃11 d̃12 0 0 0

d̃12 d̃12 d̃11 0 0 0

0 0 0 d̃66 0 0

0 0 0 0 d̃66 0

0 0 0 0 0 d̃66

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

d11 d12 d13 0 0 0

d12 d11 d13 0 0 0

d13 d13 d33 0 0 0

0 0 0 d44 0 0

0 0 0 0 d66 0

0 0 0 0 0 d66

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

0 0 (k2 − 1)d12 0 0 0

0 0 (k2 − 1)d12 0 0 0

(k2 − 1)d12 (k2 − 1)d12 (k1 − 1)d11 0 0 0

0 0 0 (k3 − 1)d66 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)

According to Eq. (6), a transformation relation of the elastic
modulus matrix of transverse isotropic stress space to that of tran-
sition stress space is obtained.

Obviously, the transverse isotropic elastic stiffness matrix can
be expressed by the completely isotropic elastic stiffness matrix.
Parameters K1, K2 and K3 can be determined by experiments.
The aforementioned is the relationship between the moduli of trans-
verse isotropy and complete isotropy. According to the aforemen-
tioned ideas, it is obvious that the stress at the moment of failure is
similar to that of transverse isotropic and complete isotropic
materials.

The strength criterion is a set of mathematical expressions to de-
scribe the stress state points at the moment of material failure. For
generally completely isotropic materials, its general analytical ex-
pression can be expressed as follows:

f (σij, ξi) = 0 (7)

where σij = stress tensor; and ξi = failure constant determined by
tests.

According to the completely isotropic material in Fig. 1, the uni-
axial compressive strength of the material unit is equal along the
three directions, that is, fx= fy= fz, while for the transversely isotro-
pic material, the compressive strength of the three directions has the

(a) (b)

Fig. 1. (a) Isotropic material and (b) transverse isotropic material.
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following relationship:

fx = fy ≠ fz (8)

From the aforementioned equation, it can be seen that the com-
pressive strength along the z-direction is different from the strength
along the x- or y-direction. Therefore, the strength ratio of the two
can be set as a constant K, and the relationship between the two can
be determined:

fz = kfx = kfy (9)

If there is a transformed stress space, which belongs to a
completely isotropic stress space, it is obvious that the compres-
sive strength in all directions is exactly the same. Then, it can be
known that in the transformed stress space, f̃ x = f̃ y = f̃ z, in
which the simplest transformation formula of the transverse iso-
tropic stress space to the completely isotropic stress space can be
given:

f̃ x = kfx
f̃ y = kfy

f̃ z = fz

⎧⎪⎨
⎪⎩ (10)

Obviously, the transverse isotropic parameter K can be deter-
mined through two compressive strength experiments on transverse
isotropic materials in the x- and z-directions, and then the trans-
formed stress space can be obtained through the aforementioned
transformation relations. The transformed stress space corresponds
to a completely isotropic stress space. Therefore, the existing rela-
tively mature and classical isotropic strength criterion formulas,
such as the typical Mohr–Coulomb criterion, can be adopted in
the transformed stress space:

f̃ x = c̃ + σ̃ tan φ̃ (11)

Then, the transformation formula that takes the transversely iso-
tropic properties into account is combined with the Mohr–Coulomb
criterion formula in the transformed stress space, and finally the
Mohr–Coulomb strength criterion that takes the transversely isotro-
pic properties into account can be obtained. The idea of this paper is
to find the transformation relation from the transversely isotropic
stress space to the transition stress space and then combine with
the existing GNSC based on the isotropic stress space and finally
obtain the generalized nonlinear strength criterion that can reflect
transversely isotropic properties.

Generalized Nonlinear Strength Criterion

Based on the experimental law of friction materials and previous
research results, the GNSC (Yao et al. 2004) is proposed for differ-
ent secondary anisotropic materials. It uses an expression to uni-
formly describe the nonlinear strength characteristics of the
material on the deviatoric plane and the meridian plane. There
are four material parameters, all of which have definite physical
meaning and can be determined by simple experiments. The failure
function of the GNSC in the deviatoric plane is a linear interpola-
tion of the spatial mobilized plane (SMP) criterion and the von
Mises criterion.
1. The failure curve of the von Mises criterion on the deviatoric

plane is circular. The expression can be written as follows:

q*M =
���������
I21 − 3I2

√
(12)

2. The failure curve of the SMP criterion on the deviatoric plane
can be expressed as follows:

q*s =
2I1

3
������������������������
(I1I2 − I3)/(I1I2 − 9I3)

√
− 1

(13)

3. The expression of the GNSC on the deviatoric plane is as fol-
lows (Yao et al. 2004):

q*α = αq*M+(1 − α)q*S (14)

In the expression, I1= σ1+ σ2+ σ3; I2= σ1σ2+ σ2σ3+ σ3σ1;
I3= σ1σ2σ3; and α = material constant.

α is the material parameter of the GNSC criterion, and different
strength criteria are employed through the change of α. As shown
in Fig. 2, α= 0 represents the SMP criterion, and α= 1 represents
the von Mises criterion. In fact, parameter α represents the shape
factor in the deviatoric plane of the GNSC (Yao et al. 2004).

If used as a yield criterion, it is made of two parts: On the devia-
toric plane, the yield curve is interpolated by the SMP criterion
yield curve and the von Mises criterion yield curve, while the
shape of the GNSC yield curve is a curved triangle between
the aforementioned two criterion curves. On the meridian plane,
the GNSC expression is a power function form, and the open
curve yield surface is adopted to reflect the shear yielding property
of geomaterial.

Based on this, GNSC reflects the failure characteristics of mate-
rials under generalized deviatoric stress. The shape on the devia-
toric plane reflects the weight of cohesion and friction in the final
failure stress state. If cohesion is dominant, it reflects the cohesive
materials represented by metallic materials. On the contrary, if fric-
tion is dominant, it reflects the discrete frictional material repre-
sented by sand material.

On the meridian plane, the expression of the GNSC can be writ-
ten as an open power function:

�q*α =Mf �p (15)

Thereinto, the mean stress in the transition space is expressed as
follows (Yao et al. 2004):

�p = pr
p + σ0
pr

( )n

(16)

where p and σ0 = effective mean stress and true triaxial extension
strength, respectively; and pr is a reference mean stress representing
under this stress value. The uniqueness of the secant slope of the
failure curve on the meridian surface that can be guaranteed by
the ratio expression of Eq. (16), so that the left and right hand

Fig. 2. Strength curve of the GNST in the deviatoric plane.
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sides of Eq. (5) have the same dimension. For granular materials, pr
is usually employed as a standard atmospheric pressure value.

On the deviatoric plane, the generalized deviatoric stress can be
expressed as follows:

�q*α = α
���������
�I
2
1 − 3�I2

√
+

2(1 − α)�I1

3
��������������������������
(�I1�I2 − �I3)/(�I1�I2 − 9�I3)

√
− 1

(17)

Thereinto, the stress tensor in transition space is expressed as
follows (Yao et al. 2004):

�I1 = �σ1 + �σ2 + �σ3
�I2 = �σ1�σ2 + �σ2�σ3 + �σ3�σ1
�I3 = �σ1�σ2�σ3

⎫⎬
⎭ (18)

�σi = σi + pr
p + σ0
pr

( )n

− p

[ ]
(n ∈ [0, 1], i = 1, 2, 3) (19)

The stress space corresponding to stress tensor with a bar is a
transition stress space. The transition stress space and the ordinary
stress space only correspond to the transformation of the mean
stress, and the strength line in the power function curve of the

ordinary stress space in the meridian surface, through the transfor-
mation of the stress, is expressed in the form of the linear form in
the transition stress space. The failure surfaces are shown in Fig. 3.
Fig. 3(a) shows a failure curve in the ordinary stress space, and
Fig. 3(b) shows a failure curve in the transition stress space for
the GNSC (Yao et al. 2004). Obviously, the bending part of the fail-
ure curve in the ordinary stress space is transformed to the straight
line in the transition stress space.

Physical Meaning and Determination Method
of Parameters

1. Meaning and determination of α
On the deviatoric plane, the expression of the yield criterion is

the same as the expression of the strength criterion, so in Eq.
(17), α = weighted value of the triangle between the von Mises cir-
cle and the SMP curve in the deviatoric plane. As shown in Fig. 4,
the variation of α from 1 to 0 represents the yield shape between the
von Mises circle and the SMP curved triangle for the GNSC (Yao
et al. 2004), which describes the failure yield characteristics of a
series of materials, such as metal, concrete, noncohesive soil, and
so on. On the same deviatoric plane, if the ratio between the triaxial
extension deviatoric stress qe and the triaxial compression devia-
toric stress qc is r, which can be used to represents α, there is the
following relationship:

α =
r(3 +M*) − 3

r2M* (20)

If triaxial compression and triaxial extension tests are per-
formed, the internal friction angle under the aforementioned two
paths can be obtained, and Eq. (20) can be expressed by using
the two friction angles as follows:

α =
3(3 + sinφe)(sinφe − sinφc)

2sin2φe(3 − sinφc)
(21)

where sinφe and sinφc = sine values of the internal friction angle of
triaxial extension and triaxial compression, respectively.

When r= 1 and α= 1, the proposed criterion reduces to the von
Mises strength criterion; when r= 3/(3+Mf) and α= 0 the

(a)

(b)

Fig. 3. (a) Yield surface in ordinary stress space; and (b) yield surface
in transitional stress space. Fig. 4. Yield curves on the deviatoric plane.
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proposed criterion reduces to the SMP strength criterion. Therefore,
parameter α can be determined by triaxial compression and triaxial
extension value.
2. Meaning and determination of Mf

In the original GNSC, Mf represents the secant slope of the
strength curve under reference stress pr. When the GNYC is used
as the yield criterion, as shown in Fig. 5, the physical meaning of
Mf remains unchanged.
3. Meaning and determination of n

n is the power parameter of the power function, which indicates
the bending degree of the failure curve on the meridian surface. As
shown in Fig. 5, when n= 0, the failure curve degenerates into a
straight line independent of the hydrostatic pressure and parallel
to the hydrostatic pressure axis. When n= 1, the power function
curve becomes a diagonal line passing through the origin; when
0 < n< 1, the power function curve is an open curve between the
two straight lines aforementioned for the GNSC (Yao et al. 2004).

Combining Eqs. (15) and (16), and the following expression can
be obtained:

ln
�q*α
pr

= n ln
p + σ0
pr

+ lnMf (22)

The results of the triaxial compression test data can be arranged
in the double log coordinate system. Obviously, it can be shown as
a linear-type fitting straight line of which the slope is n, while the
intercept value is ln Mf.
4. Meaning and determination of σ0

σ0 is the left intersection point value of the strength curve and
the hydrostatic pressure axis. The physical meaning of it indicates
that the material can bear the extension load within a certain limit.
This parameter can reflect the cohesion of the material (not cohe-
sive force). The failure curves that are influenced by parameter
σ0 are shown in Fig. 6. The physical meaning of σ0 is the extension
strength for the GNSC (Yao et al. 2004).

Parameter σ0 is the true triaxial extension strength of the mate-
rial, and it is difficult to achieve the general true triaxial extension
strength in real tests. For noncohesive soil, it is 0. For cohesive
materials, such as concrete, according to the research results of
Pietruszczak et al. (2002), we can use the following formula to

obtain the value of σ0:

σ0 = fttt = 0.9ft = 0.09fc (23)

where fttt = true triaxial extension strength; ft = biaxial extension
strength; and fc = uniaxial compression strength.

Anisotropic Transformation Stress Method
for Materials

It is assumed that the soil is orthotropic, that is, isotropic in the sedi-
mentary plane. Only the vertical direction is different from that of
the sedimentary surface, which is anisotropic. Finally, the ortho-
tropic soil is transformed into an equivalent isotropic soil by a lin-
ear transformation. As shown in Fig. 7, the major principal stresses
of the anisotropic soil are �σX , �σY , �σZ respectively, and the corre-
sponding equivalent isotropic soil’s principal stresses are
σX , σY , σZ , respectively. The major principal stress of the equiva-
lent isotropic soil is coaxial with the principal stress of the aniso-
tropic soil. The X–Y plane is parallel to the sedimentary surface,
while the Z-axis is perpendicular to the sedimentary surface. β1
and β2 are the anisotropy parameters corresponding to X- and
Y-directions respectively. It is assumed that the relationship be-
tween anisotropic soil and equivalent isotropic soil is shown as
follows:

σZ
σX

= β1
�σZ
�σX

,
σZ
σY

= β2
�σZ
�σY

(24)

For the original anisotropic soil, the β1= β2= β can be obtained
because of the axisymmetric characteristics in the direction parallel
to the sedimentary surface. In this way, we can express �σX , �σY , �σZ
by using σX, σY, σZ, which is given as follows:

�σX = (�σZ/σZ ) · (βσX )
�σY = (�σZ/σZ ) · (βσY )
�σZ = (�σZ/σZ ) · σZ

⎫⎬
⎭ (25)

It is assumed that p = �p, so

σX + σY + σZ = (�σZ/σZ ) · (βσX + βσY + σZ ) (26)

Fig. 5. Strength curves on the meridian plane.

Fig. 6. Influence of cohesion on failure curves on the meridian plane.

(a) (b)

Fig. 7. Transformed stress method for (a) anisotropic soil; and (b) iso-
tropic soil.
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�σZ
σZ

=
σX + σY + σZ

β(σX + σY ) + σZ
(27)

According to Eq. (27), the three orthogonal direction stresses in
the equivalent isotropic space can be expressed by the three orthog-
onal stresses in the general anisotropic space. According to aniso-
tropic parameter β, the normal stresses of equivalent isotropic soil
�σX , �σY , �σZ can be expressed as follows:

�σX =
σX + σY + σZ

β(σX + σY ) + σZ
· (βσX )

�σY =
σX + σY + σZ

β(σX + σY ) + σZ
· (βσY )

�σZ =
σX + σY + σZ

β(σX + σY ) + σZ
· σZ

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(28)

In the equivalent isotropic stress space, there is also a general-
ized nonlinear strength criterion that reflects the failure characteris-
tics of fully isotropic stress. The GNSC can be expressed as
follows:

�q*α = α
���������
�I
2
1 − 3�I2

√
+

2(1 − α)�I1

3
��������������������������
(�I1�I2 − �I3)/(�I1�I2 − 9�I3)

√
− 1

(29)

This transformation is named as β transformation. Through
Eq. (28), the principal stress mapping relationship between the
transversely isotropic stress space and the fully isotropic stress
space can be established. It can be seen that in the transversely iso-
tropic stress space the failure surface can be completely trans-
formed into the isotropic failure surface by using β
transformation, and the corresponding anisotropic soil can be
treated as equivalent isotropic soil. Through this transformation,
the anisotropy property can be linked with the various isotropic
strength criteria to better simulate the behavior of the soil, and
the determination of parameter β in this transformation is simple.
Only the results of conventional triaxial compression and conven-
tional extension tests are needed.

Parameter Determination Method for Generalized
Nonlinear Strength Criterion Considering Anisotropy

A method for determining the anisotropy parameter β of trans-
versely isotropic soils is introduced in the following. The idea is
displayed as follows. Using the one-to-one mapping relation with
the aforementioned transformation formula between the trans-
versely isotropic failure curve and the completely isotropic failure
curve mentioned in the previous section, β transformation can be
employed for the failure curve in the general stress space, then
the failure curves obtained in the transformed stress space should
be exactly the same as those in the complete isotropic stress
space. The failure curve of isotropic stress space coincides with
that of the transformed stress space; it is obvious that the shape pa-
rameter �α that determines the shape of the curve in the deviatoric
plane should be completely equal to shape parameter α of the fail-
ure curve in the isotropic stress space. Through the aforementioned
principle of shape parameter equation �α = α, the corresponding an-
isotropic parameter β can be solved.

As shown in Fig. 8, point c represents the triaxial compression
test point, point i represents the triaxial extension test point of isot-
ropy, and point a represents the triaxial extension test point of an-
isotropy. From the stress state, it can be seen that the triaxial
compression point c and the triaxial extension point i should be
on the same isotropic strength curve, which is called α line.
While the triaxial compression point c and the triaxial extension

point a are not on the same isotropic strength curve due to the in-
fluence of the original anisotropy, they need to be transformed to
eliminate the influence of original anisotropy, so that the aforemen-
tioned three points a, c and i should be displayed on one isotropic
strength curve. The stress ratios under three-dimensional stress
states are as listed as follows:

Rc =
σc1
σc3

, Rea =
σea1
σea3

, Rei =
σei1
σei3

(30)

The corresponding internal friction angles are φc, φea, φei, and
the representation method in the transformation stress space are
as follows.

sin �φc =
σc1 − βσc3
σc1 + βσc3

=
Rc − β

Rc + β
(31)

sin �φea =
βσea1 − σea3
βσea1 + σea3

=
βRea − 1

βRea + 1
(32)

According to the stress state shown in Fig. 8, the shape param-
eters are obtained according to Eq. (21)

α =
3(3 + sinφei)(sinφei − sinφc)

2sin2φei(3 − sinφc)
(33)

Triaxial compression point c and triaxial extension point a are
affected by original anisotropy. On an anisotropic strength curve,
the anisotropic strength curve is transformed into an equivalent iso-
tropic strength curve by transformation, and shape parameter �α
should be equal to shape parameter α after transformation.

Therefore, the stresses of triaxial compression point c and triax-
ial extension point a are transformed according to the Eq. (28) and
�α can be obtained as follows:

�α =
3(3 + sin �φea)(sin �φea − sin �φc)

2sin2�φea(3 − sin �φc)
(34)

It is assumed that �α = α, and the formula can be simplified by
substituting (31), (32)–(34).

β3 + dβ2 + eβ + f = 0 (35)

It can be obtained as follows:

β = λ −
d

3
(36)

Thereinto,

Fig. 8. Illustration of the strength theory in the real stress space.
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By substituting Eq. (36) into Eq. (35), the following simplified
cubic equation with one variable can be obtained.

λ3 + η1λ + η2 = 0 (37)

η1 = e −
d2

3
, η2 =

2

27
d3 −

de

3
+ f (38)

d =
αRc − (4α/Rea) − (3/Rea)

2α − 6
(39)

e =
(3Rc/Rea) + (α/R2

ea) − (αRc/Rea)

α − 3
(40)

f =
(αRc/R2

ea) + (3Rc/R2
ea)

2α − 6
(41)

According to the range of the ratio of major principal stress to
minor principal stress, the value range of the discriminant can be
obtained as follows:

Δ =
η2
2

( )2
+

η1
3

( )3
< 0 (42)

Moreover, η1 < 0. It can be seen that Eq. (37) has three unequal real
roots.

The three real roots are expressed as follows:

λ1 = 2
��
ρ3

√
cosω (43)

λ2 = 2
��
ρ3

√
cos (ω + 120◦) (44)

λ3 = 2
��
ρ3

√
cos (ω + 240◦) (45)

ρ =

���������
−

η1
3

( )3√
(46)

ω =
1

3
arccos −

η2
2ρ

( )
(47)

Substituting the three roots of λ into Eq. (36), the expression of
the anisotropic parameter β, in turn, can be obtained as follows:

β1 = 2
��
ρ3

√
cosω −

d

3
(48)

β2 = 2
��
ρ3

√
cos (ω + 120◦) −

d

3
(49)

β3 = 2
��
ρ3

√
cos (ω + 240◦) −

d

3
(50)

according to the three roots’ value range to determine the final
reasonable value.

It is obvious that the transformed stress space is equivalent to the
true stress anisotropy space when β is equal to 1, and the strength
criterion curves of the former are exactly the same. Also when
β> 1, the triaxial extension deviatoric stress value of the anisotropic
generalized nonlinear strength criterion (AGNSC) curve in the cor-
responding real stress space is smaller than that of the isotropic
GNSC curve. Generally speaking, for the aforementioned three
root choices, you can make the right solution according to β> 1.

When α= 0, the GNSC isotropic criterion is reduced to the SMP
isotropic criterion. At this point, the new parameter β, which is de-
rived from Eq. (35), can be expressed as follows:

βSMP =

����
Rc

Rea

√
(51)

Eqs. (36)–(51) are the formulas for solving anisotropic parame-
ters based on the GNSC transformation.

In Fig. 8, in consideration of actual test determination, gener-
ally, point c corresponding to the result of the conventional triaxial
extension strength is obtained with the major principal stress direc-
tion perpendicular to the sedimentary surface of the soil. Similarly,
due to the need to ensure isotropy, point i was obtained by carrying
out the conventional triaxial extension test results of isotropic soil,
corresponding to the test results of isotropic strength criterion. For
point a, due to the influence of the original anisotropy, the loading
condition corresponding to the conventional triaxial extension
strength is obtained with the major principal stress direction parallel
to the sedimentary surface of the soil. Through the aforementioned
three sets of experiments, the parameter β reflecting transversely
isotropy can be obtained.

AGNSC Property Analysis

To facilitate the display of the transverse isotropic GNSC on the im-
pact of the failure curve, the failure curves should be displayed. It
defines the direction of major principal stress 1 corresponding to
the principal axis of material I, as shown in Fig. 9(a). The material
deposition surface is perpendicular to the z-axis direction, as
shown in Fig. 9(b). The material deposition surface is perpendicular
to the direction of principal axis x, and the material deposition sur-
face is perpendicular to the direction of principal axis Y, as shown
in Fig. 9(c). The intermediate principal stress 2 corresponds to the
direction of the material spindle II and the small principal stress 3
corresponds to the direction of the material spindle III. At this
point, the solid line on the deviatoric plane corresponds to
AGNSC, the dashed line corresponds to completely isotropic
GNSC, and the point line corresponds to von Mises criteria.

The principal stress ratio for σ1 versus σ3 can be expressed by
Rea with the triaxial extension loading path corresponding to the
transverse isotropic material, and the principal stress ratio for σ1
versus σ3 can be expressed by Rei with the triaxial extension load-
ing path corresponding to the isotropic material. Apparently be-
cause of the influence of the anisotropy, causing Rea<Rei, an
anisotropic state parameter s=Rea/Rei can be proposed to describe
the anisotropic degree. When the anisotropic state parameter s= 1,
the transverse isotropy is completely degraded into fully isotropy.
At this time parameters β= 1. When s< 1, it would result in
β> 1. Considering the relationship between S versus β with differ-
ent shape factors α, it can be seen from Fig. 10 that there are two
rules. (1) With an increase of the shape factor α, the domain of
the anisotropy degree state parameter S gradually increases.
When α= 0.1, 0.97 < s < 1. When α= 0.9, 0.75 < s < 1. (2) For a
certain shape factor, with an increase of the value of S, the value
of parameter β gradually decreases, showing a monotonically de-
creasing relationship. When S= 1, parameter β= 1. The smaller
the value of S, the more significant the anisotropy of the material,
and the greater the corresponding value β, which is in line with
the law of anisotropy’s influence on the strength characteristics
of the material.

© ASCE 04021149-8 Int. J. Geomech.
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Verification of Anisotropic Generalized Nonlinear
Strength Criterion

Lade et al. conducted a detailed study on the failure characteristics
of San Francisco Bay Mud clay under true triaxial loading, and ob-
tained the failure point data of San Francisco Bay Mud clay under
different stress Lode angles. Samples employed in this study were
obtained from a trench excavation at a site located about 1 mi
(1.6 km) south of the San Francisco International Airport, Califor-
nia. The trench exposed the upper sedimentary deposits of
San Francisco Bay. The soils are widely known as San Francisco
Bay Mud. Cylindrical block samples with both diameter and height
of foot of 30.5 cm were taken at a depth of about 6.5 m. The natural
clay at the depth sampled exhibits a total unit weight of about

1.44 g/cm3 and a water content of about 98.5%. The corresponding
material parameters are listed in Table 1.

In Fig. 11, the discrete points correspond to the failure point data
of San Francisco Bay Mud clay under conventional triaxial com-
pression. After collating in the ln �q*α and ln[(p+ σ0)/pr] coordinate
system, the result basically conforms to the linear rule. According
to Eq. (22), which is a linear equation, and parameters n, pr, 0, Mf

on the meridian plane can be calibrated successively.
Lade et al. carried out a detailed study on the failure character-

istics of San Francisco Bay Mud clay under true triaxial loading
conditions and obtained the failure data of San Francisco Bay
Mud clay under different stress Lode angles. The experimental
data in Fig. 12 are the corresponding test results.

The original test data points are shown in Fig. 12 in the ordinary
stress space, that is, the triaxial test of different Lode angles. Thus,
α= 0.149, β= 1.11, and βSMP= 1.086 can be obtained, and the val-
ues of β and βSMP are substituted into Eq. (27) to transform into the
equivalent isotropy on the deviatoric plane.

The failure curve in Fig. 12 is the model curve represented by
the SMP criterion. Because the SMP criterion is a failure criterion
based on the assumption with the existence of the spatial mobilized
plane, the material is a typical frictional one, which is suitable for
describing the failure property of discrete accumulation materials.
According to Fig. 12, as the contribution of the cohesive force to
the resistance of failure cannot be considered in the SMP criterion,

(a)
(b)

(c)

Fig. 9. (a) Failure surface in the deviatoric plane when the depositional plane is perpendicular to the z-axis; (b) failure surface in the deviatoric plane
when the depositional plane is perpendicular to the x-axis; and (c) failure surface in the deviatoric plane when the depositional plane is perpendicular
to the y-axis.

Fig. 10. Relationship of β versus s with different values of α.

Table 1. Material parameters

Parameters pr (MPa) σ0 (MPa) n Mf α β

Grundite clay 0.092 0.01 0.97 1.23 0.149 1.11
San Francisco bay clay 0.001 0.01 1 1.49 0.55 1.15
Cambria sand 0.001 0.01 1 1.62 0.61 1.08
Trachyte 100 1.4 0.74 2.2 0.83 1.05
Concrete 93.2 1.52 0.94 2.2 0.82 1.04

© ASCE 04021149-9 Int. J. Geomech.
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the failure curves at the stress Lode angle near the conventional tri-
axial extension path, which corresponding curve radius is smaller,
indicating that the corresponding generalized deviatoric stress
strength is smaller.

Fig. 13 shows the comparison between test data and SMP crite-
rion in transformation stress space corresponding to the general
principal stress space in Fig. 12. It can be seen from Fig. 13 that
although the SMP criterion revised by anisotropic parameters can
be adopted to reflect the effect of transversely isotropy on the devia-
toric plane with different stress Lodes angles, the contribution of
the SMP criterion to the cohesive force on failure curve with differ-
ent Lodes angles cannot be considered, the difference in the stress
ratio of the stress-induced anisotropy cannot be fully reflected.

Comparison between the prediction results and the experimental
data using the fully isotropic GNSC is displayed in Fig. 14. It can
be seen from Fig. 14 that although the GNSC can be adopted to de-
scribe the contribution ratio of cohesion and friction to strength
stress ratio, the GNSC is a linear interpolation analytic formula
that is based on the linear interpolation formula of the fully isotro-
pic generalized von Mises criterion and SMP criterion. Therefore,
the GNSC is also the complete isotropic strength criterion that

cannot take into account the influence of the geomaterial deposition
surface on the strength value under different stress Lodes angles.
As shown in Fig. 14, the highest point corresponding to the failure
curve is the result of conventional triaxial compression which can
be reflected better. Because of the loading condition corresponding
to the direction of major principal stress perpendicular to the direc-
tion of the deposition surface, using the triaxial compression
strength at the vertical condition to extrapolate the strength values
corresponding to the other Lodes angles, larger prediction results
are obtained, especially for the point at the bottom of the curve,
which corresponds to the normal triaxial extension loading result.
The curve corresponding to the major principal stress is perpendic-
ular to the deposition surface. However, the test point is the direc-
tion of major principal stress parallel to the direction of the
sedimentary surface. Therefore, the strength value approaching to
the Lodes angle of the conventional triaxial extension path is
overestimated.

Comparison between prediction and test results by using the
curve of AGNSC and the aforementioned comparison results are
shown in the transformation stress space in Fig. 15. It can be
seen from the figure that the anisotropic generalized nonlinear

Fig. 11. Calibration of meridional surface parameters under triaxial
compression in the transitional space.

Fig. 12. Illustration of the original data and SMP strength theory in the
ordinary stress space.

Fig. 13. Illustration of the experimental data and SMP strength theory
in the transformed stress space.

Fig. 14. Illustration of the original data and α= 0.149 strength theory
in the ordinary stress space.

© ASCE 04021149-10 Int. J. Geomech.
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strength criterion (AGNSC) can be employed to better reflect the
influence of the deposition surface on the strength with different
stress Lodes angles due to the use of anisotropic parameter β that
reflects the transverse isotropy.

It can be seen from Figs. 12–15 that the SMP criterion cannot be
used to reflect the stress-induced anisotropy and the original anisot-
ropy of the soil well. The generalized nonlinear strength criterion
can be adopted to reflect the stress-induced anisotropy of the soil
well, but it cannot consider the influence of the original anisotropy
on the strength. By using the anisotropic transformation method,
the AGNSC can agree well with the experimental results in the
transformed stress space.

Comparison with the test results and the prediction by using the
fully isotropic SMP criterion, the GNSC, the anisotropic SMP
(ASMP) criterion and the anisotropic GNSC is shown in Fig. 16.
It can be seen from the figure that for the fully isotropic criterion,
such as the SMP criterion and the GNSC, the effect of the original
anisotropy on the strength values under different Lodes angles can-
not be considered, so the stress path loading results under nontriax-
ial compression are generally larger. As for the ASMP criterion,
since stress-induced anisotropy cannot be considered more reason-
ably, which means the difference of the loading results under the
different stress Lodes angles cannot be well considered, the con-
ventional triaxial extension results of the major principal stress per-
pendicular to the sedimentary surface are underestimated, while the
triaxial extension results of the major principal stress parallel to the
sedimentary surface are overestimated. For the AGNSC, on the one
hand, the effect of stress-induced anisotropy is considered, which is
reflected by parameter α. On the other hand, the influence of the
original anisotropy on the strength value can be considered,
which is reflected by parameter β. In summary, the proposed
AGNSC curve in Fig. 16 is in good agreement with the experimen-
tal results.

In order to quantitatively assess AGNSC of superiority, Fig. 16
shows that we can use the distance mean square error of the dis-
crete point distance criterion curve as the evaluation standard.
The difference between the test point radius rt and the criterion
pole radius rp divided by the test point radius rt is the distance
difference ratio. The square sum and square root of the distance
difference ratios of a total of 20 discrete points can be used to ob-
tain the mean variance data of the four criterion curves, which can
be used to judge the degree of proximity between the criterion curve

and the test data:

EAGNSC =

������������������������∑20
i=1 ((rt − rpAG)/rt)

2

20

√
= 0.0429 (52)

EGNSC =

����������������������∑20
i=1 ((rt − rpG)/rt)

2

20

√
= 0.0757 (53)

EASMP =

�����������������������∑20
i=1 ((rt − rpAS)/rt)

2

20

√
= 0.0579 (54)

ESMP =

����������������������∑20
i=1 ((rt − rpS)/rt)

2

20

√
= 0.0816 (55)

Obviously, the smaller the mean variance, the closer the proposed
criterion curve to the measured data. Thus, the aforementioned
quantitative evaluation results show that the AGNSC is the best,
followed by the ASMP criterion, the GNSC criterion, and finally
the SMP criterion. This is consistent with the degree of proximity
between the predicted curve and the discrete points in Fig. 16.

Therefore, for the reflection of stress-induced anisotropy, the
generalized nonlinear strength criterion is superior to the SMP cri-
terion. The generalized nonlinear strength criterion can reasonably
consider the proportion distribution of cohesive force and friction
force contributed to the strength value, so it can be employed to de-
scribe the failure law of geotechnical materials with certain cohe-
sion. With regard to the influence of the original anisotropy on
the shape of the strength curve on the deviatoric plane, it can be de-
termined by a certain proportion of the two results. One is the tri-
axial extension results of major principal stress perpendicular to
the sedimentary surface and parallel to the sedimentary surface,
the other is the triaxial compressive strength values of major prin-
cipal stress perpendicular to the sedimentary surface. It can be seen
that for the soil, the generalized strength shape parameter α should
be determined first, and then, according to the influence weight of
the original anisotropy on the strength value to determine parameter
β, make it ultimately reflect the influence of stress-induced anisot-
ropy and original anisotropy according to the failure behaviors.

As shown in Fig. 17, the discrete points in the figure are the true
triaxial test results obtained on San Francisco Clay under a mean
stress of 167 kPa (Kirkgard and Lade 1993), while the solid lines

Fig. 15. Illustration of the experimental data and α= 0.149 strength
theory in the transformed stress space.

Fig. 16. Illustration of the original data and strength theory in the or-
dinary stress space.
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represent the results predicted by the proposed transversely isotro-
pic GNSC criterion. It can be seen from the figure that the proposed
criterion can well describe the influence of transversely isotropic ef-
fect on shear strength on the deviatoric plane. The shear strength
obtained in the direction perpendicular to the deposition surface
is obviously greater than that in the horizontal direction.

In Fig. 18, the discrete points are the true triaxial test results of
the Cambria sand on the deviatoric plane (Ochiai and Lade 1983),
while the solid lines are the prediction results using the proposed
criteria. It can be seen from the comparison results that the pro-
posed criterion can well describe the influence of transversely iso-
tropic factors on the shear strength with different stresses Lode
angles. The shear strength is the largest in the z-axis direction per-
pendicular to the sand deposition surface.

In order to explore the applicable scope of the proposed crite-
rion, the failure test data of trachyte with a certain cohesion was
selected as the prediction object (Mogi 1971). The discrete points
in Fig. 19 are the true triaxial test results of the trachyte, and the
mean stress is 167 MPa. The solid line is the prediction result of
the proposed criterion, and the comparison results show that the
proposed criterion can also be applied to the prediction of the true
triaxial failure result of materials with a certain degree of
cohesion.

Fig. 20 shows the comparison results of concrete loading tests
and predictions (Launay and Gachon 1970). Among them, the
four curves corresponding to different mean stresses; when the
mean stress is gradually increased, the corresponding prediction re-
sults of failure curve become flatten, and when the value of mean
stress is small, the corresponding failure curve tends to a sharp
curve triangle form. The aforementioned properties show that the
proposed criterion can be adopted to describe the effect of hydro-
static pressure on failure curve shape. In addition, there is also a cer-
tain degree of anisotropy in concrete, and its influence on the failure
curve cannot be ignored. Except that the predicted shear strength is
smaller than the test valuewhen themean stress is 32.9 MPa, the pre-
dicted results under other mean stresses are consistent with the ex-
perimental results. According to the preliminary analysis, the test
results of the mean stress with 32.9 MPa indicate that the large dif-
ference in shear strength under different stress Lode angles may be
caused by the more significant anisotropy properties.

Conclusions

Based on the existing GNSC, this paper expands the original gen-
eralized nonlinear strength criterion. It can only be applied to the

Fig. 17. Comparison the test data of San Francisco clay and predicted
result by using the proposed strength criterion in the ordinary stress
space.

Fig. 18. Comparison the test data of Cambria sand and predicted result
by using the proposed strength criterion in the ordinary stress space.

Fig. 19. Comparison the test data of Trachyte and predicted result by
using the proposed strength criterion in the ordinary stress space.

Fig. 20. Comparison the test data of concrete and predicted result by
using the proposed strength criterion in the ordinary stress space.
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description of isotropic geomaterial before, but now it can also con-
sider the anisotropic failure behavior for geotechnical materials rea-
sonably. The proposed criterion has the following characteristics:
1. Parameter α can be used in the generalized nonlinear strength

criterion to reflect the stress ratio strength of stress-induced an-
isotropy under true triaxial loading paths, which can be deter-
mined by conventional triaxial compression and extension path.

2. By assuming that the geomaterial is transversely isotropic, for
the loading mode perpendicular to the sedimentary surface
and parallel to the sedimentary surface, it is assumed that the
ratio of the major principal stress strength values of the afore-
mentioned two loading conditions is β, and β is the distribution
weight coefficient of the original anisotropy for the ratio of the
major principal stress strength, which can be determined by the
triaxial compression extension path perpendicular to the sedi-
mentary surface and parallel to the sedimentary surface.

3. In this paper, a simple nonlinear strength criterion is proposed.
Stress-induced anisotropy and original anisotropy can be con-
sidered reasonably, and the criterion can also be applied to prac-
tical geotechnical engineering simply and conveniently. The
application scope of proposed criterion is relatively broad. It
can not only be used to describe the failure property of clay
and sand, but also be used to describe the failure property of
some cohesive materials, such as rock and concrete.

Data Availability Statement
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pear in the published article.

Acknowledgments

This study was supported by the National Natural Science Founda-
tion of China for young scholars (Grant No. 11402260).

References

Casagrande, A., and N. Carrillo. 1944. “Shear failure of anisotropic mate-
rials.” Boston Soc. Civ. Eng. J. 31: 74–87.

Chowdhury, E. Q., and T. Nakai. 1998. “Consequences of the tij-concept
and a new modeling approach.” Comput. Geotech. 23 (3): 131–164.
https://doi.org/10.1016/S0266-352X(98)00017-2.

Dafalias, Y. F. 2016. “Must critical state theory be revisited to include fab-
ric effects?” Acta Geotech. 11 (3): 479–491. https://doi.org/10.1007
/s11440-016-0441-0.

Dafalias, Y. F., A. G. Papadimitriou, and X. S. Li. 2004. “Sand
plasticity model accounting for inherent fabric anisotropy.” J. Eng.
Mech. 130 (11): 1319–1333. https://doi.org/10.1061/(ASCE)0733
-9399(2004)130:11(1319).

Dafalias, Y. F., and M. Taiebat. 2014. “Rotational hardening with and with-
out anisotropic fabric at critical state.” Int. J. Plast. 3 (5): 227–246.

Gao, Z. W., and J. D. Zhao. 2012. “Efficient approach to characterize
strength anisotropy in soils.” J. Eng. Mech. 138 (12): 1447–1456.
https://doi.org/10.1061/(ASCE)EM.1943-7889.0000451.

Gao, Z. W., J. D. Zhao, and Y. Yao. 2010. “A generalized anisotropic
failure criterion for geomaterials.” Int. J. Solids Struct. 47 (22–23):
3166–3185. https://doi.org/10.1016/j.ijsolstr.2010.07.016.

Kirkgard, M. M., and P. V. Lade. 1993. “Anisotropic three-dimensional be-
havior of a normally consolidated clay.” Can. Geotech. J. 30 (5): 848–
858. https://doi.org/10.1139/t93-075.

Kong, Y., J. Zhao, and Y. Yao. 2013. “A failure criterion for cross-
anisotropic soils considering microstructure.” Acta Geotech. 8 (6):
665–673. https://doi.org/10.1007/s11440-012-0202-7.

Lade, P. V. 2008. “Failure criterion for cross-anisotropic soils.” J. Geotech.
Geoenviron. Eng. 134 (1): 117–124. https://doi.org/10.1061/(ASCE)
1090-0241(2008)134:1(117).

Lade, P. V., and H. M. Musante. 1978. “Three-Dimensional behavior of re-
molded clay.” J. Geotech. Eng. Div. 104 (2): 193–209. https://doi.org
/10.1061/AJGEB6.0000581.

Lade, P. V., N. M. Rodriguez, and E. J. Van Dyck. 2014. “Effects of prin-
cipal stress directions on 3D failure conditions in cross-anisotropic
sand.” J. Geotech. Geoenviron. Eng. 140 (2): 04013001. https://doi
.org/10.1061/(ASCE)GT.1943-5606.0001005.

Launay, P., and H. Gachon. 1970. “Strain and ultimate strength of concrete
under triaxial stresses.” ACI Spec. Publ. 34 (1): 269–282.

Li, X. S., and Y. F. Dafalias. 2002. “Constitutive modeling of inherently
anisotropic sand behavior.” J. Geotech. Geoenviron. Eng. 128 (10):
868–880. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:10(868).

Liu, M. D., and B. N. Indraratna. 2011. “General strength criterion for
geomaterials including anisotropic effect.” Int. J. Geomech. 11 (3):
251–262. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000082.

Lu, D. C., J. Y. Liang, X. L. Du, G. S. Wang, and T. Shire. 2019. “A novel
transversely isotropic strength criterion for soils based on a mobilised
plane approach.” Géotechnique 69 (3): 234–250. https://doi.org/10
.1680/jgeot.17.P.191.

Lu, D. C., C. Ma, X. L. Du, L. Jin, and Q. M. Gong. 2017. “Development of
a new nonlinear unified strength theory for geomaterials based on
the characteristic stress concept.” Int. J. Geomech. 17 (2): 04016058.
https://doi.org/10.1061/(ASCE)GM.1943-5622.0000729.

Lü, X., M. Huang, and J. E. Andrade. 2016. “Strength criterion for cross-
anisotropic sand under general stress conditions.” Acta Geotech. 11 (6):
1339–1350. https://doi.org/10.1007/s11440-016-0479-z.

Matsuoka, H., and T. Nakai. 1985. “Relationship among Tresca, Mises,
Mohr–Coulomb and Matsuoka–Nakai failure criteria.” Soils Found.
25 (4): 123–128. https://doi.org/10.3208/sandf1972.25.4_123.

Matsuoka, H., T. Nakai, and H. Ishizaki. 1980. “A stress–strain relationship
for anisotropic soils based on spatial mobilized plane.” Proc. Jpn. Soc.
Civ. Eng. 1980 (304): 105–111. https://doi.org/10.2208/jscej1969.1980
.304_105.

Matsuoka, H., Y. P. Yao, and D. A. Sun. 1999. “The Cam–Clay models
revised by the SMP criterion.” Soils Found. 39 (1): 81–95. https://doi
.org/10.3208/sandf.39.81.

Mirghasemi, A. A., and M. Naeij. 2015. “The effect of initial elongation of
elliptical particles on macro – micromechanical behavior during direct
shear test.” Procedia Eng. 102: 1476–1483. https://doi.org/10.1016/j
.proeng.2015.01.281.

Mogi, K. 1971. “Fracture and flow of rocks under high triaxial compres-
sion.” J. Geophys. Res. 76 (5): 1255–1269. https://doi.org/10.1029
/JB076i005p01255.

Mortara, G. 2010. “A yield criterion for isotropic and crossanisotropic
cohesive-frictional materials.” Int. J. Numer. Anal. Methods
Geomech. 34 (9): 953–977. https://doi.org/10.1002/nag.846.

Nakai, T., and H. Matsuoka. 1983. “Shear behaviors of sand and clay under
three-dimensional stress condition.” Soils Found. 23 (2): 26–42. https://
doi.org/10.3208/sandf1972.23.2_26.

Nakai, T., and Y. Mihara. 1984. “A new mechanical quantity for soils and
its application to elastoplastic constitutive models.” Soils Found. 24 (2):
82–94. https://doi.org/10.3208/sandf1972.24.2_82.

Ochiai, H., and P. V. Lade. 1983. “Three-dimensional behavior of
sand with anisotropic fabric.” J. Geotech. Eng. 109 (10): 1313–1328.
https://doi.org/10.1061/(ASCE)0733-9410(1983)109:10(1313).

Oda, M. 1972. “Initial fabrics and their relations to mechanical properties of
granular material.” Soils Found. 12 (1): 17–36. https://doi.org/10.3208
/sandf1960.12.17.

Oda, M. 1981. “Anisotropic strength of cohesionless sands.” J. Geotech.
Geoenviron. Eng. 107 (9): 1219–1231. https://doi.org/10.1061
/AJGEB6.0001186.

Oda, M., H. Kazama, and J. Konishi. 1998. “Effects of induced anisotropy
on the development of shear bands in granular materials.”Mech. Mater.
28 (1–4): 103–111. https://doi.org/10.1016/S0167-6636(97)00018-5.

Oda, M., I. Koishikawa, and T. Higuchi. 1978. “Experimental study of an-
isotropic shear strength of sand by plane strain test.” Soils Found.
18 (1): 25–38. https://doi.org/10.3208/sandf1972.18.25.

© ASCE 04021149-13 Int. J. Geomech.

 Int. J. Geomech., 2021, 21(8): 04021149 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

Z
he

ng
 W

an
 o

n 
05

/2
6/

21
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

https://doi.org/10.1016/S0266-352X(98)00017-2
https://doi.org/10.1016/S0266-352X(98)00017-2
https://doi.org/10.1016/S0266-352X(98)00017-2
https://doi.org/10.1016/S0266-352X(98)00017-2
https://doi.org/10.1016/S0266-352X(98)00017-2
https://doi.org/10.1016/S0266-352X(98)00017-2
https://doi.org/10.1016/S0266-352X(98)00017-2
https://doi.org/10.1016/S0266-352X(98)00017-2
https://doi.org/10.1016/S0266-352X(98)00017-2
https://doi.org/10.1016/S0266-352X(98)00017-2
https://doi.org/10.1016/S0266-352X(98)00017-2
https://doi.org/10.1016/S0266-352X(98)00017-2
https://doi.org/10.1007/s11440-016-0441-0
https://doi.org/10.1007/s11440-016-0441-0
https://doi.org/10.1007/s11440-016-0441-0
https://doi.org/10.1007/s11440-016-0441-0
https://doi.org/10.1007/s11440-016-0441-0
https://doi.org/10.1007/s11440-016-0441-0
https://doi.org/10.1007/s11440-016-0441-0
https://doi.org/10.1007/s11440-016-0441-0
https://doi.org/10.1007/s11440-016-0441-0
https://doi.org/10.1007/s11440-016-0441-0
https://doi.org/10.1007/s11440-016-0441-0
https://doi.org/10.1007/s11440-016-0441-0
https://doi.org/10.1007/s11440-016-0441-0
https://doi.org/10.1007/s11440-016-0441-0
https://doi.org/10.1061/(ASCE)0733-9399(2004)130:11(1319)
https://doi.org/10.1061/(ASCE)0733-9399(2004)130:11(1319)
https://doi.org/10.1061/(ASCE)0733-9399(2004)130:11(1319)
https://doi.org/10.1061/(ASCE)0733-9399(2004)130:11(1319)
https://doi.org/10.1061/(ASCE)0733-9399(2004)130:11(1319)
https://doi.org/10.1061/(ASCE)0733-9399(2004)130:11(1319)
https://doi.org/10.1061/(ASCE)0733-9399(2004)130:11(1319)
https://doi.org/10.1061/(ASCE)0733-9399(2004)130:11(1319)
https://doi.org/10.1061/(ASCE)0733-9399(2004)130:11(1319)
https://doi.org/10.1061/(ASCE)0733-9399(2004)130:11(1319)
https://doi.org/10.1061/(ASCE)EM.1943-7889.0000451
https://doi.org/10.1061/(ASCE)EM.1943-7889.0000451
https://doi.org/10.1061/(ASCE)EM.1943-7889.0000451
https://doi.org/10.1061/(ASCE)EM.1943-7889.0000451
https://doi.org/10.1061/(ASCE)EM.1943-7889.0000451
https://doi.org/10.1061/(ASCE)EM.1943-7889.0000451
https://doi.org/10.1061/(ASCE)EM.1943-7889.0000451
https://doi.org/10.1061/(ASCE)EM.1943-7889.0000451
https://doi.org/10.1061/(ASCE)EM.1943-7889.0000451
https://doi.org/10.1061/(ASCE)EM.1943-7889.0000451
https://doi.org/10.1061/(ASCE)EM.1943-7889.0000451
https://doi.org/10.1061/(ASCE)EM.1943-7889.0000451
https://doi.org/10.1016/j.ijsolstr.2010.07.016
https://doi.org/10.1016/j.ijsolstr.2010.07.016
https://doi.org/10.1016/j.ijsolstr.2010.07.016
https://doi.org/10.1016/j.ijsolstr.2010.07.016
https://doi.org/10.1016/j.ijsolstr.2010.07.016
https://doi.org/10.1016/j.ijsolstr.2010.07.016
https://doi.org/10.1016/j.ijsolstr.2010.07.016
https://doi.org/10.1016/j.ijsolstr.2010.07.016
https://doi.org/10.1016/j.ijsolstr.2010.07.016
https://doi.org/10.1016/j.ijsolstr.2010.07.016
https://doi.org/10.1016/j.ijsolstr.2010.07.016
https://doi.org/10.1016/j.ijsolstr.2010.07.016
https://doi.org/10.1139/t93-075
https://doi.org/10.1139/t93-075
https://doi.org/10.1139/t93-075
https://doi.org/10.1139/t93-075
https://doi.org/10.1139/t93-075
https://doi.org/10.1139/t93-075
https://doi.org/10.1139/t93-075
https://doi.org/10.1139/t93-075
https://doi.org/10.1139/t93-075
https://doi.org/10.1139/t93-075
https://doi.org/10.1007/s11440-012-0202-7
https://doi.org/10.1007/s11440-012-0202-7
https://doi.org/10.1007/s11440-012-0202-7
https://doi.org/10.1007/s11440-012-0202-7
https://doi.org/10.1007/s11440-012-0202-7
https://doi.org/10.1007/s11440-012-0202-7
https://doi.org/10.1007/s11440-012-0202-7
https://doi.org/10.1007/s11440-012-0202-7
https://doi.org/10.1007/s11440-012-0202-7
https://doi.org/10.1007/s11440-012-0202-7
https://doi.org/10.1007/s11440-012-0202-7
https://doi.org/10.1007/s11440-012-0202-7
https://doi.org/10.1007/s11440-012-0202-7
https://doi.org/10.1007/s11440-012-0202-7
https://doi.org/10.1061/(ASCE)1090-0241(2008)134:1(117)
https://doi.org/10.1061/(ASCE)1090-0241(2008)134:1(117)
https://doi.org/10.1061/(ASCE)1090-0241(2008)134:1(117)
https://doi.org/10.1061/(ASCE)1090-0241(2008)134:1(117)
https://doi.org/10.1061/(ASCE)1090-0241(2008)134:1(117)
https://doi.org/10.1061/(ASCE)1090-0241(2008)134:1(117)
https://doi.org/10.1061/(ASCE)1090-0241(2008)134:1(117)
https://doi.org/10.1061/(ASCE)1090-0241(2008)134:1(117)
https://doi.org/10.1061/(ASCE)1090-0241(2008)134:1(117)
https://doi.org/10.1061/(ASCE)1090-0241(2008)134:1(117)
https://doi.org/10.1061/(ASCE)1090-0241(2008)134:1(117)
https://doi.org/10.1061/AJGEB6.0000581
https://doi.org/10.1061/AJGEB6.0000581
https://doi.org/10.1061/AJGEB6.0000581
https://doi.org/10.1061/AJGEB6.0000581
https://doi.org/10.1061/AJGEB6.0000581
https://doi.org/10.1061/AJGEB6.0000581
https://doi.org/10.1061/AJGEB6.0000581
https://doi.org/10.1061/AJGEB6.0000581
https://doi.org/10.1061/AJGEB6.0000581
https://doi.org/10.1061/(ASCE)GT.1943-5606.0001005
https://doi.org/10.1061/(ASCE)GT.1943-5606.0001005
https://doi.org/10.1061/(ASCE)GT.1943-5606.0001005
https://doi.org/10.1061/(ASCE)GT.1943-5606.0001005
https://doi.org/10.1061/(ASCE)GT.1943-5606.0001005
https://doi.org/10.1061/(ASCE)GT.1943-5606.0001005
https://doi.org/10.1061/(ASCE)GT.1943-5606.0001005
https://doi.org/10.1061/(ASCE)GT.1943-5606.0001005
https://doi.org/10.1061/(ASCE)GT.1943-5606.0001005
https://doi.org/10.1061/(ASCE)GT.1943-5606.0001005
https://doi.org/10.1061/(ASCE)GT.1943-5606.0001005
https://doi.org/10.1061/(ASCE)GT.1943-5606.0001005
https://doi.org/10.1061/(ASCE)1090-0241(2002)128:10(868)
https://doi.org/10.1061/(ASCE)1090-0241(2002)128:10(868)
https://doi.org/10.1061/(ASCE)1090-0241(2002)128:10(868)
https://doi.org/10.1061/(ASCE)1090-0241(2002)128:10(868)
https://doi.org/10.1061/(ASCE)1090-0241(2002)128:10(868)
https://doi.org/10.1061/(ASCE)1090-0241(2002)128:10(868)
https://doi.org/10.1061/(ASCE)1090-0241(2002)128:10(868)
https://doi.org/10.1061/(ASCE)1090-0241(2002)128:10(868)
https://doi.org/10.1061/(ASCE)1090-0241(2002)128:10(868)
https://doi.org/10.1061/(ASCE)1090-0241(2002)128:10(868)
https://doi.org/10.1061/(ASCE)GM.1943-5622.0000082
https://doi.org/10.1061/(ASCE)GM.1943-5622.0000082
https://doi.org/10.1061/(ASCE)GM.1943-5622.0000082
https://doi.org/10.1061/(ASCE)GM.1943-5622.0000082
https://doi.org/10.1061/(ASCE)GM.1943-5622.0000082
https://doi.org/10.1061/(ASCE)GM.1943-5622.0000082
https://doi.org/10.1061/(ASCE)GM.1943-5622.0000082
https://doi.org/10.1061/(ASCE)GM.1943-5622.0000082
https://doi.org/10.1061/(ASCE)GM.1943-5622.0000082
https://doi.org/10.1061/(ASCE)GM.1943-5622.0000082
https://doi.org/10.1061/(ASCE)GM.1943-5622.0000082
https://doi.org/10.1061/(ASCE)GM.1943-5622.0000082
https://doi.org/10.1680/jgeot.17.P.191
https://doi.org/10.1680/jgeot.17.P.191
https://doi.org/10.1680/jgeot.17.P.191
https://doi.org/10.1680/jgeot.17.P.191
https://doi.org/10.1680/jgeot.17.P.191
https://doi.org/10.1680/jgeot.17.P.191
https://doi.org/10.1680/jgeot.17.P.191
https://doi.org/10.1680/jgeot.17.P.191
https://doi.org/10.1680/jgeot.17.P.191
https://doi.org/10.1680/jgeot.17.P.191
https://doi.org/10.1680/jgeot.17.P.191
https://doi.org/10.1061/(ASCE)GM.1943-5622.0000729
https://doi.org/10.1061/(ASCE)GM.1943-5622.0000729
https://doi.org/10.1061/(ASCE)GM.1943-5622.0000729
https://doi.org/10.1061/(ASCE)GM.1943-5622.0000729
https://doi.org/10.1061/(ASCE)GM.1943-5622.0000729
https://doi.org/10.1061/(ASCE)GM.1943-5622.0000729
https://doi.org/10.1061/(ASCE)GM.1943-5622.0000729
https://doi.org/10.1061/(ASCE)GM.1943-5622.0000729
https://doi.org/10.1061/(ASCE)GM.1943-5622.0000729
https://doi.org/10.1061/(ASCE)GM.1943-5622.0000729
https://doi.org/10.1061/(ASCE)GM.1943-5622.0000729
https://doi.org/10.1061/(ASCE)GM.1943-5622.0000729
https://doi.org/10.1007/s11440-016-0479-z
https://doi.org/10.1007/s11440-016-0479-z
https://doi.org/10.1007/s11440-016-0479-z
https://doi.org/10.1007/s11440-016-0479-z
https://doi.org/10.1007/s11440-016-0479-z
https://doi.org/10.1007/s11440-016-0479-z
https://doi.org/10.1007/s11440-016-0479-z
https://doi.org/10.1007/s11440-016-0479-z
https://doi.org/10.1007/s11440-016-0479-z
https://doi.org/10.1007/s11440-016-0479-z
https://doi.org/10.1007/s11440-016-0479-z
https://doi.org/10.1007/s11440-016-0479-z
https://doi.org/10.1007/s11440-016-0479-z
https://doi.org/10.1007/s11440-016-0479-z
https://doi.org/10.3208/sandf1972.25.4_123
https://doi.org/10.3208/sandf1972.25.4_123
https://doi.org/10.3208/sandf1972.25.4_123
https://doi.org/10.3208/sandf1972.25.4_123
https://doi.org/10.3208/sandf1972.25.4_123
https://doi.org/10.3208/sandf1972.25.4_123
https://doi.org/10.3208/sandf1972.25.4_123
https://doi.org/10.3208/sandf1972.25.4_123
https://doi.org/10.3208/sandf1972.25.4_123
https://doi.org/10.3208/sandf1972.25.4_123
https://doi.org/10.2208/jscej1969.1980.304_105
https://doi.org/10.2208/jscej1969.1980.304_105
https://doi.org/10.2208/jscej1969.1980.304_105
https://doi.org/10.2208/jscej1969.1980.304_105
https://doi.org/10.2208/jscej1969.1980.304_105
https://doi.org/10.2208/jscej1969.1980.304_105
https://doi.org/10.2208/jscej1969.1980.304_105
https://doi.org/10.2208/jscej1969.1980.304_105
https://doi.org/10.2208/jscej1969.1980.304_105
https://doi.org/10.2208/jscej1969.1980.304_105
https://doi.org/10.3208/sandf.39.81
https://doi.org/10.3208/sandf.39.81
https://doi.org/10.3208/sandf.39.81
https://doi.org/10.3208/sandf.39.81
https://doi.org/10.3208/sandf.39.81
https://doi.org/10.3208/sandf.39.81
https://doi.org/10.3208/sandf.39.81
https://doi.org/10.3208/sandf.39.81
https://doi.org/10.3208/sandf.39.81
https://doi.org/10.3208/sandf.39.81
https://doi.org/10.1016/j.proeng.2015.01.281
https://doi.org/10.1016/j.proeng.2015.01.281
https://doi.org/10.1016/j.proeng.2015.01.281
https://doi.org/10.1016/j.proeng.2015.01.281
https://doi.org/10.1016/j.proeng.2015.01.281
https://doi.org/10.1016/j.proeng.2015.01.281
https://doi.org/10.1016/j.proeng.2015.01.281
https://doi.org/10.1016/j.proeng.2015.01.281
https://doi.org/10.1016/j.proeng.2015.01.281
https://doi.org/10.1016/j.proeng.2015.01.281
https://doi.org/10.1016/j.proeng.2015.01.281
https://doi.org/10.1016/j.proeng.2015.01.281
https://doi.org/10.1029/JB076i005p01255
https://doi.org/10.1029/JB076i005p01255
https://doi.org/10.1029/JB076i005p01255
https://doi.org/10.1029/JB076i005p01255
https://doi.org/10.1029/JB076i005p01255
https://doi.org/10.1029/JB076i005p01255
https://doi.org/10.1029/JB076i005p01255
https://doi.org/10.1029/JB076i005p01255
https://doi.org/10.1002/nag.846
https://doi.org/10.1002/nag.846
https://doi.org/10.1002/nag.846
https://doi.org/10.1002/nag.846
https://doi.org/10.1002/nag.846
https://doi.org/10.1002/nag.846
https://doi.org/10.1002/nag.846
https://doi.org/10.1002/nag.846
https://doi.org/10.1002/nag.846
https://doi.org/10.3208/sandf1972.23.2_26
https://doi.org/10.3208/sandf1972.23.2_26
https://doi.org/10.3208/sandf1972.23.2_26
https://doi.org/10.3208/sandf1972.23.2_26
https://doi.org/10.3208/sandf1972.23.2_26
https://doi.org/10.3208/sandf1972.23.2_26
https://doi.org/10.3208/sandf1972.23.2_26
https://doi.org/10.3208/sandf1972.23.2_26
https://doi.org/10.3208/sandf1972.23.2_26
https://doi.org/10.3208/sandf1972.23.2_26
https://doi.org/10.3208/sandf1972.23.2_26
https://doi.org/10.3208/sandf1972.24.2_82
https://doi.org/10.3208/sandf1972.24.2_82
https://doi.org/10.3208/sandf1972.24.2_82
https://doi.org/10.3208/sandf1972.24.2_82
https://doi.org/10.3208/sandf1972.24.2_82
https://doi.org/10.3208/sandf1972.24.2_82
https://doi.org/10.3208/sandf1972.24.2_82
https://doi.org/10.3208/sandf1972.24.2_82
https://doi.org/10.3208/sandf1972.24.2_82
https://doi.org/10.3208/sandf1972.24.2_82
https://doi.org/10.1061/(ASCE)0733-9410(1983)109:10(1313)
https://doi.org/10.1061/(ASCE)0733-9410(1983)109:10(1313)
https://doi.org/10.1061/(ASCE)0733-9410(1983)109:10(1313)
https://doi.org/10.1061/(ASCE)0733-9410(1983)109:10(1313)
https://doi.org/10.1061/(ASCE)0733-9410(1983)109:10(1313)
https://doi.org/10.1061/(ASCE)0733-9410(1983)109:10(1313)
https://doi.org/10.1061/(ASCE)0733-9410(1983)109:10(1313)
https://doi.org/10.1061/(ASCE)0733-9410(1983)109:10(1313)
https://doi.org/10.1061/(ASCE)0733-9410(1983)109:10(1313)
https://doi.org/10.1061/(ASCE)0733-9410(1983)109:10(1313)
https://doi.org/10.3208/sandf1960.12.17
https://doi.org/10.3208/sandf1960.12.17
https://doi.org/10.3208/sandf1960.12.17
https://doi.org/10.3208/sandf1960.12.17
https://doi.org/10.3208/sandf1960.12.17
https://doi.org/10.3208/sandf1960.12.17
https://doi.org/10.3208/sandf1960.12.17
https://doi.org/10.3208/sandf1960.12.17
https://doi.org/10.3208/sandf1960.12.17
https://doi.org/10.3208/sandf1960.12.17
https://doi.org/10.1061/AJGEB6.0001186
https://doi.org/10.1061/AJGEB6.0001186
https://doi.org/10.1061/AJGEB6.0001186
https://doi.org/10.1061/AJGEB6.0001186
https://doi.org/10.1061/AJGEB6.0001186
https://doi.org/10.1061/AJGEB6.0001186
https://doi.org/10.1061/AJGEB6.0001186
https://doi.org/10.1061/AJGEB6.0001186
https://doi.org/10.1061/AJGEB6.0001186
https://doi.org/10.1016/S0167-6636(97)00018-5
https://doi.org/10.1016/S0167-6636(97)00018-5
https://doi.org/10.1016/S0167-6636(97)00018-5
https://doi.org/10.1016/S0167-6636(97)00018-5
https://doi.org/10.1016/S0167-6636(97)00018-5
https://doi.org/10.1016/S0167-6636(97)00018-5
https://doi.org/10.1016/S0167-6636(97)00018-5
https://doi.org/10.1016/S0167-6636(97)00018-5
https://doi.org/10.1016/S0167-6636(97)00018-5
https://doi.org/10.1016/S0167-6636(97)00018-5
https://doi.org/10.1016/S0167-6636(97)00018-5
https://doi.org/10.1016/S0167-6636(97)00018-5
https://doi.org/10.3208/sandf1972.18.25
https://doi.org/10.3208/sandf1972.18.25
https://doi.org/10.3208/sandf1972.18.25
https://doi.org/10.3208/sandf1972.18.25
https://doi.org/10.3208/sandf1972.18.25
https://doi.org/10.3208/sandf1972.18.25
https://doi.org/10.3208/sandf1972.18.25
https://doi.org/10.3208/sandf1972.18.25
https://doi.org/10.3208/sandf1972.18.25
https://doi.org/10.3208/sandf1972.18.25


Oda, M., and H. Nakayama. 1989. “Yield function for soil with anisotropic
fabric.” J. Eng. Mech. 115 (1): 89–104. https://doi.org/10.1061/(ASCE)
0733-9399(1989)115:1(89).

Pietruszczak, S., D. Lydzba, and J. F. Shao. 2002. “Modelling of inherent
anisotropy in sedimentary rocks.” Int. J. Solids Struct. 39 (3): 637–648.
https://doi.org/10.1016/S0020-7683(01)00110-X.

Tian, Y., and Y.-P. Yao. 2018. “Constitutive modeling of principal stress
rotation by considering inherent and induced anisotropy of soils.”
Acta Geotech. 13 (6): 1299–1311. https://doi.org/10.1007/s11440-018
-0680-3.

Yang, L. T., X. Li, H. S. Yu, and D. Wanatowski. 2016. “A laboratory
study of anisotropic geomaterials incorporating recent micromechanical
understanding.” Acta Geotech. 11 (5): 1111–1129. https://doi.org/10
.1007/s11440-015-0423-7.

Yao, Y. P., D. Lu, A. Zhou, and B. Zou. 2004. “Generalized non-linear
strength theory and transformed stress space.” Sci. China Ser. E
47 (6): 691–709. https://doi.org/10.1360/04ye0199.

Yao, Y. P., and A. N. Zhou. 2013. “Non-isothermal unified hardening
model: A thermo-elastoplastic model for clays.” Géotechnique
63 (15): 1328–1345. https://doi.org/10.1680/geot.13.P.035.

© ASCE 04021149-14 Int. J. Geomech.

 Int. J. Geomech., 2021, 21(8): 04021149 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

Z
he

ng
 W

an
 o

n 
05

/2
6/

21
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

https://doi.org/10.1061/(ASCE)0733-9399(1989)115:1(89)
https://doi.org/10.1061/(ASCE)0733-9399(1989)115:1(89)
https://doi.org/10.1061/(ASCE)0733-9399(1989)115:1(89)
https://doi.org/10.1061/(ASCE)0733-9399(1989)115:1(89)
https://doi.org/10.1061/(ASCE)0733-9399(1989)115:1(89)
https://doi.org/10.1061/(ASCE)0733-9399(1989)115:1(89)
https://doi.org/10.1061/(ASCE)0733-9399(1989)115:1(89)
https://doi.org/10.1061/(ASCE)0733-9399(1989)115:1(89)
https://doi.org/10.1061/(ASCE)0733-9399(1989)115:1(89)
https://doi.org/10.1061/(ASCE)0733-9399(1989)115:1(89)
https://doi.org/10.1061/(ASCE)0733-9399(1989)115:1(89)
https://doi.org/10.1016/S0020-7683(01)00110-X
https://doi.org/10.1016/S0020-7683(01)00110-X
https://doi.org/10.1016/S0020-7683(01)00110-X
https://doi.org/10.1016/S0020-7683(01)00110-X
https://doi.org/10.1016/S0020-7683(01)00110-X
https://doi.org/10.1016/S0020-7683(01)00110-X
https://doi.org/10.1016/S0020-7683(01)00110-X
https://doi.org/10.1016/S0020-7683(01)00110-X
https://doi.org/10.1016/S0020-7683(01)00110-X
https://doi.org/10.1016/S0020-7683(01)00110-X
https://doi.org/10.1016/S0020-7683(01)00110-X
https://doi.org/10.1016/S0020-7683(01)00110-X
https://doi.org/10.1007/s11440-018-0680-3
https://doi.org/10.1007/s11440-018-0680-3
https://doi.org/10.1007/s11440-018-0680-3
https://doi.org/10.1007/s11440-018-0680-3
https://doi.org/10.1007/s11440-018-0680-3
https://doi.org/10.1007/s11440-018-0680-3
https://doi.org/10.1007/s11440-018-0680-3
https://doi.org/10.1007/s11440-018-0680-3
https://doi.org/10.1007/s11440-018-0680-3
https://doi.org/10.1007/s11440-018-0680-3
https://doi.org/10.1007/s11440-018-0680-3
https://doi.org/10.1007/s11440-018-0680-3
https://doi.org/10.1007/s11440-018-0680-3
https://doi.org/10.1007/s11440-018-0680-3
https://doi.org/10.1007/s11440-015-0423-7
https://doi.org/10.1007/s11440-015-0423-7
https://doi.org/10.1007/s11440-015-0423-7
https://doi.org/10.1007/s11440-015-0423-7
https://doi.org/10.1007/s11440-015-0423-7
https://doi.org/10.1007/s11440-015-0423-7
https://doi.org/10.1007/s11440-015-0423-7
https://doi.org/10.1007/s11440-015-0423-7
https://doi.org/10.1007/s11440-015-0423-7
https://doi.org/10.1007/s11440-015-0423-7
https://doi.org/10.1007/s11440-015-0423-7
https://doi.org/10.1007/s11440-015-0423-7
https://doi.org/10.1007/s11440-015-0423-7
https://doi.org/10.1007/s11440-015-0423-7
https://doi.org/10.1360/04ye0199
https://doi.org/10.1360/04ye0199
https://doi.org/10.1360/04ye0199
https://doi.org/10.1360/04ye0199
https://doi.org/10.1360/04ye0199
https://doi.org/10.1360/04ye0199
https://doi.org/10.1360/04ye0199
https://doi.org/10.1360/04ye0199
https://doi.org/10.1680/geot.13.P.035
https://doi.org/10.1680/geot.13.P.035
https://doi.org/10.1680/geot.13.P.035
https://doi.org/10.1680/geot.13.P.035
https://doi.org/10.1680/geot.13.P.035
https://doi.org/10.1680/geot.13.P.035
https://doi.org/10.1680/geot.13.P.035
https://doi.org/10.1680/geot.13.P.035
https://doi.org/10.1680/geot.13.P.035
https://doi.org/10.1680/geot.13.P.035
https://doi.org/10.1680/geot.13.P.035

	 Introduction
	 Comparison of Transverse Isotropy versus Isotropy
	 Generalized Nonlinear Strength Criterion
	 Physical Meaning and Determination Method of Parameters
	 Anisotropic Transformation Stress Method for Materials
	 Parameter Determination Method for Generalized Nonlinear Strength Criterion Considering Anisotropy
	 AGNSC Property Analysis
	 Verification of Anisotropic Generalized Nonlinear Strength Criterion
	 Conclusions
	 Data Availability Statement
	 Acknowledgments
	 References

