
applied  
sciences

Article

Damping Estimation of an Eight-Story Steel Building
Equipped with Oil Dampers

Pengchao Yang 1, Songtao Xue 1,2, Liyu Xie 1,* and Miao Cao 2

1 Department of Disaster Mitigation for Structures, Tongji University, Shanghai 200092, China;
murphy_ypc@126.com (P.Y.); xue@tongji.edu.cn (S.X.)

2 Department of Architecture, Tohoku Institute of Technology, Sendai 982-8577, Japan; caomiao@tohtech.ac.jp
* Correspondence: liyuxie@tongji.edu.cn; Tel.: +86-21-6598-2390

Received: 26 November 2020; Accepted: 13 December 2020; Published: 16 December 2020 ����������
�������

Abstract: The damping estimation of an eight-story steel building equipped with oil dampers is
examined, carried out by adopting a proposed framework, which consists of an enhanced strain-energy
method and an improved direct method for model updating. The building is located at Tohoku
Institute of Technology and is equipped with a structural monitoring system that measures its seismic
response, including floor acceleration and displacement and force of oil dampers. The enhanced
strain-energy method is first developed and employed to assess the supplemental damping and
stiffness provided by oil dampers, herein quantified in the form of equivalent damping ratios and
natural frequencies. Then, modal characteristics extracted from the earthquake measurements are
modified accordingly and utilized for the building model updating, in which mass and stiffness
matrices are corrected by the improved direct method. The updated model accurately reproduces
the target modal data, especially measured mode participation factors, and is further used for the
building response predictions. Through prediction validations, the precision of the modified modal
parameters is verified. Finally, a large earthquake event is chosen to demonstrate the effectiveness of
the proposed framework for the damping estimation of the investigated building.

Keywords: equivalent damping ratios; strain-energy method; direct updating method; oil dampers;
earthquake measurements

1. Introduction

In the past few decades, many damping devices have been developed and applied in civil
engineering structures, especially in earthquake-prone regions [1–3]. Viscous dampers generally
represent a broad class of passive energy dissipation devices and have emerged as one of the most
popular ones. By providing additional damping and energy dissipation, they can efficiently suppress
earthquake-induced vibrations and, therefore, limit the damage to structural and non-structural
components [4–6]. To better understand the damping properties of such dampers, many experimental
studies have been conducted, including damper element tests [7,8] and shaking table tests of small-scale
and full-scale structures with viscous dampers [4,5]. However, studies focusing on in-service structures
with such dampers when subjected to large earthquakes are relatively rare [9,10]. This practical issue
requires accurate state quantification for dampers and structure itself, which holds a key position in
structural health, safety, and risk assessments [11,12]. This paper presents a study on the damping
estimation of an eight-story building structure equipped with oil dampers through a proposed
framework, which consists of an enhanced strain-energy method and an improved direct method for
model updating.

The strain-energy method is usually adopted at the design stage of passively controlled structures
to assess the damping effect of added dampers quantitatively. Specifically, it incorporates the
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supplemental damping provided by dampers into modal damping ratios, which are frequently referred
to as equivalent damping ratios and are defined as the ratios of energy dissipated by dampers and
stored in structure system. Zhang and Soong [13] provided a procedure to quantify the damping
effect of viscoelastic dampers and showed their effectiveness in attenuating structural seismic response.
Chang et al. [14] carried out a comprehensive experimental program on a 2/5-scale five-story steel
frame with viscoelastic dampers and applied this procedure to assess the equivalent damping ratios
for measured modes. Ji et al. [15] conducted a series of shaking table tests on a full-scale five-story steel
building with three types of passive dampers, including viscous dampers and oil dampers. Using the
strain-energy method and system identification, they investigated the damping characteristics of those
dampers and presented simplified estimations for their supplemental damping ratios.

In this study, the strain-energy method is adopted to estimate the supplemental damping ratios
provided by oil dampers for the investigated building under earthquake excitations. Additionally,
it is notable that, except for the supplement damping, dampers can contribute to the increased lateral
stiffness of the entire structure [14–17]. This stiffness contribution, usually not large, may affect
structural dynamic behavior, such as increasing natural frequencies. For evaluating such modal
changes, an enhanced strain-energy method is proposed herein, quantifying the damper stiffness in
the form of equivalent natural frequencies, i.e., the natural frequency changes of structures with and
without dampers. Besides, note that the strain-energy method adopts assumptions of harmonic motion
and mode-proportional deformation for dampers and structure itself, which violate their realistic
situation during an earthquake event [15]. Consequently, the estimated equivalent damping ratios
and natural frequencies may be questionable and, therefore, need to be verified under earthquake
situations. In this study, it is achieved through model updating and prediction validations.

Model updating using dynamic measurements has been a topic of extensive focus for many
engineering principles, including civil engineering [18]. In structural dynamics community, it is
well-understood that the predictions from an initial structural model are frequently inconsistent with
those observed from its real-world counterpart [19]. These predictions could be modal properties,
time histories, or frequency response functions. The objective of model updating is to reduce such
discrepancy, improving the correlation between numerical models and their real-world counterparts.
Generally, model updating belongs to the family of inverse problems, and, in most practical applications,
it can be approached from an optimization perspective. In recent decades, a significant number of
model updating methods have been developed. Literature review for this topic is not presented
here since is beyond the scope of this study. The interested reader is referred to references [19–21].
This paper is concerned only with the so-called direct updating methods because of their particular
features, the resulting updated model reproduces exactly the target/measured modal data, including
natural frequencies and mode shapes. By taking advantage of such features, the damper stiffness effect
on structural dynamic behavior can be easily captured in model updating.

The direct updating methods are essentially analytical methods which do not require iterations.
In those methods, modal orthogonality, symmetry, and eigenvalue equation are usually imposed
in correcting mass matrix or stiffness matrix or both, and minimum possible changes in updated
matrices are achieved by using Lagrange multipliers or generalized inverse. Baruch and Bar-Itzack [22]
first formulated a procedure using Lagrange multipliers to correct stiffness matrix to satisfy modal
orthogonality and the eigenvalue equation with nominal mass matrix. Berman [23] questioned the
assumption that nominal mass matrix is correct and developed a new procedure to modify mass matrix
under modal orthogonality constraint. Later, Berman and Nagy [24] integrated these two procedures
into the so-called analytical model improvement technique to update a long-exposure facility structure.
Based on this research, Caesar and Peter [25] further described two direct methods for model updating
using modal data. Wei [26] considered the interaction between mass and stiffness matrices in their
updating processes and proposed a united procedure to modify them simultaneously using the vibration
test data. Yue [27] developed an algorithm turning model updating to a forward problem, in which
a transformation matrix is only required to update mass and stiffness matrices. Lee and Eun [28]
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employed the Moore–Penrose inverse, rather than Lagrange multipliers, to reformulate the model
updating problem. But the resulting corrected stiffness matrices lose symmetricity. Yang and Chen [29]
established a simple procedure to maintain the physical meanings in mass and stiffness matrices
corrections, which allows the updated model to be compatible with the measured natural frequencies.
All of these methods discussed above are computationally efficient and can be easily applied to large
structural models [24,27,29]. However, for applications in earthquake engineering, a problem arises
that the predicted mode participation factors by updated models may not be consistent with those
identified from earthquake measurements. To address this problem, an improved Berman–Nagy
method is developed, using a new procedure to correct nominal mass matrix under the constraints of
both modal orthogonality and mode participation factors.

A large earthquake event is chosen to demonstrate the effectiveness of the proposed framework
for the damping estimation of the investigated building. The enhanced strain-energy method is first
employed to calculate the equivalent damping ratios and natural frequencies provided by oil dampers,
which are modeled by a linear Maxwell model consisting of a spring element connected in series with
a dashpot element [7,15]. Then, the modal characteristics extracted from earthquake measurements are
modified accordingly. The modified parameters are ultimately the data utilized to update an initial
finite element model of the building by using the improved Berman–Nagy method. Finally, through
prediction validations, the precision of the modified parameters as well as the estimated equivalent
damping ratios and natural frequencies are verified. The remaining of this paper is organized as
follows: in Section 2, the investigated building and its structural monitoring system are introduced.
Section 3 presents the details of the enhanced strain-energy method and the improved Berman–Nagy
method. The results of damping estimation for the building during the selected earthquake are
illustrated in Section 4. Section 5 provides the conclusions of this study.

2. Building Description and Its Structural Monitoring System

2.1. Overview of the Building

The investigated structure, as shown in Figure 1, is the administration building of Tohoku Institute
of Technology, located in Sendai, Japan. It was constructed in 2003 and is steel framed with precast
concrete slabs. The building has a rectangular plan of dimensions 48 by 9.6 m, while the total height
is 34.2 m, with eight stories above the ground. The story height is 3.8 m, except for the first floor,
which has a height of 8 m since the first two stories merge for a large public place.
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The building was designed according to the Japanese Building Standard Law without considering
the incorporation of damping devices. For enhanced seismic protection, a total of 56 oil dampers
were additionally installed in the building. Each floor has 8 oil dampers equally distributed in the
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two orthogonal directions, as shown in Figure 1b. Two types of such oil dampers are fixed on floors
and are connected with the adjacent upper floors through V-type steel braces. These dampers have
different orifice specifications and stroke limits for the 1st floor (Type I) and 3rd to 8th floor (Type II),
as described in Figure 2 using notation 1F and 3–8F.
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Figure 2. Damper configuration details.

The oil damper, designed by Kawamata et al. [30], consists of a central cylinder and a pair of
pistons. The gaps between them are sealed by using viscoelastic polymers. The pistons are fixed on
a U-type abutment on floors, and the central cylinder is attached to a V-type brace moving between
the two pistons. Figure 2 shows the detailed layout and dimensions of the installed oil dampers.
The relative movements between the cylinder and the pistons create the damper resisting force,
which consists of two parts: the pressure resistance coming from the flowing infilled oil through a small
orifice and the viscoelastic resisting force caused by the shearing deformations of the sealing materials.

Forced vibration tests were conducted after completing the building frame in June 2003,
to investigate the dynamic characteristics of the structure with and without oil dampers.
The identification results from vibration tests showed an apparent increase in natural frequencies,
the fundamental frequencies increased from 1.05 to 1.12 Hz along the transversal direction and
1.02 to 1.10 Hz along the longitudinal direction. The increased natural frequencies stem from the
additional stiffness provided by oil dampers, which motives this study to investigate such stiffness
effect during earthquakes.

2.2. Structural Monitoring System

A structural monitoring system is installed in the building to monitor its seismic motions.
The monitoring system consists of three two-directional acceleration sensors for measuring floor
acceleration and four pairs of load cell and displacement transducer for recording the force and
displacement responses of oil dampers. These accelerometers are placed near the central locations
of the 1st, 4th, and 8th floor plans, as shown in Figure 1b. They are utilized to measure the floor
translational motions along with the two horizontal directions. Four oil dampers, as representatives
of the two-type dampers, were selected to be monitored. Specifically, dampers installed on the 1st
and 8th floors were chosen, with each floor having two monitored oil dampers along with its two
principal directions.

Figure 3 shows a typical set of measured seismic responses, including floor acceleration and
force and displacement of oil dampers in the building translational direction. This data set was
recorded during a large earthquake with a moment magnitude of 7.0, which happened on 26 May 2003.
The force-displacement hysteretic curve of the oil dampers shows their damping and stiffness properties
during this earthquake. The earthquake measurements obtained from this earthquake are utilized in
this study to demonstrate the damping estimation process for the building.
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3. A Framework for Damping Estimation of Passively Controlled Structures

This section proposes a general framework for the damping estimation of passively controlled
structures. It consists of two newly developed methods, namely, an enhanced strain-energy method
and an improved Berman–Nagy method. The former method aims to quantify the additional damping
and stiffness provided by dampers in the forms of equivalent damping ratios and natural frequencies.
In particular, simple estimation formulas are derived for the case added dampers modeled by linear
Maxwell models. The latter method is devoted to correcting the nominal mass and stiffness matrices of
passively controlled structures themself using measured modal data, including natural frequencies,
mode shapes, as well as mode participation factors.

3.1. An Enhanced Strain-Energy Method

3.1.1. Estimation of Equivalent Damping Ratios

The traditional strain-energy method assumes passively controlled structure vibrates in harmonic
motion with a frequency consistent with one of their natural frequencies and deflects proportionally to
the corresponding mode shape. Based on these assumptions, the equivalent damping ratio provided
by added dampers can be estimated by

ξeq,i =
1

4π
ED,i

ES,i
(1)

where ξeq,i is the equivalent damping ratio for the ith mode, ED,i is the energy dissipated by dampers
in one cycle of motion, ES,i is the corresponding maximum strain energy stored in the entire structure
system, which is estimated by

ES,i =
1
2

∆2
i φ

T
i Kφi =

1
2

∆2
i ω

2
i (2)
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where K is the stiffness matrix of the entire structure, ωi and φi are, respectively, the ith circular
frequency and mass-normalized mode shape, ∆iφi denotes the maximum structural deformation
vector in one cycle of motion, ∆i is an unknown factor determining the ith mode vibration amplitude.

Formulation of ED,i depends on damper types. For the case added dampers modeled by linear
Maxwell models, ED,i is given by [15]

ED,i = π
∑

j

ωi

1 + τ2
d, jω

2
i

cd, j∆
2
i φ

2
i,dj (3)

where τd,j = cd,j/kd,j is the relax time for the jth damper, cd,j and kd,j are the damping and stiffness
coefficients, respectively. φi,dj is the axial deformation of the jth damper in the ith mass-normalized
mode shape.

Substitute Equations (2) and (3) into Equation (1) yields the ith equivalent damping ratio.
For simplifying this formula, a coordinate transformation, ∆iφi,d = TD∆iφi, is introduced between
damper deformation ∆iφi,d (local damper coordinate system) and structure deformation ∆iφi (global
coordinate system). TD is a predefined transformation matrix determined by damper configure details.
By substituting such transformation into Equation (3), we can get

ED,i = πωi∆2
i φ

T
i C̃D,iφi (4)

where the matrix C̃D,i is given by

C̃D,i = TT
Ddiag

 cd, j

1 + τ2
d, jω

2
i

TD (5)

It can be regarded as the equivalent damping matrix for the ith mode provided by added dampers.
The equivalent damping ratio is ultimately expressed by

ξeq,i =
φT

i C̃D,iφi

2ωi
(6)

Notably, such an expression follows the classical definition of modal damping ratios and assign
strong physically meanings to the calculations of equivalent damping ratios.

3.1.2. Estimation of Equivalent Natural Frequencies

An energy approach is presented here to quantify damper stiffness by equivalent natural
frequencies. It assumes that the added dampers of a structure do not affect its mode shapes, which can
be justified by the fact that damper stiffness is usually minor compared with structure stiffness [15,31].
The basic idea of this approach is based on Equation (2), which establishes a relationship between strain
energy and natural frequency, and the critical point in this approach is to determine the distribution of
strain energy stored in the entire structure. Specifically, for the ith mode, the strain energy stored in
structure itself may be expressed by

Es
S,i =

1−
Ek

D,i

ES,i

ES,i = (1− ηD,i)ES,i (7)

where ηD,and is a strain-energy ratio, and Ek
D,i is the maximum strain energy stored in dampers in one

cycle of motion. It has a closed-form solution for oil dampers modeled by linear Maxwell models as

Ek
D,i =

1
2

∑
j

τ2
d, jω

2
i

1 + τ2
d, jω

2
i

kd, j∆
2
i φ

2
i,dj =

1
2

∆2
i φ

T
i K̃D,iφi (8)
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where the matrix K̃D,i is given by

K̃D,i = TT
Ddiag

 τ2
d, jω

2
i

1 + τ2
d, jω

2
i

kd, j

TD (9)

It can be regarded as to the equivalent damping matrix for the ith mode provided by added
dampers. Combining Equations (2) and (8) yields the ith strain-energy ratio as

ηD,i =
φT

i K̃Dk,iφi

ω2
i

(10)

Then, substitute Equation (2) into Equation (7), we can get

ωs,i =
√

1− ηD,iωi (11)

where ωs,i is the ith natural frequency of structure itself.
Finally, the equivalent natural frequency provided by dampers is given by

ωeq,i = ωi −

√
(1−ηD,i)ωi (12)

It should be noted that Equations (6) and (12) require modal characteristics of passively
controlled structures, including natural frequencies and complete mode shapes. However, in practice,
civil engineering structures are often sparsely instrumented. As a result, their measured mode shapes
are incomplete and correspond to a few monitored DOFs only. In this study, the mode shape expansion
technique [19,24,27] is adopted to obtain the complete mode shapes for the investigated building,
as detailed in Section 4.

3.2. An Improved Berman–Nagy Method

An improved direct updating method, called improved Berman–Nagy method, is presented
here to correct the initial models of passively controlled structures themself. First, the traditional
Berman–Nagy method [24] is utilized to demonstrate the incomplete modal matching issue, i.e.,
the predicted mode participation factors by updated models might not be consistent with those
measured from real structures. Subsequently, a new procedure is proposed for mass matrix updating,
in which the constraint of mode participation factors is considered.

3.2.1. Problem Description

Let Ma and Ka represent, respectively, the nominal mass and stiffness matrices of a structure
with n degrees of freedom. As discussed in the introduction part, its analytical modal characteristics
frequently deviate from those measured from the real structure, with mass and stiffness matrices
denoted as M and K. In the traditional Berman–Nagy method, the updated mass matrix, denoted as
MB, and stiffness matrix, denoted as KB, are

MB = Ma + MaΦ
(
ΦTMaΦ

)−1(
I−ΦTMaΦ

)(
ΦTMaΦ

)−1
ΦTMa (13)

KB = Ka + MBΦ
(
ΦTKaΦ + Ω2

)
ΦTMB −KaΦΦTMB −MBΦΦTKa (14)

where Ω is the m × m diagonal matrix of measured natural frequencies, m is the number of measured
modes, Φ is the n × m matrix of measured mode shapes, and I is the m × m identity matrix. Notably,
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such updated mass and stiffness matrices accurately replicate the measured natural frequencies and
mode shapes, while they also generate predictions for mode participation factors as

PB = ΦTMBIn =
(
ΦTMaΦ

)−1
ΦTMaIn (15)

where PB denotes the vector of predicted mode participation factors, In is the identity vector of order n.
As discussed earlier, these byproduct predictions may differ from those measured from real structures.
For applications in earthquake engineering, mode participation factors participate in determining
mode response amplitudes, therefore, any error in their predictions will lead to flaws in updated
structural models. To address this problem, a new procedure for mass matrix updating is developed
as below.

3.2.2. A New Procedure for Mass Matrix Updating

This new procedure considers the constraints of symmetry, modal orthogonality, as well as
mode participation factors in mass matrix updating. Its formulation process follows the guidance in
reference [23]. Specifically, the cost function to be minimized is defined as

ε = ‖M−1/2
a (M−Ma)M−1/2

a ‖ (16)

subjected to constraints as follows:
M = MT (17)

ΦTMΦ = I (18)

ΦTMIn = P (19)

where P is the vector of measured mode participation factors. Using the Lagrange multiplier method,
the Lagrangian function may be formulated as

J = ε+
∑

i j

Ψi j
(
M−MT

)
i j
+

∑
i j

λi j
(
ΦTMΦ − I

)
i j
+

∑
i

γi
(
ΦTMIn − P

)
i

(20)

where Ψij, λij, and γi are the undetermined multiplier coefficients, corresponding to the constraint
equations above, and their matrix forms are denoted as Ψ, Λ, and Γ, respectively. Differentiating
Equation (20) with respect to each element in M and setting these results equal to zero, it leads to

M = Ma −
1
2

Ma
(
ΦΛΦT + ΦΓIT

n + Ψ −ΨT
)
Ma (21)

Substituting Equation (21) into Equation (17) and arranging the result, the solution for Ψ − ΨT is

Ψ −ΨT =
1
2

(
ΦΛTΦT + InΓTΦT

−ΦΛΦT
−ΦΓIT

n

)
(22)

Inserting Equation (22) into Equation (21) to update mass matrix, it follows that

M = Ma −
1
4

MaΦ
(
Λ + ΛT

)
ΦTMa −

1
4

Ma
(
ΦΓIT

n + InΓTΦT
)
Ma (23)

Substitute Equation (23) into Equation (18), we can get

Λ + ΛT = −4m−1
a (I−ma)m−1

a − ΓPT
a m−1

a −m−1
a PaΓT (24)
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where ma = ΦTMaΦ, Pa = ΦTMaIn. Eliminating the item Λ + ΛT in Equation (23), mass matrix is
rewritten as

M = MB +
1
4

MaΦΓ
(
PT

a m−1
a ΦT

− IT
n

)
Ma +

1
4

Ma
(
Φm−1

a Pa + In
)
ΓTΦTMa (25)

Substitute Equation (25) into the last constraint, Equation (19), the solution for Γ is

Γ =
4
c

m−1
a (P− PB) (26)

where c =
(
PT

a m−1
a ΦT

− IT
n

)
MaIn is a constant.

Finally, using Equation (26) to eliminate the matrix Γ in Equation (25), the new, updated mass
matrix is given by

M = MB + ∆M + ∆MT (27)

where the matrix ∆M is

∆M =
1
c

MaΦm−1
a (P− PB)

(
PT

a m−1
a ΦT

− IT
n

)
Ma (28)

In addition, Using M to replace MB in Equation (14), the new, updated stiffness matrix is

K = Ka + MΦ
(
ΦTKaΦ + Ω2

)
ΦTM−KaΦΦTM−MΦΦTKa (29)

Equations (27)–(29) form the improved Berman–Nagy method for mass and stiffness matrices
updating. Notably, comparing Equations (13) and (27), ∆M is the additional matrix rendering the new,
updated mass matrix consistent with the measured mode participation factors. However, if PB equal
to P, ∆M will equal a zero matrix. In this instance, the improved Berman–Nagy method turns to the
traditional Berman–Nagy method.

4. Application to the Investigated Building

The proposed framework is now implemented for the damping estimation of the investigated
building using its earthquake measurements from the selected earthquake, as shown earlier in
Figure 3. The finite element (FE) modeling of the building is first introduced to provide preliminary
information for the following analysis. Subsequently, using the enhanced strain-energy method,
the equivalent damping ratios and natural frequencies provided by oil dampers are estimated, and the
modal parameters extracted from the earthquake measurements are modified accordingly. Finally,
the improved Berman–Nagy method is utilized to update the initial FE model using the modified modal
parameters. Moreover, the accuracy of these estimates is demonstrated through prediction validations.

Figure 4 shows a high-fidelity FE model of the building, initially established in the SAP2000
modeling environment based on the available architectural and structural drawings. The structure
was assumed to be fixed on the ground floor without considering any soil-structure interaction effect.
All steel columns, beams, and damper braces were modeled by using frame elements, while concrete
floor slabs were modeled using flexible shell elements [32]. Following design guidance, the connections
between structural components were assumed to be fully constrained. The oil dampers were
modeled by linear Maxwell models with stiffness and damping parameters identified from their
earthquake measurements, as detailed later. To reduce the computational complexity of this FE
model, simplifications are adopted by invoking common assumptions used for building structures
in earthquake engineering applications [33,34]. Note that the translational and torsional modes of
this FE model are uncoupled due to the uniform distribution of mass and stiffness on floor plans,
as illustrated in Section 2, which allows the analysis through planar models for each horizontal
direction. This facilitates damping estimation and model updating of each direction separately,
using the earthquake measurements for the corresponding motions of the building. Additionally,
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the building mass is assigned as lumped mass applied to beam-column joints at floor levels, while the
column deformation in the vertical direction is not considered [34]. Therefore, rotational DoFs have
zero mass, while vertical DoFs are neglected.Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 18 

 
Figure 4. Finite element model of the building as developed in SAP2000 environment. 

The resulting planar FE models have 7 translational DoFs (with mass) and 279 (zero-mass) 
rotational DoFs for the beam-column joints. Static condensation [33] is further performed to remove 
the zero-mass rotational DoFs. The resulting nominal mass matrix is Ma = diag{446 348 337 334 328 324 
311}/ton for the two horizontal directions, where diag stands for a diagonal matrix with elements 
included in the bracket{·}, while the initial stiffness matrices(unit: MN/mm) are 

− − −
− − − −

− − −
= −

  1.076   1.081    0.290   0.047    0.007   0.001    0.000
 1.081    1.895   1.163    0.313   0.052    0.008   0.001
  0.290   1.163    1.732   1.101    0.296   0.047    0.006
 0.047    0.3aK − − −

− − −
− − − −

− −

13   1.101    1.652   1.055    0.271   0.035
  0.007   0.052    0.296   1.055    1.565   0.963    0.201
 0.001    0.008   0.047    0.271   0.963    1.357   0.625
  0.000   0.001    0.006   0.

 
 
 
 
 
 
 
 
 
 − 035    0.201   0.625    0.453

for longitudinal direction (30)

− − −
− − − −

− − −
= −

  1.084   1.077    0.278   0.043    0.006   0.001    0.000
 1.077    1.901   1.160    0.293   0.047    0.007   0.001
  0.278   1.160    1.756   1.101    0.278   0.044    0.005
 0.043    0.2aK − − −

− − −
− − − −

− −

93   1.101    1.679   1.058    0.262   0.033
  0.006   0.047    0.278   1.058    1.592   0.965    0.193
 0.001    0.007   0.044    0.262   0.965    1.372   0.631
  0.000   0.001    0.005   0.

 
 
 
 
 
 
 
 
 
 − 033    0.193   0.631    0.466

 for transversal direction (31)

The corresponding condensed models are referred to as the initial models, which are utilized in 
the following analysis. The equation of motion of the building in each of the two translational 
directions may be expressed by 

( )   T , , ,D D d d gxMx +Cx +Kx + T f x x c k = MI  (32)

where M, K, and C are, respectively, the real mass, stiffness, and inherent damping matrices, x 
represents the vector of floor displacement relative to the structure base, gx  is the acceleration input, 
corresponding to the acceleration of the ground floor of the building, I is the vector of earthquake 
influence coefficients, fD(·) denotes the vector of damper forces, TD is the transformation matrix, 
relating movement across the ends of each damper to x, and cd, and kd are the vectors of damping 
coefficients and stiffness parameters of linear Maxwell models, respectively, composed of the 
respective characteristics of the oil dampers for each floor. The damper force, for example, for the ith 
floor damper is expressed as 

Figure 4. Finite element model of the building as developed in SAP2000 environment.

The resulting planar FE models have 7 translational DoFs (with mass) and 279 (zero-mass)
rotational DoFs for the beam-column joints. Static condensation [33] is further performed to remove
the zero-mass rotational DoFs. The resulting nominal mass matrix is Ma = diag{446 348 337 334 328
324 311}/ton for the two horizontal directions, where diag stands for a diagonal matrix with elements
included in the bracket{·}, while the initial stiffness matrices(unit: MN/mm) are
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for transversal direction (31)

The corresponding condensed models are referred to as the initial models, which are utilized
in the following analysis. The equation of motion of the building in each of the two translational
directions may be expressed by

M
..
x+C

.
x+Kx+TT

DfD
(
x,

.
x, cd, kd

)
=MI

..
xg (32)

where M, K, and C are, respectively, the real mass, stiffness, and inherent damping matrices, x represents
the vector of floor displacement relative to the structure base,

..
xg is the acceleration input, corresponding

to the acceleration of the ground floor of the building, I is the vector of earthquake influence coefficients,
fD(·) denotes the vector of damper forces, TD is the transformation matrix, relating movement across
the ends of each damper to x, and cd, and kd are the vectors of damping coefficients and stiffness
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parameters of linear Maxwell models, respectively, composed of the respective characteristics of the oil
dampers for each floor. The damper force, for example, for the ith floor damper is expressed as

.
f d,i

kd,i
+

fd,i

cd,i
=

.
xd,i (33)

where fd,i and xd,i are, respectively, the damper force and the damper deformation between its two
ends. For the investigated building, the supporting brace stiffness is estimated based on their design
information and is much larger than the identified damper stiffness. Since these two components are
connected in series, the damper deformation is taken as the corresponding inter-story drift. Besides,
note that a representation of the form of Equation (32) holds separately for each of the horizontal
directions, though for notational simplicity, this distinction is not explicitly noted herein.

4.1. Damping Estimation of the Building

Implementations of the enhanced strain-energy method require the building modal data and
the oil damper parameters. These characteristics are identified by adopting a standard time-domain
identification technique [7,35] and using the selected earthquake measurements. The identification
is separately performed in each horizontal direction, which facilitates a better consideration of the
impact of the excitation/response amplitude for oil dampers. Precisely, for oil damper identification,
the input-output earthquake data corresponds to the input displacement and output force data, with the
governing equation given by Equation (33), while, for modal identification, the data is the acceleration
of the ground floor (input) and two monitored floors (output), with modal-superposition models as
governing equation [35].

Table 1 lists the identification results for the four monitored oil dampers, in which I and II
represent the damper types. Recall that Type I oil dampers were installed on the ground floor,
while Type II oil dampers were placed on other upper floors. It is evident from the results that a
discrepancy exists between the identified parameters of same-type dampers, verifying their anticipated
amplitude-dependent characteristics. Table 2 shows the identified (translational) modal parameters
of the first two modes of the building. The remaining higher modes are of small importance,
and identification of their properties suffers to a much larger degree by measurement noise [35].
Notably, the identified mode shapes and mode participation factors in Table 2 are determined by
using the so-called mode scale factor, which is commonly adopted to (mass) normalize measured
mode shapes. Furthermore, to obtain complete mode shapes, an expansion technique suggested
in Reference [27] is adopted, though note that other alternatives exist for resolving this issue [19].
The implementations of this expansion approach are omitted here since it is a common practice.
For clarity of explanation, the expanded mode shape is denoted hereinafter as φi, for the ith mode of
the building.

Table 3 shows the estimated equivalent damping ratios (ξeq,i) and natural frequencies (ωeq,i)
by the enhanced strain-energy method. Results of the inherent damping ratios (ξs,i) and natural
frequencies (ωs,i) for the building itself are also reported in this table. They are obtained by subtracting
those equivalent estimates from the corresponding identified modal parameters in Table 2. It can be
seen from Table 3 that the estimated equivalent damping ratios have a sharp decrease when mode
order increases and the second equivalent damping ratios are negligible. It indicates that the energy
dissipated by oil dampers concentrates in the seismic motion of the fundamental modes. On the other
side, for equivalent natural frequencies, an increasing trend is observed. Overall, they are relatively
small compared with the identified natural frequencies of the building. However, it does not indicate
that the estimated equivalent natural frequencies are unimportant. Instead, they can significantly affect
the prediction accuracy of updated models, as will be shown in the next section.
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Table 1. The identified model parameters for monitored oil dampers.

Parameters
Longitudinal Direction Transversal Direction
Type I Type II Type I Type II

cd (kN/mm·s−1) 0.696 0.685 0.876 0.516
kd (kN/mm) 4.258 2.562 3.395 3.295

Table 2. The identified modal parameters for the building.

Parameters
Longitudinal Direction Transversal Direction

1st Mode 2nd Mode 1st Mode 2nd Mode

ωi (rad/s) 5.608 18.132 5.062 16.552
ξi 0.031 0.061 0.036 0.053
φi,2 0.014 −0.026 0.013 −0.026
]φi,6 0.025 0.016 0.026 0.016

pi 47.421 −15.392 48.952 −15.324

Table 3. The estimated equivalent natural frequencies and equivalent damping ratios provided by oil
dampers. The corresponding parameters of the building itself also shown.

Parameters
Longitudinal Direction Transversal Direction

1st Mode 2nd Mode 1st Mode 2nd Mode

ωs,i (rad/s) 5.495 17.721 4.951 16.108
ωeq,i (rad/s) 0.113 0.411 0.111 0.444

ξs,i 0.012 0.055 0.017 0.045
ξeq,i 0.019 0.006 0.019 0.008

Besides, the enhanced strain-energy method also allows quantifying the contribution from a
specific damper to the equivalent damping ratios and natural frequencies, as evident from Equations (3)
and (8). Figure 5 plots the damping and stiffness contribution in percentages from the oil dampers
of different floors along with the two horizontal directions. The dampers on the first floor dominate
the contribution, up to 70% for damping and up to 50% for stiffness, which is attributed to its larger
story drift. Because the damping and stiffness contribution from oil dampers is proportional to the
square values of φi,dj, as indicated in Equations (3) and (8). Higher floor dampers contribute more
to the damping of the second mode, but the total damping contribution in that mode is negligible,
as shown in Table 3.
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It is important to stress once more that the enhanced strain-energy method is built based on the
assumptions of harmonic motion and mode-proportional deformation of structure and added dampers,
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which violate their real situations during earthquakes. Therefore, it is necessary to verify the method
accuracy, which is achieved through model updating and prediction validations.

4.2. Model Updating of the Building

The model updating of the building itself is separately performed for its two horizontal directions.
Specifically, for each updating case, the natural frequencies (ωs,i), expanded mode shapes (φi), and mode
participation factors (pi) of the first two modes are regrouped and utilized to correct mass and stiffness
matrices by the improved Berman–Nagy method, i.e., Equation (27) for mass matrix updating and
Equation (29) for stiffness matrix updating. Besides, for inherent structural damping, the damping
matrix is modeled through a common modal damping assumption and is adjusted to match the
estimated damping ratios (ξs,i), as listed in Table 3. Damping ratios for the remaining higher modes
are generally large and are constrained to a predefined value (taken in the case study later as 10%).
Note that using a large damping ratio for these modes, though not critical, can efficiently suppress
higher-frequency components in the building response predictions.

First, mass and stiffness matrices are updated to demonstrate the effectiveness of the improved
Berman–Nagy method. Two updating cases of using different modal data are considered to illustrate
the impact of additional matrix ∆M on updated mass matrix. Specifically, the regrouped modal
parameters of the first mode and the first two modes are separately utilized to update the nominal mass
matrix Ma. Figure 6 presents the new, updated mass matrix M by Equation (27). For comparisons,
the updated mass matrix MB by the traditional Berman–Nagy method is also reported. The results in
this figure correspond to the transversal direction FE model.
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It is evident from the results in Figure 6 that ∆M, the difference between M and MB, has an
increasing impact on the updated mass matrix when more modal data is utilized. In the first updating
case, the predicted mode participation factor by M exactly matches the measured one (48.952), while the
prediction by MB is 46.884. This prediction error is large but causes small changes in the two updated
mass matrices, as shown in Figure 6a. When the regrouped modal data of the first two modes is
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utilized, M and MB differ significantly in both diagonal and off-diagonal elements. The predicted
mode participation factors are listed in Table 4, where the improved method results are denoted as
pI,i. Again, M reproduces exactly the measured mode participation factors, while MB fails in the first
two modes cases. Figure 7 shows the new, updated stiffness matrices by the improved method and
using the regrouped modal data of the first two modes. Unlike updated mass matrices, changes in
updated stiffness matrices are small. Notably, the updated mass and stiffness matrices by the improved
method exactly possess the modal data, including natural frequencies, mode shapes, and mode
participation factors.

Table 4. Comparisons of the predicted mode participation factors by updated mass matrices.

Parameters
Longitudinal Direction Transversal Direction

1st Mode 2nd Mode 1st Mode 2nd Mode

pB,i 45.8910 −12.0991 45.9156 −14.0551
pI,i 47.4219 −15.3921 48.9527 −15.3241
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Then, the precision of the estimated inherent damping ratios (ξs,i) and natural frequencies (ωs,i) is
considered. The updated models with new, updated mass and stiffness matrices are utilized for the
building response prediction, according to Equation (34). The linear Maxwell models with identified
parameters shown in Table 1 are assigned to the same-type oil dampers, i.e., the parameter configures
of Type I for the ground-floor oil dampers and those of Type II for the other floors oil dampers.
Two updated models are utilized for this response prediction: In the first updated model, the damper
stiffness is not considered, the modal data utilized for correcting mass and stiffness matrices is {ωi, φi,
pi, ξs,i, i = 1,2}, while, in the second updated model, the data is {ωs,i, φi, pi, ξs,i, i = 1,2}. To distinguish
them, they are labeled by updated model I and II, respectively.

Figures 8 and 9 present the measured and predicted floor acceleration and damper force,
respectively. The results in these figures correspond to the longitudinal direction updated models.
For clarity of illustration, the response predictions during the strong shaking phase (30 s~60 s) are
shown, and the results of the two updated models are plotted separately. The normalized root mean
squared error (NRMSE) between the measured and predicted response, defined as

e =
√

mean
[
(y− ỹ)2

]
/
√

mean[ỹ2] (34)

is utilized to quantify the goodness of fit between them, in which ỹ and y are the measured and
predicted response, respectively. The results for the two updated models are listed in Table 5.
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Table 5. Normalized root mean squared errors (NRMSEs) of the response predictions of updated models.

Updated
Models

Longitudinal Direction Transversal Direction
Acceleration Damper Force Acceleration Damper Force
4F 8F 1F 8F 4F 8F 1F 8F

Model I 0.468 0.466 0.597 0.709 0.461 0.308 0.536 0.641
Model II 0.278 0.225 0.267 0.392 0.236 0.118 0.268 0.444

It can be seen from Figures 8 and 9 that the predicted responses by updated model II match
very well the measured data with NRMSE values close to 0.2, which indicates a high precision in
response prediction. On the other side, the updated model I has non-negligible phase-lags errors in all
response predictions with larger NRMSE values up to 0.7. A similar trend of calculated NRMSEs is
also observed for the transversal direction updated models, as shown in Table 5. It verifies that, at least
in this instance, the damper stiffness or the estimated equivalent natural frequencies, though small,
can not be omitted in model updating for the building itself. Moreover, the high precision predictions
of updated model II also show that the estimated equivalent damping ratios and natural frequencies
are accurate, which addresses the concern at the end of the last section.

5. Conclusions

This paper examined the damping estimation of an eight-story steel building structure equipped
with oil dampers, located at Tohoku Institute of Technology. It was carried out within a proposed
framework that consists of an enhanced strain-energy method and an improved Berman–Nagy method
for model updating. The former method was first employed to quantify the additional damping and
stiffness provided by oil dampers in the form of equivalent damping ratios and natural frequencies.
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Subsequently, the improved Berman–Nagy was implemented to update an initial model of the
building by using its estimated modal parameters, whose accuracy were further verified through
prediction validations. The case study demonstrated the effectiveness of the proposed framework.
The main conclusions and findings obtained from this study are the following: (1) The updated
models show a high precision in prediction for both floor acceleration and damper force, showing
the estimated natural frequencies and damping ratios are accurate. Besides, the damper stiffness,
though not large, can significantly worsen the model prediction precision and, therefore, should be
taken into consideration in model updating. (2) The updated model by the improved Berman–Nagy
method reproduces exactly the measured modal data, including mode participation factors. However,
the non-diagonal elements of updated mass matrix are not negligible and become large when more
modal data utilized. (3) The supplemental damping ratios for the first modes are about 0.02, while the
damping contributions for second modes are negligible, indicating that most energy dissipated by
oil dampers concentrates in the seismic motion of fundamental modes. (4) The proposed framework
and methods are computationally efficient and have good potential in the post-earthquake health and
safety assessment for passively controlled building structures.
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