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Abstract: Based on the classical Timoshenko beam theory, the rotary inertia caused by shear 

deformation is further considered and then the equation of motion of the Timoshenko beam theory 

is modified. The dynamic characteristics of this new model, named the modified Timoshenko beam, 

have been discussed, and the distortion of natural frequencies of Timoshenko beam is improved, 

especially at high-frequency bands. The effects of different cross-sectional types on natural 

frequencies of the modified Timoshenko beam are studied, and corresponding simulations have 

been conducted. The results demonstrate that the modified Timoshenko beam can successfully be 

applied to all beams of three given cross sections, i.e., rectangular, rectangular hollow, and circular 

cross sections, subjected to different boundary conditions. The consequence verifies the validity and 

necessity of the modification. 

Keywords: modified Timoshenko beam; natural frequency; cross-sectional form 

 

1. Introduction 

Research on transverse vibration of the beam can date back to the 18th century. Leonhard Euler 

and Jacob Bernoulli presented the Bernoulli–Euler beam theory based on famous classical 

assumptions [1]. It was believed that the bending effect is the most significant factor for a transversely 

vibrating beam. Later, this beam model was gradually improved by Rayleigh [2], who took the effect 

of rotary inertia caused by the flexural deformation into account. The Rayleigh beam theory partially 

revises the distortion of natural frequencies calculated by the Bernoulli–Euler beam theory. Despite 

this modification, the natural frequencies remain distorted and are rather severe when a beam is not 

slim enough. Afterwards, the shear model took the shear deformation into account based on the 

Bernoulli–Euler model. It is recognized that the shear stress is evenly distributed along the beam 

height without considering the rotary inertia caused by the bending effect. In contrast, the pure shear 

model [3] only includes the shear deformation but excludes an important factor, the bending effect. 

The difference between them should be noted. Considering shear deformation based on the 

Bernoulli–Euler beam, the precision estimation of natural frequencies increases conspicuously. The 

Timoshenko beam theory [4,5] was proposed by Timoshenko, who considered the effect of shear 

deformation and the rotary inertia caused by the flexural deformation. Accuracy of the natural 
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frequencies of the Timoshenko beam model is significantly improved, and therefore, it is applied 

widely. Many researches have been devoted since the Timoshenko beam theories were presented. 

Traill-Nash and Collar [6] finished a complete study where the derivation process for the four beam 

models with four various boundary conditions was described in detail in 1953. The orthogonality 

conditions of the Timoshenko beam were presented by Dolph [7], who also solved the initial and 

boundary-value problem of the Timoshenko beam. Herrmann [8] derived the orthogonality 

conditions of the Timoshenko beam with the modal expansion method and provided an analytical 

solution of the forced Timoshenko beam in 1955. Boley and Chao [9] investigated the dynamic 

response of the semi-infinite beams under four given boundary conditions using the Laplace inverse 

method. Huang [10] derived partial differential equations for flexural vibrations of six common types 

of simple, finite beams. Reismann and Pawlik [11] put forward a solution to the dynamic response of 

Timoshenko beams with the given initial conditions and external forces using the eigenfunction 

expansion method. Since the classical theory of the Timoshenko beam was applied to scientific 

research and practical engineering, more controversies followed. The major point of contention is the 

second spectrum of the Timoshenko beam. Traill-Nash and Collar pointed out the possibility of a 

second spectrum of the Timoshenko beam in 1953, and many efforts have been devoted to this study. 

Anderson [12] and Dolph analyzed the vibration characteristics of the simply supported Timoshenko 

beam, and two sets of independent spectrum curves of the Timoshenko beam were proposed. Downs 

[13] also claimed the existence of a second spectrum using the dynamic discrete element method. 

However, there are still many scholars who hold opposite opinions. Levinson and Cooke [14] used 

relatively elementary analysis, showing that there is no second spectrum for a Timoshenko beam 

with any boundary conditions. Abbas and Thomas [3,15] believed the nonexistence of the second 

spectrum except for a hinged-hinged beam by using the finite element method. N.G Stephen [16–18] 

compared the second spectrum with a solution derived from the plane stress elastic theory and found 

that there is no relationship between them as well as a physical meaning of the second spectrum. In 

2006, he finished a further appraisal on the second spectrum of the Timoshenko beam and thought it 

should be neglected. Other than the uniform beam, Murin et al. [19] extended the Timoshenko beam 

to the multilayered functionally graded material (FGM) beam, derived a fourth-order differential 

equation of FGM beam deflection with variation of material properties, and considered the shear 

force deformation effect as well. 

It is recognized that the Timoshenko beam is a tremendous advance for deep beams and for 

higher-order frequencies where shear deformation and rotary inertia cannot be neglected. In spite of 

this major improvement, the calculation error of high-frequency response is still unsatisfactory. 

Following Timoshenko, Chen and Wan [20–22] first introduced the rotary inertia caused by shear 

deformation to the Timoshenko beam, and the motion equation of the beam was then derived. After 

the new model, which is named the modified Timoshenko beam in this paper, was presented, more 

detailed knowledge about the wave characters and vibration characters of the modified Timoshenko 

beam were obtained. It can be found that, even though the effect of such a modification is small when 

the frequency is low, it becomes evident when the frequency is much high, which is very important 

for the dynamic transient response analysis where high frequencies are more dominant than the 

lower ones [20]. Furthermore, they also demonstrated that only one frequency spectrum exists, hence 

the debate on how many frequency spectrums on earth for the deep beam may be settled. Thus, in 

this research, effects of the cross-sectional types on the modified Timoshenko beam are further 

discussed by numerical simulations. The results demonstrate the validity of the modified 

Timoshenko beam with different cross-sectional forms, which also verifies the necessity of the 

modification. 

2. Modification of the Timoshenko Beam Model 

In this section, basic information of the modified Timoshenko beam is presented, including the 

equation of the motion and the equation of the natural frequencies under three end conditions. 
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2.1. Equation of Motion for Modified Timoshenko Beam  

For a beam, it is assumed as follows for the purpose of simplicity: 

1. The motion of the beam is only restricted in the x–y plane with a small displacement in the y 

dimension. 

2. During the deformation, the cross section still sticks to the planer assumption with a symmetric 

axis in the y direction. 

3. Flexural deformation, shear deformation, and the rotary inertia they caused are all concerned. 

4. Lateral shear stress is distributed uniformly along the height of the beam. 

Figure 1 shows deformation of the modified Timoshenko beam and the corresponding cross 

section. 
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Figure 1. Deformation of the modified Timoshenko beam and a differential element diagram: (a) the 

lateral deformation under lateral load and (b) the element deformation. 

Figure 2 shows the lateral vibrations of a beam in the x–y plane due to lateral load. As is shown 

in the figure, the force equilibrium diagram for a differential element, including the internal force 

and the inertial force of bending moment direction and vertical direction, is presented. In this paper, 

shear force Q and bending moment M applies to the sign conventions in a beam. The inertia forces 

are −��
���

���  in the y direction and −��
���

����� in rotational direction. The total slope � consists of two 

parts: � represents the bending slope, and � represents the slope induced by shear deformation. 



Appl. Sci. 2020, 10, 5245 4 of 19 

 

Figure 2. Free body diagram for a differential element. 

The equation of motion for the Timoshenko beam is expressed as follows: 
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where A represents the area of section, I represents the moment of inertia, G represents the shear 

modulus, � represents the material density, x represents the horizontal coordinates, y represents the 

transverse displacement, and t represents the time. 

When the shear deformation-induced rotary inertia is considered, the equation of motion for the 

modified Timoshenko beam can be expressed as follows [21]: 
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Compare Equations (1) and (2), we will note that the last term on the left side of Equation (1), 

−
��

���

��

��� �� − ��
���

����, is due to the neglect of rotary inertia caused by the shear deformation.  

2.2. Solution to Natural Frequencies under Different Boundary Conditions 

Considering the complexity of the wave equation, we adopt the model solution and variable 

separation method to solve the vibration problems of the modified Timoshenko beam. Afterwards, 

the equation of natural frequencies for different boundary conditions was derived. 

As for free vibration, � = 0 and, thus, we can obtain the following: 
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which denotes the basic equation of motion for a modified Timoshenko beam, 

Let the following statement be true: 

�(�, �) = �(�)�(�)  (5) 

Substitute the above equation into Equation (2): 

���(�)(�)

����(�) − �(�)
=

�(�)̈

�(�)
= −��  (6) 
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where 

� = �
��
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 (7) 
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�  (8) 

Set the following: 

�(�) = ���  (9) 

Substitute Equation (9) into Equation (6): 

���� + ������ − �� = 0  (10) 

Solving Equation (10) will obtain four solutions: 
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Let the following be true: 
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From Equation (9), the general solution to the mode function for lateral vibration �(�) is as 

follows: 

�(�) = ������ + ������� + ������� + ��������  (17) 

Alternatively, it can be expressed as follows: 

�(�) = �����ℎ��� + �����ℎ��� + �����ℎ��� + �����ℎ���  (18) 

where ��, ��, ��, ��� �� are coefficients. 

Based on the above 18 equations, the natural characteristics for a Timoshenko beam can be 

derived. 

For a hinged-hinged beam, the following equations can be derived from its boundary conditions: 
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��cosh��� + �����ℎ��� + ��cos��� + �������� = 0  (21) 
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Thus, we can derive the equation for natural frequency: 

sin��� = 0  (23) 

Denote Equation (23) as follows: 

��(�) = 0  (24) 

From the above equation, natural frequencies for a hinged-hinged beam will be easily obtained. 

For a clamped-clamped beam, we have the following: 

�� + �� = 0  (25) 

��cosh��� + ��sinh��� + ��cos��� + ��sin��� = 0  (26) 

���� + ���� = 0  (27) 

�������ℎ��� + �������ℎ��� + ��(−��)sin��� + ���������� = 0  (28) 

For a dynamic problem, coefficients ��, ��, ��, ��� �� cannot be all zeroes; otherwise, it becomes a 

static problem. Thus, the equation of the natural frequency can be expressed as follows: 

�

1 0 1 0
cosh��� sinh��� cos��� sin���

0 �� 0 ��

��sinh��� ��cosh��� (−��)sin��� ��cos���

� = 0  (29) 

Denote Equation (29) as follows: 

��(�) = 0  (30) 

where ��(�) is the determinant of Equation (29) and frequency � is de facto the eigenvalue of the 

corresponding matrix of the determinant. Name ��(�) = 0 the frequency polynomial for a clamped-

clamped beam, and every zero of the polynomial is namely every order of natural frequency for the 

beam. After expansion and simplification of the determinant, we will obtain the following equation: 

��(�) = −2���� + 2����cos(���)cosh(���) − (��
� − ��

�)sin(���)sinh(���)  (31) 

from which natural frequencies of a clamped-clamped beam can be calculated. 

For a clamped-free beam, we have the following: 

������ − ������ = 0  (32) 

��(�� − ��) + ��(�� − ��) = 0  (33) 

��cosh��� + ��sinh��� + ��cos��� + ��sin��� = 0  (34) 

�������ℎ��� + �������ℎ��� + ��(−��)sin��� + ���������� = 0  (35) 

Since coefficients ��, ��, ��, ��� �� are not all zeroes, the equation of the natural frequency can then be 

expressed as follows: 

�

���� 0 −���� 0
0 �� − �� 0 �� − ��

cosh��� sinh��� cos��� sin���

��sinh��� ��cosh��� (−��)sin��� ��cos���

� = 0  (36) 

Denote Equation (36) as follows: 

��(�) = 0  (37) 

After expansion and simplification of the determinant, we will obtain the following equation: 
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��(�) =

(−�� + ��)����
�(− cos(���)) cosh(���)

−������ sin(���) sinh(���) − ������cosh�(���)

+������sinh�(���) + (−�� + ��)�������cos�(���)�

+������sin�(���) − ������ sin(���) sinh(���)

+����
� cos(���) cosh(���)

 (38) 

Similar to the clamped-clamped beam, name ��(�) = 0 the frequency polynomial for clamped-free 

beam, and every zero of the polynomial is every order of natural frequency for the beam. The natural 

frequencies of the clamped-free beam will also be obtained through the equation. 

3. Effect of the Cross-Sectional Types on Natural Frequencies  

In this section, the top 20 orders of natural frequencies of the Bernoulli–Euler beam, the Rayleigh 

beam, the shear beam, the Timoshenko beam, and the modified Timoshenko beam are calculated and 

compared. From the comparisons, the natural frequencies of three section types change with 

regularity under different length and boundary conditions. The key point of the modified 

Timoshenko beam is its solution to the overestimation of natural frequencies, and the phenomenon 

is more obvious when the beam tends to be non-slender. 

To establish the simulation model, the parameters of the beam are set as follows: 

Elastic modulus, � = 210 × 10��� ; Poisson’s ratio, ν = 0.3; shear modulus, � =
�

�(���)
; mass 

density, � = 7850�� ∙ ��� ; and shear coefficient, � =
��(���)

������
. Three lengths of the beam, i.e., � =

8 �, � = 4 �, ��� � = 2 �, are used to study the frequency effect for different slenderness ratios. 

Beams with three cross sections are considered and studied, with their section parameters as follows: 

(1) Rectangular section beam: Width: � = 0.25 �, height: ℎ = 0.5 �. 

(2) Rectangular hollow section beam: Width: � = 0.25 �, height: ℎ = 0.5 �, web thickness: �� =

0.04 �, and flange plate thickness: �� = 0.02 �. 

(3) Circular section beam: Radius: � = 0.4 �.  

The above section outlines are shown as Figure 3. 

 

h

b
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(a) (b) (c) 

Figure 3. Cross-sectional forms: (a) rectangular section, (b) rectangular hollow section, and (c) circular 

section. 

  



Appl. Sci. 2020, 10, 5245 8 of 19 

3.1. Rectangular Section Beam 

3.1.1. Hinged-hinged 

Figures 4–6 show the natural frequencies of a hinged-hinged beam with the rectangular section 

subjected to different beam models. All first subgraphs of these 3 figures show the overall frequency 

curves, from which the same variation trend of the natural frequencies can be found for all five beam 

theories, i.e., Bernoulli–Euler beam, Rayleigh beam, shear beam, Timoshenko beam, and modified 

Timoshenko beam.  

 
 

(a) (b) 

Figure 4. Natural frequencies of the 8-m-long beam: (a) overall frequency curve and (b) frequency 

difference compared with a modified Timoshenko beam. 

  

(a) (b) 

Figure 5. Natural frequencies of the 4-m-long beam: (a) overall frequency curve and (b) frequency 

difference compared with a modified Timoshenko beam. 

  

(a) (b) 

Figure 6. Natural frequencies of the 2-m-long beam: (a) overall frequency curve and (b) frequency 

difference compared with a modified Timoshenko beam. 
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The Bernoulli–Euler model provides acceptable frequencies at lower orders while loses its 

rationality and feasibility with the order increasing. For Rayleigh beam theory, which takes the effect 

of rotary inertia due to flexural deformation into account, its natural frequencies are substantially 

reduced compared with the Bernoulli–Euler beam. However, the result is still much higher than those 

of other beams. Therefore, we could lay more emphasis on the shear beam, Timoshenko beam, and 

the modified Timoshenko beam without considering Bernoulli–Euler beam and Rayleigh beam. 

It can be noted that the results obtained from the shear beam, Timoshenko beam, and the 

modified Timoshenko beam are generally common; however, the difference between the shear model 

and Timoshenko beam is much less. As can be seen from Figure 4b, when the beam length is 8 m, the 

frequency difference between the shear model and the modified Timoshenko beam is 12.3% at the 

order of 20 and 8.8% between the Timoshenko beam and the modified Timoshenko beam. The major 

distinction between the shear model and Timoshenko model is whether rotary inertia due to flexural 

deformation has been concerned, and the modified Timoshenko beam further takes rotary inertia due 

to shear deformation into account based on the Timoshenko beam. Therefore, the consequence shows 

that rotary inertia caused by the shear deformation is nonnegligible. 

As can be seen from Figures 5 and 6, when the beam length reduces to 4 or 2 m, the difference 

between the shear beam and the Timoshenko beam has also been reduced. Actually, for a 2-m-long 

beam, the frequency difference between the shear beam and modified Timoshenko beam is 15.0% at 

the 20th order, almost the same as that between the Timoshenko beam and modified Timoshenko 

beam, which is 14.5%. The result illustrates that the effect of the rotary inertia caused by the flexural 

deformation becomes small when the beam tends to be non-slender. On the contrary, the significance 

of the rotary inertia due to shear deformation for non-slender beam emerges. In addition, the fact that 

the frequency difference has grown enormously for both shear beam and Timoshenko beam 

illustrates that the rotary inertia caused by the shear deformation has an increasing influence on 

natural frequencies with the beam is shortened. It is intelligible for the reason that the effect of shear 

deformation as well as the rotary inertia that it causes becomes notable when the beam tends to be 

non-slender. In the meantime, the effect of bending moment and rotary inertia that it causes 

decreases. As a consequence, such modification is essential if the high-frequency band is considered. 

3.1.2. Clamped-Clamped 

Figures 7–9 demonstrate the natural frequencies, as well as the frequency difference, of a 

clamped-clamped beam in the rectangular section. The natural frequency properties of the clamped-

clamped beam are analogous to that of the simply supported beam. With the order increasing, the 

frequency difference between either the shear beam or the Timoshenko beam and the modified 

Timoshenko beam increases sharply and more notably when the beam becomes shorter, similar to 

the foregoing discussion that the rotary inertia caused by the shear deformation plays an increasingly 

important role as the order increases or the beam length decreases.  

  

(a) (b) 

Figure 7. Natural frequencies of the 8-m-long beam: (a) overall frequency curve and (b) frequency 

difference compared with a modified Timoshenko beam. 
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(a) (b) 

Figure 8. Natural frequencies of the 4-m-long beam: (a) overall frequency curve and (b) frequency 

difference compared with a modified Timoshenko beam. 

  

(a) (b) 

Figure 9. Natural frequencies of the 2-m-long beam: (a) overall frequency curve and (b) frequency 

difference compared with a modified Timoshenko beam. 

3.1.3. Clamped-Free 

From Figures 10–12, a conclusion can be drawn similarly to that of the hinged-hinged beam. 

When the beam length is 8 m, the frequency difference of shear model is much bigger than the 

Timoshenko beam compared with modified Timoshenko beam as order increases; the reason for this 

is the effect of the rotary inertia caused by flexural deformation. However, the difference for both of 

these models compared with the modified Timoshenko model becomes obviously large at higher 

orders when the beam length tends to be shorter; thus, the rotary inertia caused by the shear 

deformation should not be neglected at higher orders in such a case. 

  

(a) (b) 
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Figure 10. Natural frequencies of the 8-m-long beam: (a) overall frequency curve and (b) frequency 

difference compared with a modified Timoshenko beam. 

  

(a) (b) 

Figure 11. Natural frequencies of the 4-m-long beam: (a) overall frequency curve and (b) frequency 

difference compared with a modified Timoshenko beam. 

  

(a) (b) 

Figure 12. Natural frequencies of the 2-m-long beam: (a) overall frequency curve and (b) frequency 

difference compared with a modified Timoshenko beam. 

3.2. Rectangular Hollow Section Beam 

3.2.1. Hinged-Hinged 

Figures 13–15 show the natural frequencies of rectangular hollow section beams in different 

slender conditions. It can be seen that the simulation results derived from a rectangular hollow 

section beam bear resemblance to those of a rectangular section beam. When the beam length is 8 m, 

the frequency difference is 9.18% between shear beam and modified Timoshenko beam and 8.03% 

between Timoshenko beam and the modified Timoshenko beam. When the beam length reduces to 

4 m or 2 m, the effect of the rotary inertia caused by shear deformation is more phenomenal. At the 

20th-order frequency when the beam length is 2 m, the frequency difference is 10.01% between the 

shear beam and the modified Timoshenko beam and 9.92% between the Timoshenko beam and the 

modified Timoshenko beam. Therefore, we will draw the same conclusion as that for the rectangular 

section beam, which also verifies the necessity of the modification as well.  
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(a) (b) 

Figure 13. Natural frequencies of the 8-m-long beam: (a) overall frequency curve and (b) frequency 

difference compared with a modified Timoshenko beam 

  

(a) (b) 

Figure 14. Natural frequencies of the 4-m-long beam: (a) overall frequency curve and (b) frequency 

difference compared with a modified Timoshenko beam. 

  

(a) (b) 

Figure 15. Natural frequencies of the 2-m-long beam: (a) overall frequency curve and (b) frequency 

difference compared with a modified Timoshenko beam. 

3.2.2. Clamped-Clamped 

Figures 16-18 show that the frequency characteristics of the clamped-clamped beam in a 

rectangular hollow cross section share common results with the above conclusions. When the beam 

length is relatively large, the bending moment plays a key role, and it is where the difference mainly 

derives from. When the length decreases, the rotary inertia caused by shear deformation could not 
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be ignored any more, which explains that, at higher orders, the difference for both the shear model 

and Timoshenko model compared with the modified Timoshenko model remains quite large. 

Therefore, the modified Timoshenko beam is also verified to be necessary in non-slender beam and 

at higher-order frequencies. 

  

(a) (b) 

Figure 16. Natural frequencies of the 8-m-long beam: (a) overall frequency curve and (b) frequency 

difference compared with a modified Timoshenko beam. 

  

(a) (b) 

Figure 17. Frequencies of the 4-m-long beam: (a) overall frequency curve and (b) frequency difference 

compared with a modified Timoshenko beam. 

  

(a) (b) 

Figure 18. Natural frequencies of the 2-m-long beam: (a) overall frequency curve and (b) frequency 

difference compared with a modified Timoshenko beam. 
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3.2.3. Clamped-Free 

Similarly, frequency characteristics of the clamped-free beam in a rectangular hollow section are 

also in accordance with the above cases as are shown in Figures 19–21. When the beam becomes 

shorter, the rotary inertia caused by the shear deformation is no longer negligible for both the shear 

model and Timoshenko model at higher orders; thus, the modified Timoshenko beam which takes 

this important effect into account makes sense. 

  

(a) (b) 

Figure 19. Natural frequencies of the 8-m-long beam: (a) overall frequency curve and (b) frequency 

difference compared with a modified Timoshenko beam. 

  

(a) (b) 

Figure 20. Natural frequencies of the 4-m-long beam: (a) overall frequency curve and (b) frequency 

difference compared with a modified Timoshenko beam. 

 
 

(a) (b) 

Figure 21. Natural frequencies of the 2-m-long beam: (a) overall frequency curve and (b) frequency 

difference compared with a modified Timoshenko beam. 
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3.3. Circular Section Beam 

3.3.1. Hinged-Hinged 

In the following 3 figures (Figures 22–24), natural frequencies of a circular section beam will be 

presented, and similarly, the conclusion is consistent. When the beam length is 8 m, the frequency 

difference is 10.4% between the shear beam and the modified Timoshenko beam and 5.79% between 

the Timoshenko beam and the modified Timoshenko beam. Similarly, when the beam reduces to 4 m 

or 2 m, the effect of the rotary inertia caused by shear deformation is so phenomenal that it shall not 

be neglected. At 2 m length, the difference is 15.3% between the shear beam and the modified 

Timoshenko beam and 14.4% between the Timoshenko beam and the modified Timoshenko beam. 

Hence, regularity also applies to the circular section beam. 

  

(a) (b) 

Figure 22. Natural frequencies of the 8-m-long beam: (a) overall frequency curve and (b) frequency 

difference compared with a modified Timoshenko beam. 

  

(a) (b) 

Figure 23. Natural frequencies of the 4-m-long beam: (a) overall frequency curve and (b) frequency 

difference compared with a modified Timoshenko beam. 
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(a) (b) 

Figure 24. Natural frequencies of the 2-m-long beam: (a) overall frequency curve and (b) frequency 

difference compared with a modified Timoshenko beam. 

3.3.2. Clamped-Clamped 

As can be seen from the following three figures (Figures 25–27), we can draw a similar 

conclusion for the frequency characteristics of the clamped-clamped beam with a circular section. 

When the beam is 8 m long, the difference for the shear model and Timoshenko model compared 

with the modified Timoshenko beam increases almost linearly as the order increases. However, for a 

less slender beam, the difference increases almost quadratically, which means the rotary inertia 

caused by shear deformation plays an increasingly important role as order increases for a non-slender 

beam. On the whole, the necessity of the modification has been proven to be reasonable. 

  

(a) (b) 

Figure 25. Natural frequencies of the 8-m-long beam: (a) overall frequency curve and (b) frequency 

difference compared with a modified Timoshenko beam. 

 
 

(a) (b) 
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Figure 26. Natural frequencies of the 4-m-long beam: (a) overall frequency curve and (b) frequency 

difference compared with a modified Timoshenko beam. 

  

(a) (b) 

Figure 27. Natural frequencies of the 2-m-long beam: (a) overall frequency curve and (b) frequency 

difference compared with a modified Timoshenko beam. 

3.3.3. Clamped-Free 

Figures 28 to 30 show the frequency characteristics of the clamped-free in a circular section, 

which is identical to the foregoing discussion. Figure 28 demonstrates the frequency difference for 

the beam length at 8 m, where the difference for both the shear model and Timoshenko model 

increases almost linearly as order increases. The reason is that the bending moment plays a key role 

when the beam is relatively long or slender. When the beam length decreases to less slender, as can 

be seen from Figures 29–30, the shear deformation and rotary inertia caused by shear deformation 

becomes obvious at higher orders, which explains the phenomenon that the frequency difference 

stays large at higher orders. In all, the modification for a Timoshenko beam is quite important when 

it comes to non-slender beams at its higher orders. 

  

(a) (b) 

Figure 28. Natural frequencies of the 8-m-long beam: (a) overall frequency curve and (b) frequency 

difference compared with a modified Timoshenko beam. 
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(a) (b) 

Figure 29. Natural frequencies of the 4-m-long beam: (a) overall frequency curve and (b) frequency 

difference compared with a modified Timoshenko beam. 

  

(a) (b) 

Figure 30. Natural frequencies of the 2-m-long beam: (a) overall frequency curve and (b) frequency 

difference compared with a modified Timoshenko beam. 

4. Conclusions 

Since the Timoshenko beam was introduced to engineering fields, many efforts have been 

devoted and many problems are yet to handle. A modified Timoshenko beam has been proposed to 

solve the overestimation of the natural frequency for the Timoshenko beam and the problem on how 

many frequency spectra exist in the beam. The modified Timoshenko beam takes into account the 

rotary inertia caused by the shear deformation, and the equation of motion and other dynamic 

characteristics have been derived. It has been theoretically proven to solve the overestimation. This 

article mainly revolves around the effects of the cross-sectional forms on the natural frequencies. 

Through the simulation, the validity of the modified Timoshenko beam has been confirmed. It is 

found that, for all three cross-sectional forms, rotary inertia due to shear deformation plays an 

important role in natural frequencies, no matter for slender beam or non-slender beam. Furthermore, 

the effects are more conspicuous for non-slender beam where the shear deformation and rotary 

inertia that it causes theoretically have more influences on natural frequencies. Comparisons of three 

cross-sectional forms further prove the necessity and validity of the modification. The result may help 

reduce the error of the Timoshenko beam and may further establish the authority of the modified 

Timoshenko beam. 
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