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Abstract: Inerter-based vibration control systems have been developed rapidly in recent years.
However, previous studies mainly focus on the development of new devices and parameter
optimization strategies, while ignoring the improvements in the utilization efficiency of the inerter
system that the bracing system and novel installation methods may bring. In this paper, a cross-layer
installed cable-bracing inerter system (CICBIS) is proposed to improve the utilization efficiency of the
inerter system, which can cross more layers and is suitable for shear-type multi-degree-of-freedom
(MDOF) structures. A demand-based cable-bracing inerter system (CBIS) design method is developed.
The mass enhancement and utilization efficiency improvement of the inerter system caused by
the cross-layer installation are quantified through calculating the effective inerter-mass ratio of
the CBIS-equipped MDOF structure. A 10-story benchmark structure is used to verify the control
performance of the CICBIS and the design method. The analysis results show that the proposed
design method can exert the cable-bracing system’s adjustability and the damping enhancement of the
inerter system. The CICBIS can reduce the total apparent mass and damping coefficient requirements
of the inerter systems without increasing the control force. It means that the proposed design method
is effective, and the CICBIS has a high efficiency.

Keywords: passive vibration control; inerter system; cross-layer; cable-bracing system;
multi-degree-of-freedom structure

1. Introduction

Since the concept of a structural control was proposed [1–3], it has been widely used to improve
the performance of buildings under various excitations, especially for those in earthquake-prone areas.
In recent years, the introduction of inerters, a novel mechanical element [4], further developed the
control strategies. A large number of inerter-based vibration control systems have emerged [5–9].

An inerter is a two-terminal element, generating a resisting force proportional to the acceleration
difference between its two ends, which is a significant difference with the traditional one-node mass
whose inertial force is dependent on absolute acceleration. The liquid mass pump developed by
Kawamata [10] in the 1970s is regarded as the bud of the two-terminal inerter element and was initially
utilized as an auxiliary mass to modify the natural frequency of the structure for its high inertial
resistance. In 1999, a ball screw viscous damper proposed by Arakaki [11,12], called the rotary damping
system, utilized the ball screw mechanism to enhance the damping effect, while the benefits of its
mass amplification effect were not used intentionally. Subsequently, researchers found that combing
the inerter in series or parallel with springs and damping elements could achieve a better energy
dissipation capability. Ikago and his coworkers [5,13,14] proposed a tuned viscous mass damper
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(TVMD), which is the first to make full use of its damping enhancement effect and mass amplification
effect. These devices, similar to the TVMD, combing the inerters, damping elements, and springs
together for vibration control, are called the inerter system [15,16] or an inerter-based damper [17].
Various studies on the topological combinations of the inerter system [18] and their composition
parameter optimizations [9,16,19] have been published.

The inerter element with the mass magnification effect can connect the mass of a traditional tuned
mass damper to the structure, making the tuned mass damper lightweight and so its performance
improves [20–22]. Meanwhile, due to its excellent damping capacity, the inerter system can serve as a
damper element substituting the traditional damper in vibration control systems, such as a traditional
tuned mass damper [23], and base isolation systems [24–26]. The performance improvements
introduced by the inerter element and inerter system have been verified.

Indeed, without being combined with other vibration control systems, taking advantage of
the damping enhancement and mass magnification effects, the inerter system still prevails over
traditional control strategies in terms of achieving a lightweight and efficient structural control
performance. In 2012, Ikago et al. [5] provided a tuning design formula for a single-degree-of-freedom
(SDOF) structure equipped with the TVMD based on the fixed-point method and verified the TVMD
seismic control effect through shaking table tests. In [27,28], Ikago et al., using sequential quadratic
programming, studied the distribution and parameter optimizations of the TVMDs installed on each
story of a multiple-degree-of-freedom (MDOF) structure, and further simplified the design by assuming
the distribution of the masses of the TVMDs were proportional to the stiffness of each story. In 2014,
through a modal analysis and a numerical example, Lazar et al. [6] studied the tuned inerter damper
(TID), one of the typical inerter systems, and illustrated that the best installation location is the bottom
layer. Wen et al. [29] studied the distributions and parameter optimizations of the TVMD and the
TID considering multi-modal seismic control and verified their effectiveness. Pan and Zhang [15,16]
studied the closed-form response of SDOF structures equipped with three typical inerter systems,
respectively, and provided a demand-based parametric design method. In [19], they found the damping
enhancement equation and clarified the damping enhancement effects’ fundamental principle.

Besides, some research considering the cost of the inerter systems has been carried out as well.
The cost of the inerter system is mainly related to its control force and parameter requirements. In [6],
the authors pointed out that due to the inter-story installation scheme, to obtain an identical structural
control performance with the tuned mass damper, the apparent mass and damping coefficient
requirement of the TID needed to be enlarged, consequently causing the force exerted from the
TID on the structure to increase. Considering the potentially increased cost of the inerter system,
Taflanidis et al. [7] proposed a trade-off solution. They developed a dual-objective design approach for
the structure equipped with a different inerter system, giving Pareto optimality between the structural
control performance and the control force of the inerter system. Zhang et al. [30] confirmed that two
inerter systems, instead of a single one, installed at the bottom story could reduce the size and control
force of the device, thus facilitating the manufacture and improving the structural control performance
at the same time. However, using the Pareto optimality to reduce the control force of the inerter system
is based on sacrificing the control performance. Utilizing multiple inerter systems, being equipped
at each story or concentrated at the bottom layer, to meet various optimization goals, requires many
quantities and types of inerter systems, which will still increase the overall cost. Indeed, improving the
utilization efficiency of the inerter system is an effective way to reduce its cost.

For improving the utilization efficiency of the inerter system, instead of utilizing the structural
shear deformation between consecutive layers, different installation schemes considering the vibration
characteristics of the structure have been studied. Asai et al. [31] proposed outrigger TVMDs
utilizing the bending deformation instead of the shear deformation of high-rise structures. Ogino and
Sumiyama [32] confirmed the high performance of the practical application of the TVMDs installed
across three layers using a chevron steel brace in a 37-story building. Additionally, proposing to connect
the inerter to a toggle brace, Hwang et al. [33] were the first to use the support with an amplification
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effect to enhance the efficiency of the inerter. However, the outrigger TVMD is only suitable for
outrigger structures. The chevron steel brace and toggle brace are inevitably bulky due to buckling
issues. Besides, it is inconvenient to adjust the displacement transition ratio of the chevron steel brace,
which results in different sizes of inerter which are needed to achieve an optimal distribution of the
inerter systems.

In contrast, the cable-bracing system has advantages in terms of being lightweight due to its
tension-only and adjustability characteristics. Xie et al. [34] proposed a cable-bracing inerter system
(CBIS), supporting the inerter system with a simple cable-bracing system, and illustrated its advantages
in terms of installation convenience and end constraint release. Sorace and Terenzi [35,36] studied
a damped cable system, utilizing prestressed cables to connect fluid viscous spring-dampers and
the structure. Utilizing pretensioned rods combined with levers, Aly et al. [37] developed interlayer
bracings and outer bracings to connect the magneto–rheological dampers between layers and between
the ground and a specific layer, respectively. Kang [38] combined the pretensioned cables with a
seesaw member and proposed a cable-bracing seesaw system to support a pair of fluid dampers.
The cable-bracing seesaw system connecting the grounded dampers directly to the top story exhibited
an excellent damping performance.

Making full use of the characteristics of the CBIS and maximizing its utilization efficiency, in this
paper, a cross-layer installed CBIS (CICBIS), able to cross more layers and suitable for shear-type MDOF
structures, is proposed. The displacement transition ratios of three typical cable-bracing systems
are established first and compared with each other. Deriving the equivalent two-degree-of-freedom
system of the MDOF structure equipped with CBIS considering the installation scheme, the effective
inerter-mass ratio is defined to quantify the utilization efficiency of the CBIS. Based on the demand-based
design, a design flow is proposed for the MDOF equipped with CBISs. A 10-story benchmark model is
applied to illustrate the proposed design flow. Two types of CICBISs and inter-layer-installed CBISs
(IICBISs) are designed separately. The control performance of the designed CBISs is compared with
each other through a frequency-domain and time-domain analysis. Finally, the time history analysis
of the displacement of the inerter system and its damping element is carried out to investigate the
damping enhancement effect of the designed inerter system.

2. Theoretical Analysis of CBIS

2.1. Basic Concept of the CBIS

The basic concept of the CBIS is to introduce the cable-bracing system into the installation of the
inerter system. The tension-only and adjustability characteristics of the cable-bracing system benefit
the CBIS to cross layers and unify the inerter size. The inerter system and the cable-bracing system
will be discussed separately in the following content. The nomenclature used in this study is shown in
Table A1 in the Appendix A.

2.1.1. The Inerter System

The inerter system used in the CBIS described herein is the TVMD, which is first applied in
practice [39]. The damping enhancement effect and mass amplification effect of the TVMD have already
been verified by researchers [5,15,16,19]. Figure 1 shows the mechanical schematic of the inerter and
the TVMD. The resisting force Fin of the inerter is proportional to the acceleration difference between
its two ends:

Fin = min
( ..
u2 −

..
u1

)
= min

..
ud (1)

where u1 and u2 are the displacement of the inerter two ends, respectively. The resisting force and
acceleration difference ratio min is the apparent mass [19], having the same unit of the real mass.
With the help of different mechanisms, the inerter can achieve an apparent mass much larger than
its real mass. The authors of [39] demonstrated an inerter with a ball screw mechanism applied in
practice, achieving an apparent mass of 5400 tons with an actual mass of 560 kg.
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typical forms of cable-bracing systems: (a) simple cable-bracing system [34], (b) cable-bracing lever 
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Figure 1. The mechanical schematic of the inerter and the tuned viscous mass damper (TVMD): (a) the
inerter; (b) the TVMD.

Assuming the damping coefficient and tuning spring stiffness of the TVMD are cin and kin,
respectively, the resisting force Fis of the TVMD can be expressed as:

Fis = kin(uis − ud) = min
..
ud + cin

.
ud (2)

where uis and ud are the displacement differences at two ends of the TVMD and the inerter, respectively.

2.1.2. The Cable-Bracing System

The cable-bracing system proposed in this study consists of a pair of pretensioned diagonal
cables and some auxiliary elements (such as the lever, the seesaw system). Figure 2 illustrates three
typical forms of cable-bracing systems: (a) simple cable-bracing system [34], (b) cable-bracing lever
system [37], and (c) cable-bracing seesaw system [38].
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Figure 2. Schematics of different cable-bracing system: (a) simple cable-bracing system; (b) cable-
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Figure 2. Schematics of different cable-bracing system: (a) simple cable-bracing system; (b) cable-bracing
lever system; (c) cable-bracing seesaw system.

In the preliminary design, it is assumed that the stiffness of the auxiliary element is infinite,
and the stiffness of the cable-bracing system only depends on the cable stiffness kc. The cable stiffness
kc can be determined by the following equation:

kc =
EcAc

lc
(3)

where Ec and Ac are the elastic modulus and cross-section area of the cable, respectively; lc is the cable
equivalent length considering the cable-bracing system’s displacement transition mechanism.

Take the cable-bracing systems in Figure 2 as examples, the equivalent length lc of the simple
cable-bracing system equals the total length of its one-side cable. Influenced by the displacement
transition mechanism, when calculating the equivalent length lc of the cable-bracing lever system
and cable-bracing seesaw system, their diagonal cable lengths should be weighted according to the
principle of stiffness equivalence:

lc =


lc1 + lc2 simple cable− bracing system
η2lc1 + lc2 cable− bracing lever system

2
(

cos(γ)
sin(α+γ)

)2
lc1 cable− bracing seesaw system

(4)
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where lc1 and lc2 are one-sided diagonal and horizontal cable lengths, respectively; α, η, γ are the cable
installation angle, the lever arm ratio, and the seesaw angle, respectively.

Applying a small amount of pretension on the cable helps the cable maintain a straight line in
the static state. Caused by the cable’s tension-only characteristic, the cable’s compression will lead
it to slack. Thus, the pair of pretensioned cables are stressed alternately during the seismic motion.
Figure 2 shows that the cable of the cable-bracing system is in series with the TVMD’s tuning spring,
which can be replaced by the stiffness ks as a whole:

ks =
kinkc

kin + kc
(5)

For simplification, we choose the stiffness ks as a key parameter in the subsequent discussion.
The cable stiffness kc is determined by the selected cable and Equation (4). Submitting ks and kc into
Equation (5), the tuning spring stiffness kin can be obtained.

The proportion of the structure displacement transferred to the inerter system displacement can
be adjusted through auxiliary elements and the cable-bracing system’s installation angle. It reflects
the adjustability of the cable-bracing system. In order to compare cable-bracing systems with each
other and unify their motion equations, we define the displacement transition ratio as the ratio β of the
inerter system displacement and the horizontal displacement of the structure when ignoring the cable
flexibility. Take cable-bracing systems in Figure 2 as examples—for the simple cable-bracing system,
the inerter system displacement equals the diagonal cable displacement. The lever or seesaw further
increase the diagonal cable displacement transferred to the inerter system for the cable-bracing lever
system and cable-bracing seesaw system. Thus, the displacement transition ratios are:

β =


cos(α) simple cable− bracing system
η cos(α) cable− bracing lever system
2 cos(γ) cos(α)

sin(α+γ) cable− bracing seesaw system
(6)

Figure 3 presents the variation of the displacement transition ratios concerning the cable installation
angle α, in case of the lever arm ratio η = 1, 1.5, 2, and the seesaw angle γ = 20◦, 30◦, 40◦. Note that the
simple cable-bracing system is a specific form of the cable-bracing lever system, of which the arm ratio
equals to one.
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From Figure 3, we can see that as the cable installation angle increases, the displacement transition
ratios of all cable-bracing systems therein decrease. When the cable installation angle is fixed,
the displacement transition ratio of the cable-bracing lever system is proportional to the lever arm,
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while the displacement transition ratio of the cable-bracing seesaw system decreases with an increase
in the seesaw angle. When the cable installation angle is small, the cable-bracing seesaw system shows
a better displacement transition performance than that of the cable-bracing lever system. However,
the seesaw cable system’s displacement transition efficiency decreases rapidly with an increase in the
cable installation angle. Besides, it is difficult to adjust the displacement transition ratio by changing
the seesaw angle, when the cable installation angle is large. In contrast, the cable-bracing lever system’s
displacement transition ratio declines relatively slowly and still maintains the adjustability under a
large cable installation angle. Thus, we conclude that the cable-bracing seesaw system is suitable for
the CBIS with a small cable installation angle and a high demand for the displacement transition ratio,
and the cable-bracing lever system is the opposite. It is worth noting that although the cable-bracing
system can obtain a higher displacement transition ratio by choosing a larger lever arm or a smaller
seesaw angle, this is often accompanied by an increase in the complexity of the cable-bracing system.

For simplicity, during the design procedure, the displacement transition ratio is selected as an
optimization variable instead of considering the specific cable-bracing system’s form. The cable
installation angle is determined according to specific structure characteristics, such as the story height,
column-span, etc. Considering the displacement transition ratio and the cable installation angle,
the designers can select the appropriate cable-bracing system.

2.2. Government Equations of the SDOF Structure of a CBIS

As is shown in Figure 4, an SDOF structure, of which the mass, stiffness, damping coefficient
are m, k, and c, respectively, is equipped with a CBIS. In Figure 4, a pair of dashed boxes with the
connotation β indicate the cable-bracing system, of which the displacement transition ratio equals β.
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Figure 4. Schematic of the single-degree-of-freedom (SDOF) structure with a cable-bracing inerter
system (CBIS).

According to the principle of virtual work, the relationship between the control force applied to
the structure, and that of the inerter system is:

Fcontrol·1 = Fis·β. (7)

where Fcontrol and Fis are the control force applied to the structure and the force of the inerter
system, respectively.

Thus, the governing motion equations of the SDOF structure with CBIS underground motion
excitations are:  m

..
u + c

.
u + ku + Fcontrol = −m

..
u0

Fcontrol = βFis = βks(βu− ud) = β
(
min

..
ud + cin

.
ud

) (8)

where u0 and u are the ground motion displacement, and the displacement of the structure relative to
the ground, respectively.
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For simplicity, we define an equivalent inerter displacement ue = ud
β , and rearrange Equation (8):{

m
..
u + c

.
u + ku + Fcontrol = −m

..
u0

Fcontrol = ke(u− ue) = me
..
ue + ce

.
ue

(9)

where me = minβ
2, ce = cinβ

2, ke = ksβ2 are the equivalent apparent mass, equivalent damping
coefficient and equivalent stiffness, respectively, as is shown in Figure 4.

2.3. MDOF Structure with the CBISs

The governing motion equations of an uncontrolled MDOF structure’s underground motion
excitations are:

Mp
..
Xp + Cp

.
Xp + KpXp = −Mprp

..
u0 (10)

where Xp is the displacement vector of the MDOF structure relative to the ground; Mp, Kp, Cp denote
the mass, stiffness, and damping matrices of the primary structure, respectively; rp is the influence
coefficient vector.

Let xp,i, mp,i, kp,i, and cp,i denote the relative displacement, mass, stiffness, and damping coefficient
of the ith layer of the primary structure, respectively; the matrices in Equation (10) are defined as:

Xp =
{
xp,1, xp,2, . . . xp,n

}T
(11)

Mp = diag
{
mp,1, mp,2, . . .mp,n

}
(12)

Kp = TTdiag(kp,1, kp,2, . . . kp,n)T (13)

Cp = TTdiag(cp,1, cp,2, . . . cp,n)T (14)

rp = {1, 1, . . . , 1}T (15)

where n is the number of MDOF structure layers; T is an n-dimension square matrix with 1 in the
diagonal and −1 in the first off-diagonal, denoting a transformation matrix defining the relative
deformation between consecutive floors.

Similar to the SDOF structure, the motion equations of the MDOF structure with the CBISs can be
simplified as:

M
..
X + C

.
X + KX = −Mr

..
u0 (16)

where X denotes the displacement vector of the primary structure and the CBISs; M, C, and K are
the mass, damping, and stiffness matrix of the controlled structure, respectively; r is the influence
coefficient vector.

Let me,i, ke,i, and ce,i denote the apparent mass, stiffness, and damping coefficient of the ith CBIS,
respectively. The matrices in Equation (16) are defined as:

X =
{
Xp

T, Xe
T
}T

, where Xe =
{
xe,1, xe,2, . . . xe,nd

}T
(17)

M =

[
Mp

Me

]
, where Me= diag

{
me,1, me,2, . . .me,nd

}
(18)

C =

[
Cp

Ce

]
, where Ce= diag

{
ce,1, ce,2, . . . ce,nd

}
(19)

K =

[
Kp + RcKeRc

T
−RcKe

−Ke
TRc

T Ke

]
, where Ke= diag

{
ke,1, ke,2, . . . ke,nd

}
(20)

r =
{
rp

T, 01×nd

}T
(21)
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where xe,i denotes the equivalent inerter displacement of the ith CBIS; nd is the total number of the
CBIS; [Rc]n×nd

is the installation matrix, denoting the installation location of the CBIS.
Take the jth CBIS installed between the rth and sth layers as an example (as is shown in Figure 5).

The installation location of the jth CBIS is represented with the entries in the jth column of Rc. Only the
rth and sth entries of the column are −1 and 1, representing the jth inerter installation location and
the jth cable connection position, respectively, and the rest are all 0. Rc can express all types of CBIS
studied herein (s− r = 1 denotes the IICBIS; s− r > 1 denotes the CICBIS).
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For quantifying the CICBIS advantages, we derived the generalized two-degree-of-freedom
equation of the CBIS-equipped MDOF structure based on the Hamiltonian principle and defined its
effective inerter-mass ratio. Assuming the vibration shape of an MDOF structure equipped with a
CBIS represented by the vector φ, the displacement vector Xp and Xe can be expressed as:{

Xp = αpφ
Xe = αdRc

Tφ
(22)

where αp and αd are generalized coordinates of the primary structure and the inerter, respectively.
Therefore, the kinetic energy ET, strain energy EU, and dissipated energy ED of the CBIS-equipped

MDOF structure are: 
ET = 1

2
.
α

2
pφ

TMpφ+ 1
2

.
α

2
dφ

TRcMeRc
Tφ

EU = 1
2α

2
pφ

TKpφ+ 1
2 (αp − αd)

2φTRcKeRc
Tφ

ED = 1
2

.
α

2
pφ

TCpφ+ 1
2

.
α

2
dφ

TRcCeRc
Tφ

(23)

Assuming L = ET − EU, the Euler–Lagrange equations are:
d
dt

(
∂
∂

.
αp

L
)
−

∂
∂αp

L + ∂
∂

.
αp

ED = 0

d
dt

(
∂
∂

.
αd

L
)
−

∂
∂αd

L + ∂
∂

.
αd

ED = 0
(24)

Substituting Equation (23) into Equation (24) gives:{
φTMpφ·

..
αp + φTCpφ·

.
αp + φTKpφ·αp + φTRcKeRc

Tφ·(αp − αd) = 0
φTRcMeRc

Tφ·
..
αd + φTRcCeRc

Tφ·
.
αd + φTRcKeRc

Tφ·(αd − αp) = 0
(25)
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Comparing Equation (25) with Equation (9), the generalized mass Mp of the primary structure
and the generalized apparent mass Md of the CBIS can be expressed as:{

Mp = φTMpφ
Md = φTRcMeRc

Tφ
(26)

The performance of the tuned inerter systems is positively related to their mass ratio [5]. In the
generalized two-degree-of-freedom equation, the effective inerter-mass ratio µ is defined as:

µ =
Md

Mp
=
φTRcMeRc

Tφ

φTMpφ
(27)

Note that the installation location vector Rc only affects the generalized apparent mass of the CBIS,
but has no effect on the generalized mass of the primary structure. When the cross-layer installation,
expressed by the installation location vector Rc, leads the displacement between the layers of the
structure to be superimposed, the effective inerter-mass ratio µ will be amplified, which means the
utilization efficiency of the inerter system is improved. The design example illustrated in Section 4 has
verified this amplification effect numerically.

3. Optimum Seismic Control of an MDOF System with CBISs

3.1. Evaluation of the Seismic Response

The state-space approach [40] is employed here to evaluate the seismic responses on their high
efficiencies. The seismic input action is simulated as a Kanai–Tajimi filtered white noise [41]:

Sg(ω) =
ω4

g + 4ζ2
gω

2ω2
g

(ω2
g −ω2)

2
+ 4ζ2

gω2ω2
g

S0 (28)

whereωg, ζg are the frequency and damping properties of the supporting ground, respectively; S0 is the
intensity of the white noise excitation at the bedrock, associated with the ground motion acceleration

..
u0:

S0 =
0.141ζg

..
u0

2

ωg

√
1 + 4ζg2

(29)

Rewriting the Kanai–Tajimi power spectrum (Equation (28)) into the form of state-space
equations gives: { .

xq = Aqxq + Eqw
..
xg = Cqxq

(30)

where Aq =

[
0 1
−ω2

g −2ζgωg

]
, Cq =

√
2πS0

[
−ω2

g − 2ζgωg
]
, Eq =

[
0
1

]
.

Let the xR =
{
XT,

.
X

T}T
. Rewriting Equation (16) with a state-space form gives:

.
xR = ARxR + ERw (31)

where xR =
{
XT,

.
X

T}T
, AR =

[
0(n+nd)×(n+nd)

I(n+nd)×(n+nd)

−M−1K −M−1C

]
, ER =

[
01×(n+nd)

−rT
]T

, and w

denotes the white noise input.
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Combining Equations (31) and (30), extended state-space equations considering the Kanai–Tajimi
power spectrum are obtained: { .

xs = Asxs + Esw
z = Csxs

(32)

where xs =

{
xR

xq

}
, As =

[
AR ERCq

02×(2n+2nd)
Aq

]
, Es =

[
0(2n+2nd)×1

Eq

]
; the output matrix Cs, used to

calculate the output vector z which includes the inter-story drifts of the structure and forces of the
CBISs, is defined as:

Cs =

[
T 0n×(2n+2nd+2)

−Ke
TRc

T Ke 0nd×(n+nd+2)

]
(33)

The direct stochastic analysis method [40] ensures that the covariance matrix of the output vector
z is:

Kzz = CsPCT
s (34)

where the state covariance matrix P is the solution of the following Lyapunov equation:

AsP + PAT
s + EsET

s = 0 (35)

Note that the diagonal terms of the covariance matrix Kzz contain all the response information on
the inter-story drifts of the structure and forces of the CBISs. The root of first n diagonal terms are the
root mean square (RMS) structural responses σu of each layer, and the root of the remaining items are
the RMS control forces σF of each CBIS.

3.2. Design Formulation and Procedure

The design of the CBISs used to attenuate the MDOF structure seismic response includes the total
number determination, the placement design, and the parameter optimizations. The total number
and placement of the CBISs can be predetermined through an initial analysis of the structure and by
considering the building facade limitations. Typically, considering the high efficiency of the CICBISs,
there is no need to install them at each layer. The demand-based design method is adopted herein
to optimize the parameters of the CBISs to ensure the vibration performance of the structure while
reducing the cost of manufacturing and installing the CBISs.

For intuitively expressing the optimization process, the design variables representing the CBISs
are adopted and defined as the following:

y =
{
md, cd,ωr, β1, β2, . . . , βnd

}
(36)

where md, cd are the designed apparent mass, and the designed damping coefficient of the inerter
system, respectively; βi denotes the displacement transition ratio of the ith cable-bracing systems and
nd denotes the total number of CBISs; ωr is the frequency of the CBIS defined as:

ωr =

√
kd

md
(37)

where kd denotes the designed stiffness of the CBISs.
The equivalent parameters of each CBIS can be calculated by the following equations:

me,i = md·β
2
i

ke,i = md·ω
2
r ·β

2
i

ce,i = cd·β
2
i

i = 1, . . . , nd (38)
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It is worth noting that the displacement transition ratios reflect the proportional relationship
between each CBIS, and their specific value can be determined by presetting the designed apparent
mass md.

The performance of the CBIS in terms of attenuating the MDOF structure seismic response is
represented by the drift reduction ratio Jp:

Jp =
n

max
i=1

[
σu(i)/hi

θ0max

]
(39)

where σu(i) denotes the ith RMS story drift of the controlled structure; hi denotes the ith floor height of
the structure; θ0max denotes the maximum RMS story drift ratio of the uncontrolled structure.

Since the materials’ strength required for the manufacturing of the inerter system and the strength
of the anchor nodes are positively related to the control force [7,15,16], the RMS control force of a CBIS
is herein selected as its cost index. Because the inerter system of each CBIS is the same, the cost index
of installing nd CBISs JF can be estimated as:

JF = nd
ndmax

i=1

{
σF(i)

}
(40)

where σF(i) is the RMS control force of the ith CBIS.
The increase in the connection stiffness may achieve a better control effect, while it comes at

the cost of tuning effects and tremendously increases the apparent mass and damping coefficient
requirements of the inerter system. We limit the frequency of the CBIS as follows to enhance the tuning
effect and get a reasonable solution, as Ikago et al. did in [27]:

ωr =
1√

1− 1µ
1ω0 (41)

where 1ω0 denotes the natural frequency of the uncontrolled structure; 1µ is the effective inerter-mass
ratio, which can be obtained by submitting the equivalent apparent mass matrix Me, Rc represents the
location matrix of CBISs, and the first-order modal vector 1φ into Equation (27).

Thus, the demand-based optimization for the CBISs is formulated:

find y =
{
md, cd,ωr, β1, β2, . . . , βnd

}
to minimize JF(y)

subject to


Jp(y) ≤ Jtarget

ωr =
1√

1−1µ
1ω0

md = mdesign

(42)

where Jtarget is the target drift reduction ratio determined by the performance demands [15,16]. mdesign

is the predetermined designed apparent mass, determined by the inerter model.
Finally, suitable cable-bracing systems are selected considering their structural characteristics and

the displacement transition ratios. The design flowchart is shown in Figure 6.



Appl. Sci. 2020, 10, 5914 13 of 24

Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 24 

{ }ω β β β

ω ω
μ

 ≤


=
−




dd d r 1 2 n

F

p target

r 1 0
1

d design

find               = , , , , ,...,

to minimize   ( )

( )
1subject to       

1
=

y m c

J y

J y J

m m

 

(42)

where targetJ  is the target drift reduction ratio determined by the performance demands [15,16]. 

designm  is the predetermined designed apparent mass, determined by the inerter model. 

Finally, suitable cable-bracing systems are selected considering their structural characteristics 
and the displacement transition ratios. The design flowchart is shown in Figure 6. 

 
Figure 6. Design flowchart. 

4. An Illustrative Design Example 

4.1. Analysis Model 

The benchmark structure used in this study is a 10-story building proposed by the Japan Society 
for Seismic Isolation [42], the detailed information of which is shown in Figure 7 and Table 1. 

 

Figure 6. Design flowchart.

4. An Illustrative Design Example

4.1. Analysis Model

The benchmark structure used in this study is a 10-story building proposed by the Japan Society
for Seismic Isolation [42], the detailed information of which is shown in Figure 7 and Table 1.
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4.1. Analysis Model 

The benchmark structure used in this study is a 10-story building proposed by the Japan Society 
for Seismic Isolation [42], the detailed information of which is shown in Figure 7 and Table 1. 

 

Figure 7. 10-story benchmark structure.

Table 1. Characteristics of the benchmark building.

Story Mass mi (×103 kg) Stiffness ki (kN/m) Height (m)

10 875.4 158,550 4
9 649.5 180,110 4
8 656.2 220,250 4
7 660.2 244,790 4
6 667.2 291,890 4
5 670.1 306,160 4
4 675.7 328,260 4
3 680.0 383,020 4
2 681.6 383,550 4
1 699.9 279,960 6
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By calculating the effective inerter-mass ratios of a CBIS installed in the structure, the influence of
the installation location and cross-layer installation method on the utilization efficiency of the CBIS
is determined first. The effective inerter-mass ratios of the IICBISs and CICBISs (cross-two-layers
and cross-three-layers) installed in all possible locations are illustrated in Figure 8a, respectively.
In Figure 8a, the horizontal axis is the effective inerter-mass ratio normalized by me

1φ
TMp1φ

, representing

the utilization efficiency of the CBIS, and the vertical axis is the inerter installed location. Figure 8a
shows that since the height of the bottom layer of the benchmark structure is higher than the other
layers, the bottom displacement of the structure is more significant and results in the CBIS reaching
the highest utilization efficiency when installed at the bottom. Except for the bottom and top layers,
the efficiency of CBISs installed on other layers is similar. Comparing the CBISs installed on the
same layer, we can conclude that the normalized inerter-mass ratios of the cross two-layer and cross
three-layer-installed CBISs are at least 2.78 and 5.74 times larger than those of the IICBIS, respectively.
Considering the possible number of layers that the CBIS can cross, the bottom layer, the second layer,
and the third layer-installed CBISs are illustrated in Figure 8b. Note that with the increase in the number
of crossed layers, the normalized inerter-mass ratio improves significantly, and the CBIS-installation
crossing all layers has the highest utilization efficiency.
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4.2. Design of the CBISs

According to the above analysis, we can conclude that installing the CBIS crossing all layers is the
most efficient installation method. However, the more layers crossed, the higher the requirements
on the construction and maintenance of the CBIS, and sometimes the number of layers that the CBIS
can cross is limited by the building facade requirements. Since these engineering factors are difficult
to quantify, we recommend and analyze the cross-all-layers and cross-three-layers installed CBISs as
two possible selections (CASE A and CASE B) showed in Figure 9. CASE A and CASE B represent
the most efficient installation method and an easier-to-implement installation method, respectively.
The vertical distribution of the CICBISs in CASE B is uniform to ensure a reasonable control force
distribution. Thus, the total number of CICBISs is selected to be three, and the inerter installation
locations are selected as the bottom, third, and sixth layer. Meantime, another design scheme, installing
the IICBISs layer by layer on the benchmark structure, is illustrated as well to compare with the
CICBISs, as CASE C showed in Figure 9, the IICBISs are divided into three groups, thereby limiting the
types of cable-bracing systems to ensure engineering practice.
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The optimization problems for CASE A, CASE B, and CASE C in Figure 9 can be expressed as:

find y =
{
md, cd,ωr, β1, β2, . . . , βnd

}
to minimize JF(y)

subject to


Jp(y) ≤ Jtarget

ωr =
1√

1−1µ
1ω0

md = mdesign

(43)

where Jtarget= 0.5 determined by the initial analysis and the performance requirements of the primary
structure. An inerter with the apparent mass mdesign= 1 × 106kg is utilized herein, which can be
achieved with an actual mass lower than 150 kg, using the same mass-amplifying mechanism of the
inerter mentioned in [39].

The parameters of the Kanai–Tajimi power spectrum used to simulate the seismic excitation are
selected as ωg= 4π rad/s, ζg = 0.6, which is suggested by Kanai [41] for the firm ground.

Table 2 shows the optimal results of CASE A, CASE B, and CASE C obtained using a numerical
optimization. Since the unified designed apparent mass is predetermined as 1× 106kg, the utilization
efficiency of the CICBISs and IICBISs is reflected by the displacement transition ratios. It was found
that the average displacement transition ratios of the cross-all-layers and cross-three-layers installed
CBISs are about 30.0% and 57.2% of the IICBISs’, reflecting the high efficiency of the CICBIS. It is said
that when using the cable-bracing system with similar transfer ratios, the designed apparent mass and
designed damping coefficient of the CICBIS are much smaller than those of the IICBIS. Furthermore,
as the number of the CICBISs used in CASE A and CASE B is smaller than that of the IICBISs in
CASE C, the total apparent mass and damping coefficient requirements of the CICBISs are reduced
compared with the IICIBSs. According to the optimal results shown in Table 2, we can know that
the total apparent mass and damping coefficient requirements of cross-all-layers installed CBIS are
about 10.0% and 7.5% of the IICBIS’s, respectively. The total apparent mass and damping coefficient
requirements of the cross-three-layers installed CBISs are reduced to about 33.3% and 27.8% of the
IICBIS’s, respectively. In fact, the IICBISs in CASE C can be replaced by the traditional TVMDs as well,
which have been studied in [27,28]. For achieving the same control effect of the IICBISs, the apparent
mass and damping coefficient requirements of each TVMDs are different, listed in Table 2 as well.
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Compared with traditional TVMDs, the CBISs show the advantages of a small apparent mass and few
damping coefficient requirements.

Table 2. Optimal results of CASE A, CASE B, CASE C.

md (kg) cd (kN/m/s) ωr β kd (kN/m)

CASE A CICBIS-All 1,000,000 1605.899 3.259 0.508 10,620.172

CASE B
CICBIS-1

1,000,000 1970.397 3.270
0.909

10,695.612CICBIS-2 0.964
CICBIS-3 1.040

CASE C

IICBIS-1
1,000,000 2129.588 3.281

1.535
10,766.132IICBIS-2 1.799

IICBIS-3 1.754

TVMD-1 2,354,898 5014.963 3.281 1.000 25,353.142
TVMD-2 3,234,898 6889.000 3.281 1.000 34,827.336
TVMD-3 3,078,151 6555.193 3.281 1.000 33,139.778

In the above design of the CBISs equipped benchmark building, the designed displacement
transition ratios are at a relatively low level, and under the premise of making full use of the width of the
benchmark building, the cable installation angle ranges from 5.959◦ to 46.009◦. Thus, the cable-bracing
lever system is chosen herein. Table 3 lists the design parameters of the cable-bracing lever systems for
CASE A, CASE B, and CASE C.

Table 3. Design parameters of the cable-bracing system.

α (◦) η β

CICBIS-All 46.009 1.116 0.508
CICBIS-1 20.054 0.968 0.909
CICBIS-2 17.361 1.010 0.964
CICBIS-3 17.361 1.090 1.040
IICBIS-1 5.959 (8.881 1) 1.543 (1.554 1) 1.535
IICBIS-2 5.959 1.809 1.799
IICBIS-3 5.959 1.764 1.754

1 The bottom layer parameters.

4.3. Effectiveness of the CICBISs

First, the performance of the CICBISs in terms of attenuating the structure response under
the harmonic excitation is analyzed from the perspective of the displacement frequency response
functions (FRFs). Taking the fourth layer’s inter-layer drift FRFs, where the maximum inter-layer
drift occurs, and the top layer’s absolute displacement FRFs as examples, the FRFs, as is shown in
Figure 10, are normalized by the uncontrolled peak response and the black dash line is the FRFs
of the uncontrolled structure. The fourth layer FRF curves show that the damping effect of CASE
A, CASE B, and CASE C on the first-order response is significant, and their curves almost coincide.
It means the CICBISs and IICBISs have a similar control effectiveness on the maximum inter-layer drift
layer. The top layer absolute displacement FRF curves show that the structure response is mainly
controlled by the first-order modal, i.e., whether the CICBISs or IICBISs can effectively control the
overall displacement of the structure. The cross-all-layers installed CBIS can accurately control the
first-order modal response without affecting other modes.
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Furthermore, Figure 11 shows the RMS responses of the controlled and uncontrolled structures
under the stochastic excitation proposed for optimization, where the black dash line is the uncontrolled
structure response and the red dash line is the target drift limitation. The RMS inter-layer drift angles
in Figure 11a show that both the designed CICBISs and IICBISs have reached the target drift reduction
ratio Jtarget= 0.5. Consistent with the conclusions reflected in the FRF curves, CASE A, CASE B,
and CASE C have almost the same control effect on the structure displacement, except for a slightly
difference in the top layer inter-layer drift angle. It is caused by the lack of control device in CASE B.
From the RMS control forces of the CICBISs and IICBISs, shown in Figure 11b, it can be concluded that
the cross-layer installation will not increase the control force. Table 4 shows the cost index JF of each
design case. It can be seen that the cost indexes of CASE A and CASE B are about 8.2% and 26.3% of
CASE C’s, respectively, which is mainly caused by the reduced number of the inerter systems used in
CASE A and CASE B.

Table 4. The cost index JF of CASE A, CASE B and CASE C.

CASE A CASE B CASE C

cost index JF (kN) 718.234 2299.150 8727.719
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Hence, the seismic control effectiveness is investigated herein with a time history analysis.
An artificial accelerogram and three recorded earthquake accelerograms, of which the peak accelerations
are scaled to be 0.1 g, are employed to conduct the time history analysis. The artificial accelerogram is
the BCJ-L2, provided by the Building Center of Japan. The recorded earthquake accelerograms extracted
from the Pacific Earthquake Engineering Research Center database (http://peer.berkeley.edu/nga) are
the Kobe accelerogram (1995), the Chi-chi accelerogram (1999), and the El Centro accelerogram (1940).
Figure 12 shows the time history displacement responses of the fourth layer, where the black dash line
is the uncontrolled structure response. The drift reduction ratio Jp of each seismic accelerogram is
calculated based on the time history responses and is listed in Table 5. All drift reduction ratios are
lower than the target drift reduction ratio Jtarget= 0.5. CASE A, CASE B, and CASE C show almost the
same control effects.

Table 5. Normalized maximum controlled structural drift ratios.

Title 1 BCJ-L2 Artificial
Accelerogram

Kobe
Accelerogram

Chi-chi
Accelerogram

El Centro
Accelerogram

CASE A 0.4714 0.4081 0.4906 0.4416
CASE B 0.4690 0.4182 0.4953 0.4469
CASE C 0.4600 0.4111 0.4874 0.4393

Figure 13 shows the deformation of the bottom layer CBIS and its damping element in CASE
A, CASE B, and CASE C, with the BCJ-L2 artificial accelerogram as the excitation. It shows that the
design method proposed in Section 3.2 ensures the damping enhancement effect of the inerter system,
which means the deformation of the damping element in the inerter system is enlarged compared with
traditional damper. As is mentioned in [19], the damping deformation enhancement factor, defined
as the ratio of RMS deformation of the damping element to that of the inerter system, represents the
degree of the damping enhancement effect. The enhancement factors of the CICBIS-A11, CICBIS-1,
and IICBIS-1 showed in Figure 13 are 1.7764, 1.506, and 1.399, respectively. The better damping

http://peer.berkeley.edu/nga
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enhancement effect partly explains the smaller damping requirements of the CICBISs compared to the
IICBISs, as is shown in Table 2.
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5. Conclusions

In this paper, we studied the CBIS and proposed the CICBIS to improve the utilization efficiency
of the inerter system for shear-type MDOF structure seismic response control. A demand-based CBIS
design method is developed as well. The main contributions of this paper are summarized as follows:

• The ability of the CICBIS to reduce the total apparent mass and damping coefficient requirements
of the inerter systems without increasing the control force has been confirmed. Thus, the CICBIS
with a high efficiency provides a feasible solution to attenuate the in-built or existing building’s
seismic response.

• The demand-based CBIS design method proposed herein can exert the damping enhancement
of the inerter system and the adjustability of the cable-bracing system. It allows the CBISs with
the same inerter to realize an optimal vertical distribution, facilitating the manufacture and
deployment of the inerter system.

• The effective inerter-mass ratio reflecting the influence of the installation location and layout of the
CBIS on the inerter system’s utilization efficiency is used to explain the CICBIS’s high efficiency.
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It provides a reference for the further optimization of the installation location and layout of the
inerter system.

Although the discussion herein is limited to the shear-type structure and some existing
cable-bracing systems, based on the tension-only characteristics and flexibility of the cable, it is
foreseeable that entirely using these properties will make the application of the CICBIS more prominent.
The discussions on the efficiency of the CICBIS equipped in the structures other than shear-type,
and the experimental verifications will be carried out in subsequent studies.
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Appendix A

Table A1. Nomenclature list.

Symbol Parameter Definition

TVMD tuned viscous mass damper
SDOF single-degree-of-freedom
MDOF multiple-degree-of-freedom
TID tuned inerter damper
CBIS cable-bracing inerter system
CICBIS cross-layer installed CBIS
IICBIS inter-layer installed CBIS
RMS root mean square
FRF frequency response function
Fin resisting force of the inerter
u1, u2 displacement of the inerter two ends
min, cin, kin apparent mass, damping coefficient, and tuning spring stiffness of the TVMD
Fis resisting force of the TVMD
uis, ud displacement differences at two ends of the TVMD and the inerter
kc cable stiffness
Ec, Ac elastic modulus and cross-section area of the cable
lc cable equivalent length
lc1, lc2 one-side diagonal and horizontal cable length
α cable installation angle
η lever arm ratio
γ seesaw angle
ks stiffness of the CBIS
β displacement transition ratio
m, k, c mass, stiffness, and damping coefficient of the SDOF structure
Fcontrol control force applied to the structure

u0 ground motion displacement
u displacement of the structure relative to the ground
ue equivalent inerter displacement
me, ce, ke equivalent apparent mass, damping coefficient, and stiffness of the CBIS
xp,i relative displacement of the ith layer of the primary structure
mp,i, kp,i, cp,i mass, stiffness, and damping coefficient of the ith layer of the primary structure
n number of MDOF structure layers
me,i, ke,i, ce,i equivalent apparent mass, stiffness, and of damping coefficient the ith CBIS
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Table A1. Cont.

Symbol Parameter Definition

xe,i equivalent inerter displacement of the ith CBIS
nd total number of the CBIS
αp generalized coordinates of the primary structure
αd generalized coordinates of the inerter
ET, EU, ED kinetic energy, strain energy, and dissipated energy of the CBIS equipped n-DOF structure
Mp generalized mass of the primary structure
Md generalized apparent mass of the CBIS
µ effective inerter-mass ratio
ωg, ζg frequency property and damping property of the supporting ground
S0 intensity of the white noise excitation at the bedrock
w white noise input
σu RMS structural responses
σF RMS control forces
md, cd designed apparent mass and damping coefficient of the inerter system
βi displacement transition ratio of the ith cable-bracing systems

ωr =
√

kd
md

frequency of the CBIS

kd designed stiffness of the CBISs
Jp drift reduction ratio
σu(i) ith RMS story drift of the controlled structure
hi ith floor height of the structure
θ0max maximum RMS story drift ratio of the uncontrolled structure
JF cost index of installing nd CBISs
σF(i) RMS control force of the ith CBIS

1ω0 natural frequency of the uncontrolled structure

1µ first-order effective inerter-mass ratio

1φ first-order modal vector
Jtarget target drift reduction ratio
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