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Abstract. This article proposes a stochastic collocation method to investigate the uncertainty 

quantification in fatigue damage prognosis where experimental data are limited and only interval 

bounds on uncertain parameters are given. The method derived from tensor-products or sparse grids 

consists in a Galerkin approximation in random space, requires the use of structured collocation point 

sets and naturally leads to the solution of uncoupled deterministic problems as in the Monte Carlo 

approach. The distribution of remaining useful life can be acquired by dividing each interval into 

several small parts and assuming the corresponding random variable obeys uniform distribution in the 

small range. Compared with Monte Carlo method and interval arithmetic, this approach is much more 

efficient, time-saving and gets more accurate predictions. An experimental investigation of fatigue 

life prediction of a metallic plate with a central crack is presented to demonstrate the efficiency and 

effectiveness of the proposed method. 

Introduction 

One of the most valuable research branches of Structural Health Monitoring (SHM) is fatigue damage 

prognosis, which mainly concerns the residual service life of a structure under the promise of giving 

the precise diagnosis of current damage state of the structure and the feature of the future load it will 

bear [1, 2]. Generally, this will depend mostly on the validity of the diagnostic method and the well 

understanding of the physical mechanism of damage process. However, accurately estimating the 

remaining useful life (RUL) for aging structural components under fatigue loading has been a 

challenge due to the complexity and uncertainty in service environments and multidisciplinary 

damage mechanisms. Therefore, developing a promising technique for tackling this challenge and 

predicting the fatigue life with a high degree of confidence is desired. 

The increased attention for uncertainty quantification (UQ) methodologies originates from the 

experience that currently available methods are inadequate for application to fatigue damage 

prognosis problems. For example the classical Monte Carlo (MC) technique, which generates 

ensembles of random samples for the prescribed stochastic inputs and calculates the system outputs 

for each sample by utilizing deterministic solvers repeatedly [3]. Liu and Mahadevan [4] proposed a 

concept of equivalent initial flaw size (EIFS) and used MC simulation to predict the probabilistic 

fatigue life. Because MC method is based on performing a large number of random computations, is 

impractical for complex problems with quiet large number of variables which can already be 

computationally intensive in the deterministic sense. 

Another method for dealing with uncertainty propagation is interval arithmetic [5], which is 

notable for its simplicity and speed. With only knowing the interval bounds on input variables, one 

can obtain the value range of the outputs by using this approach. Worden and Manson [6] utilized 
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interval arithmetic to compute the possibility of damage prognosis in a thin plate with a mode I central 

through crack. Surace and Worden [7] extended this to a more complex case for cracking prognosis, 

and also achieved a good result. Although this method does not need to know the exact distribution 

characteristics of variables, but the estimation result is too conservative, in practical engineering 

applications will cause a large waste. 

In reality, the situation where the experimental data are limited and still need to study the 

probability characteristic of the fatigue lifetime is regularly encountered. Recently, a stochastic 

collocation (SC) scheme has been introduced in which simulations are performed at specific 

collocation points in the stochastic space [8]. SC methods are attractive techniques for UQ due to their 

strong mathematical basis and ability to produce functional representations of stochastic variability. 

Using this technique, we can quantify the complete probabilistic variability of fields of interest as 

opposed to extracting only limited statistics. Zhao et al. [9] combined this approach with Bayesian 

method in fatigue crack prognosis of metallic material, in which the distributions of random 

parameters are given with some certain types of distribution such as normal distribution, which 

require plenty of measured data. 

In this work, we use the concept of stochastic spaces for representing random parameters. The 

prognosis uses fracture mechanics-based fatigue crack growth modeling, along with quantification of 

various sources of uncertainty, including natural variability, data uncertainty. In this modeling, an 

isotropic plate with a central mode I through crack presented in [6] is used. The Paris-Erdogan (PE for 

short) law [10] based fracture mechanics is chosen to describe the crack propagation and the 

parameters of material lgC  and m  are considered as random variables. With comparison of Monte 

Carlo simulation, the computational efficiency and accuracy of this approach method are also 

investigated.  

This paper is organized as follows: we give a brief description of the stochastic collocation 

technique in Sec. 2 and a computational model of crack propagation in a metallic plate is presented in 

Sec. 3. We provide details of an experimental investigation of metallic plate crack damage prognosis, 

including the comparisons between the SC and MC methods, in Sec. 4 and we follow it up with 

conclusions in Sec. 5. 

Stochastic collocation methods 

In this section, we provide some basic characteristics of the stochastic collocation technique. 

Stochastic collocation methods combine with the merits of MC simulation and interval arithmetic and 

can be divided into pre- and post-processing. The pre-processing is actually a high-dimensional 

interpolation process which is also known as a surrogate model, namely constructing multivariate 

interpolation polynomial through selecting appropriate interpolation points in the random space, 

similar to MC simulation [8, 11]. This is only demands the interval values of uncertain parameters, 

similar to interval arithmetic. The post-processing is aim to calculate the probability characteristic of 

fatigue lifetime based on the surrogate model, according to the distributions of uncertain parameters. 

A brief introduction will be given here, and more details refer to literature [8, 11 and 12]. 

SC simulation proposed in this article is sampled on a sparse grid constructed by Smolyak 

algorithm which is the linear combination of product formulas [13] and can be given by  
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where d>1 is the dimensional random space; k 
0N∈ is the level of Smolyak construction and iQ is the 

one-dimensional interpolation operator. In this paper the Lagrange interpolation polynomials are used 

as building blocks of Smolyak algorithm and One-dimensional nodal sets are nested. The 

interpolation is defined at the Chebyshev Gauss-Lobatto nodes which are given by 
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Fig. 1 A plate with central mode I crack under the constant cyclic-load 

Computational model 

A thin plate under a constant cyclic-load as shown in Fig.1, of which the material is supposed as 

Ti-6Al-4V Ru ((extra-low interstitials, (ELI))) as its Paris coefficient and exponent have been studied 

in [14] and [15]. In according with the experiment in [14], the geometrical dimensions of the plate and 

load are given as: width w of 200mm, thickness t of 2mm, stress range =40MPaσ∆ (i.e. 

max
=200MPaσ corresponding to maximum applied load of 80kN) and the load ratio R of 0.8. 

The simplest law suitable for metallic material to describe the relationship between the crack 

growth rate da/dn and the stress intensity factor (SIF) range K∆ is the PE equation as follow: 

( )mda
C K

dn
= ∆                                                                (3) 

where C  is the Paris coefficient with units of 2MPa m mmm m− − and m is the Paris exponent with units 

of 1. The parameters can vary from sample to sample for them greatly depend on microstructure of 

material, and the effect of variability is the great impetus to this paper. The SIF range K∆ is given by 

( )K Y a aσ π∆ = ⋅∆                                                               (4) 

where (2 )a a w= is a dimensionless parameter; ( )Y a is the parameter related to the size of geometry 

and for an infinite plate, the analytical solution is ( ) 1Y a = , while other several forms of ( )Y a is given 

in [16] for finite plate as follow:  
2 3( ) 1 0.256 1.152 12.20Y a a a= + + +                                              (5) 
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The remaining cycles N can be acquired by integrating the Eq. (3). When the half length of initial 

crack 0a is determined by detection, the form of N is  
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Estimating the fatigue life using stochastic collocation method 

This section is aim to  analyzes the uncertainty quantification in the plate including infinite plate and 

other three expression of SIF described in Sec. 3 through the stochastic collocation method presented 

in Sec. 2, with using the limited experimental data (16 groups of test data [14]). Befor the 

implementation of this, it is neccsary to study on study on the effectiveness and efficiency of the 

method for estimating the probability of fatigue life of the plate.  

According to the experimental data in [14], the interval bounds on Paris parameters lg C  (a 

logarithm to base 10) and m  are ( 15.0, 11.6)− −  and (3.7,6.2) .respectively. Additionally, the fracture 

toughness is taken the minimum value of 75MPa mICK = and the initial condition is 0 10mma =   

(corresponding to the length of initial crack of 20mm).  

Computational effectiveness and efficiency. In this section a fatigue-life estimation with two types 

of distribution (normal distribution of 
2lg ~ ( 12.3,4.1 )C N −  and 

2~ (7.3,4.1 )m N [15], and uniform 

distribution [6]) for Paris parameters lg C and m  are considered to investigate the effectiveness and 

efficiency of the SC method. In the post-processing of SC method, 2000 samples are used to calculate 

the probability density function (PDF) for the remaining useful life lg N , and the standard solution of 

the PDF are provide by Monte Carlo simulation with the same samples. 

In order to measure  the computational accuracy of the SC method, a definition of cumulative error 

of PDF in the each sample set is given by 

1

SC_ (lg ) MC_ (lg )
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c i i

i
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=

= −∑                                          (9) 

Fig. 2 shows the curves of cumulative error of PDF for lg N  of each SIF expression with the 

calculation of  SC method under each interpolation level k . As the interpolation level k increase, the 

PDF produced by SC method approach the result of MC simulation, and the errors are approximately 

to zero at 7k = . 
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(b)  

Fig. 2 Curves of cumulative error of PDF for lg N calculated by SC method at each interpolation level 

with comparison of MC simulation. (a) Normally distributed parameters; (b) Uniformly distributed 

parameters. 

For the pre-processing (i.e. core process) of SC method will not be influenced by the variation of 

the distribution types of random parameters when the random field is presented, the calculation time 

of that will almost keep the same. The cost time of 7the-order SC method with 2000 samples is only 

31s under the two distribution patterns of parameters, while the computation time spent by MC 

simulation with the same samples is 300s. Apparently, the SC method is more efficient than MC 

simulation. 
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Uncertainty quantification of a damaged plate using the stochastic collocation method. This 

section uses the 7th-order SC method to analyze the probability characteristics of fatigue life of a 

damaged plate in case of limited experimental data ([14]). The value ranges of random parameters 

lg C and m are divided into several intervals with providing the corresponding probabilities, as shown 

in Fig. 3 and each variable is assumed to obey uniform distribution in every small range. The PDF for 

fatigue life lg N of each SIF expression are extracted from 2000 samples with using Kernel Density 

Estimation, as shown in Fig. 4. The four curves produced by SC method are almost coincident and are 

similar to the probability density curve of normal distribution (the red solid line). 

On the basis of PDF for fatigue life lg N of each SIF expression, the interval bounds of lg N with 

probability of 95% are shown in Table 1. The bounds of fatigue life lg N of infinite plate are (7.6113, 

12.2463), while the corresponding bounds provided by interval arithmetic are (6.9858, 12.7817) 

given in [6]. It is clear that the lower bound calculated by SC method is higher, which illustrates that 

the probability of the minimum fatigue life estimated by the interval method is low and conservative.  

 

Conclusions 

In this paper, a stochastic collocation method is used in the fatigue damage prognosis of a plate under 

the constant loading with considering the material parameters lg C and m as random variables. The 

SC method includes a pre-processing based on sparse grid interpolation and a post-processing 

considering randomness of parameters. With comparison of Monte Carlo simulation, this method is 

more robust and time-saving. Changing the distribution patterns of uncertain parameters does not 

affect the computational efficiency and accuracy of this method. 

An example based on limited experimental data is used to demonstrate the effectiveness of the 

proposed approach. The results demonstrate that the proposed UQ method can effectively tackle the 

model parameters’ uncertainties and get more accurate RUL predictions based on the observed sparse 

data. 
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Fig. 4 Curves of PDF for fatigue life lgN of each SIF 

expression 

 

Table 1 The interval bounds of lgN with probability of 95% 

 
Infinite plate Eq(5) Eq(6) Eq(7) 

Lower 

bound 
7.6113 7.5660 7.5888 7.5888 

Upper 

bound 
12.2463 12.1938 12.2312 12.2390 
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