
 

Evidential uncertainty quantification of dynamic response spectrum 

analysis 

Hesheng TANG1, a, Wen YAO1, Lixin DENG1, Yu SU1 and Jiao WANG1 
1
Research Institute of Structural Engineering and Disaster Reduction, Tongji University, Shanghai, 

China 

a
thstj@tongji.edu.cn 

Keywords: uncertainty; evidence theory; dynamic response spectrum analysis; differential 
evolution 

Abstract. This study presents an evidential uncertainty quantification (UQ) approach for dynamic 

response spectrum analysis of a structural system with epistemic uncertainty. The present method is 

performed using an evidence theory to quantify the uncertainty present in the structure’s parameters 

such as material properties. In order to alleviate the computational difficulties in the evidence theory 

based UQ analysis, a differential evolution (DE) based interval optimization for computing bounds 

method is developed. With comparison of probability theory and interval method, the computational 

efficiency and accuracy of this approach method are also investigated. 

Introduction 

The response spectrum method transforms the dynamic problem into static problem, making it easier 

to determine the dynamic response of the complex structures. Thus, response spectrum method has 

gained wide engineering acceptance in the world, which has been applied to the code for seismic 

design of buildings by many countries. 

Uncertainties are often prevalent in practical engineering applications. Oberkampf
[1]

 and Helton
[2] 

categorize the uncertainties as either aleatory uncertainty or epistemic uncertainty according to the 

source of uncertainty. Aleatory uncertainty is due to inherent variability in a physical phenomenon, 

such as uncertain geometric parameters and operating conditions. Epistemic uncertainty is sometimes 

referred to as state of knowledge uncertainty, such as those due to unknown physical phenomena. In 

general, the uncertainty of the structure’s geometric and/or material characteristics is not considered 

in the dynamic response spectrum analysis. However, due to assembly process and manufacturing 

tolerances, the structural geometric and/or material properties are usually uncertain, including 

aleatory uncertainty and epistemic uncertainty. The stiffness, mass, damping are expressed as 

functions of the above parameters. As a result, the structural dynamic response is also uncertain. 

Therefore, it is important to estimate the effect of these uncertainties on the structural dynamic 

response. 

The probabilistic approach
[3]

 is a very powerful tool in solving random uncertainty problems in 

engineering. In probabilistic models, the uncertain variables are usually described with a random 

quantity or a stochastic process. However, the traditional probability theory intended only for aleatory 

uncertainty is not capable of capturing epistemic uncertainty
[4]

. To investigate the epistemic 

uncertainty of structural response, a large number of nonprobabilistic methods have been developed, 

such as the fuzzy set theory
[5]

, interval method
[6,7]

, evidence theory
[8]

.  

Among these methods, evidence theory has great potential in uncertainty quantification which is 

more general than probability and possibility theories. Evidence theory was first proposed by 

Dempster 
[9]

 and extended by Shafer
[10]

, which offers a framework for modeling both epistemic 

uncertainty and aleatory uncertainty through a more flexible representation of uncertainty. It uses 

plausibility and belief to measure the likelihood of event, without making additional assumptions. 

Evidence theory can formulate various basic probability assignment (BPA) structures, and it also can 

provide equivalent formulations to fuzzy sets and interval method, respectively. Evidence theory is 

widely used in artificial intelligence related fields, and recently it has been extended to conduct 

reliability analysis and design for engineering structures and mechanical systems
[8,11,12,13,14]

. 
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In evidence theory, the uncertainty in a system is propagated through a discrete basic belief 

assignment (BPA) structure. Hence the resulting uncertainty in a system is usually quantified by many 

repetitive system simulations for all the possible propositions given by BPA structures of uncertain 

variables
[11]

. As a result, intensive computational cost might be inevitable in quantifying uncertainty 

using evidence theory
[12]

. In order to improve computational efficiency, we use the differential 

evolution algorithm
[15]

 to calculate the uncertainty propagation. 

In this work, an evidential uncertainty quantification method for dynamic response spectrum 

analysis of a structural system with epistemic uncertainty is developed. This method enhances the 

deterministic dynamic response spectrum analysis by including the presence of uncertainty at each 

step of the analysis procedure.  

Fundamentals of evidence theory  

Evidence theory
[10]

 is an uncertainty reasoning and decision-making theory based on the frame of 

discernment. Any problem of likelihood takes some possible sets as given. The family of all the 

possible sets is defined as frame of discernment (FD), which is labeled as Θ. All the elements in Θ are 

mutually exclusive to each other. In evidence theory, the basic propagation of information is through 

Basic Probability Assignment (BPA). BPA expresses the degree of belief in a proposition. BPA is 

assigned by making use of a mapping function (m) in order to express our belief with a number in the 

unit interval [0,1]  

m：2 
Θ
→[0, 1]                                                                                                                                     (1) 

m must satisfy the following three axioms: 

( ) ( )0, 1 ( ) 0,m m A m A

A

Φ = = >∑

⊆ Θ

                                                                                                   (2) 

in which, set A is called focal element. 

Belief function Bel(A) is defined as the total of BPAs for propositions which are included in 

proposition A fully. Plausibility function Pl (A) is defined as the total of BPAs for propositions whose 

intersection with proposition A is not an empty set. 

( ) ( )∑
⊆

=
AB

BmABel                                                                                                                               (3) 

( ) ( )Pl A m B

B A

= ∑

≠ ∅∩

                                                                                                                   (4) 

The belief function represents the degree of belief on that proposition A is true. The plausibility 

function represents the degree of belief on that proposition A is not false. Belief function and 

Plausibility function constitute the lower bound and upper bound of proposition A. The interval 

[Bel(A), Pl(A)] represents the belief degree of proposition A. Evidence from different sources can be 

aggregated by Dempster’s combinational rule.  

Deterministic response spectrum analysis 

Response spectrum analysis (RSA) is a complex that assumes the multi-degree-of-freedom (MDOF) 

system as the single-degree-of-freedom (SDOF) system.  Extracting the biggest response value 

corresponding to each mode of vibration, then coupling with suitable method, the RSA predicts the 

maximum response value. Generally, in the elastic dynamic response analysis of a (MDOF) system, 

mode-superposition response spectrum method is adopted. The seismic action of a MDOF system is 

decomposed into the maximum seismic action of n independent equivalent SDOF system based on 

modal analysis and modal orthogonality principle. Thus each SDOF response is obtained by response 

spectrum. Coupling these SDOF responses using suitable method, such as square root of the sum of 

the squares (SRSS) method, the target response can be obtained. 

Under horizontal earthquake action, a MDOF vibration equation of elastic system is given as: 

[ ]{ } [ ]{ } [ ]{ } [ ]{ } gM C K x M Ix x x+ + = −�� � ��                                                                                                (5)  

where [M], [C], [K], {x}, {I} represent the global mass matrix, damping matrix, stiffness matrix, 

displacement matrix and unit matrix respectively. gx��  is the ground acceleration. 
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The response of a structure can be defined as a combination of many special shapes (modes) that in 

a vibrating string correspond to the "harmonics". The modal analysis gives the solution using SRSS 

method as following, 

2

1

n

j

j

S S
=

= ∑
                                                                                                                                   

(6)  

where S is the total response, Sj is the j
th

 modal response. 

Evidential uncertainty quantification of response spectrum analysis 

The quantification of uncertainty framework is outlined by Fig. 1 and involves three necessary steps: 

uncertainty representation, propagation and measurement. For uncertainty representation, the UQ 

framework uses all possible obtained values of structural material constants provided by designer in 

constructing separate belief structures for material constants. Then, DE global optimization method is 

used for propagation of the represented uncertainty through RSA simulations of a MDOF structure 

using SRSS method in finite element analysis. Finally, observed evidence on simulation responses is 

used in determination of target propositions to estimate uncertainty measures.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1. Three stages of UQ of response spectrum analysis 

Example 

A five-layer reinforced concrete frame structure is used to investigate on the condition of fortification 

intensity of 7 degrees (0.1g),Ⅱclass venue, and Tg= 0.35s. Structural damping ratio is 0.05. The 

mass(m1~m5=m) and stiffness (k1~k5=k) of every layer are assumed as uncertainty parameters. The 

BPAs of k and m are shown in Table 1. SRSS method is adopted to solve the shear force V of frame 

column under horizontal earthquake action. 

 

Table 1 BPA values for uncertain parameter 

Variables Focal elements BPA 

Source 1 k [200000,240000][240000,260000][260000,300000]KN/m 0.25,0.5,0.25 

m [2,2.4][ 2.3,2.6][2.5,2.8][2.6,3]*1.0e3./9.8ton 0.1,0.3,0.4,0.2 

Source 2 k [200000,240000][230000,270000][260000,300000]KN/m 0.3,0.5,0.2 

m [2,2.4][2.3,2.7][2.6,3]*1.0e3./9.8ton 0.2,0.6,0.2 

Uncertainty representation 

 
Uncertainty propagation 

SRSS and DE method 

Uncertainty measurement 

Experimental data 

Different variables and different focal elements combined with 

each other to form a multi-dimensional hypercube collection 

Compute the composite 

BPA of each hypercube 

Calculate the response 

bound of each hypercube 

To formulate cumulative belief function (CBF) 

and cumulative plausibility function (CPF)  
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Fig.2 Shear force cumulative distribution of underlying column based on probability theory, interval 

method and evidence theory 

 

Base shear force results based on probability theory, interval method and evidence theory are 

shown in Fig.2, where CPF, CBF and CDF denote the cumulative distribution function for 

plausibility, belief and probability respectively. For comparison with probability theory, the 

approximate PDFs of uncertain variables are obtained by the assumption that probability mass (BBA) 

in each  interval is uniformly distributed. UB and LB denote the upper bound and the lower bound by 

interval method respectively. If there is enough sufficient information on the uncertainty parameters, 

probability theory can be adopted to get a unique probability distribution curve. If there is less 

information on uncertainty parameters, evidence theory should be adopted to describe the uncertainty. 

Curves of probability theory generally fall in the area between the CBF and CPF curve. So the 

probability theory can be seen as special cases of evidence theory. 

Both evidence theory and interval method can deal with epistemic uncertainty. If there are only 

upper and lower bound of uncertain variables, evidence theory would be evolved into interval 

method.  

 

Table 2 Comparison of the results based on probability theory, interval method and evidence theory 

 Results Probability  Evidence theory Interval method 

Expectations of V(kN) 480.931  [462.010, 502.2184] [381.558, 572.337] 

Probability of V less than 480 44.47% [16%,83%] [0,100%] 

95% reliability of V(kN) 521.9 [496.0,539.2] [381.558, 572.337] 

 

Table 2 shows some information of interest from the results calculated by probability theory, 

interval method and evidence theory. The results of the probability theory are single values, while the 

results of interval method and evidence theory are all interval values. Interval method can solve the 

problem under the condition of less knowledge, but its results are usually too conservative. The 

uncertain variables without exact probability distribution are suitable for evidence theory to handle, 

and it avoids the error caused by probability theory effectively, for example, the result calculated by 

probability theory shows that the probability is no more than 5% when the base shear force exceeds 

521.9kN, while the result in the evidence theory is 539.2kN. These results indicated that evidence 

theory has good compatibility with probability theory and interval algorithm, so evidence theory has 

the potential to handle epistemic uncertainty quantization. 
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Conclusions 

Evidence theory is a good method to deal with both aleatory and epistemic uncertainty, which is able 

to integrate the information coming from multiple sources and reflect different opinions synthetically. 

Evidence theory has a wider range of application than probability theory, interval method and fuzzy 

sets. 

In this paper, an example of five-layer reinforced concrete frame is investigated based on evidence 

theory in response spectrum method, which has good reference value for engineering. 

It should be pointed out that this work is concentrated on linear elastic response spectrum. In our 

future work, we intend to propose elastic-plastic response spectrum method based on evidence theory 

to analyze dynamic response with uncertainties. 
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