doi:10.16450/j.cnki.issn.1004-6801.2018.01.021

基于矩形贴片天线的应变传感器模拟与测试

薛松涛^{1,2}, 蒋 灿¹, 谢丽宇¹, 王世聪³, 万国春³

(1. 同济大学结构工程与防灾研究所 上海,200092) (2. 日本东北工业大学建筑系 仙台,982-8577)
 (3. 同济大学电子科学与技术系 上海,201804)

摘要 当贴片天线经历应变时,天线形状发生改变,导致其谐振频率发生偏移。基于此原理,提出采用矩形贴片天 线的应变传感器测量结构中的应变。采用了 2.4GHz 的 1/4 波长矩形贴片天线作为应变传感单元,首先,利用 HFSS[™]软件设计应变传感器的尺寸参数,分别模拟该天线在长度与宽度方向经历拉应变时的谐振频率偏移;其 次,分别将贴片天线以纵向、横向的方式粘贴在铝板上进行了受拉实验;最后,利用网络分析仪获得天线的谐振频 率。模拟与测试结果表明,天线的谐振频率偏移与天线长度方向上的应变具有良好的线性关系,同时,天线宽度方 向上的应变对其谐振频率的影响较小。

关键词 贴片天线;应变传感器;谐振频率;应变传递效率 中图分类号 TP212.1

引 言

建筑、桥梁等工程结构经历地震、飓风和洪水等 自然灾害后,其重要构件遭受不同程度的损伤,会使 结构抵抗自然灾害的能力下降,甚至引起灾难性事 故^[1]。为确保结构的安全、避免发生次生灾害,需要 对其关键构件进行性能评估。若灾害使构件性能劣 化,可以及时修复或更换。评估关键构件性能时需 充分利用结构健康监测系统。传感器作为结构健康 监测系统的信息采集单元,采集相关物理参数,为结 构性能评估提供数据支持。

应变与结构构件的受力状态密切相关,利用传 感器采集构件的应变信息后,可对构件的性能及剩 余寿命进行评估。现有的应变传感器包括电阻式应 变片、布拉格光栅传感器和振弦式应变传感器等。 传感器布置和信号采集需采用有线的方式,导致安 装过程作业复杂、引线众多。更致命的是,这些传感 器在信号采集过程中需要实时的电源供电,但结构 在经历灾害时供电系统可能失效,导致信号采集系 统无法获得灾害发生时的数据。

为突破传统应变传感器在实际应用中有线的限制,学者们设计并研究了多种无线传感器^[2]。这些 无线传感器通常使用传统应变传感器的基本敏感元 件采集应变信号,利用模数转换器将采集的模拟信 号转换为数字信号,通过天线将数据无线传输至终 端,通常还需电池和太阳能等方式提供电源。这些 传感器原件众多、结构复杂,导致其可靠性差,且未 彻底解决能源供应问题。因此,探究新型无源无线 应变传感器很有必要。

近年来,学者们发现天线的谐振频率与天线的 尺寸存在一定关系。当天线经历应变时,天线尺寸 变化将引起其谐振频率偏移。根据该现象,学者们 制作了采用天线作为应变传感单元的各类传感器。 Mita 等^[3] 根据应变与天线谐振频率间的关系设计 出了一种可测量最大历史应变的应变传感器。Yi 等14 设计了基于矩形贴片天线的应变传感器,其谐 振频率约为 915MHz。Sanders 等^[5] 设计了基于贴 片天线的温度传感器,根据温度改变引起的应变导 致的天线谐振频率偏移进行温度测量。其他学者也 根据此理论设计了不同的应变传感器[6-10]。在这类 传感器中,天线具有能量无线传输、数据无线通信的 功能,同时作为传感单元,不再需要数模转换模块, 结构简单、可靠性高,具有广阔的应用前景。但是, 天线作为一种新型的传感单元,是否具备良好的应 变传感能力还有待研究。笔者利用网络分析仪测量 天线对应变的灵敏程度和线性度,这种有线的测量 方法可以精确标定天线的传感性能。

^{*} 国家自然科学基金资助项目(51478356);中央高校基本科研业务费-学科交叉类资助项目 收稿日期:2017-01-11;修回日期:2017-05-24

应变传感器通常用于测量单方向上的应变,这 要求传感器对其测量方向上(天线长度方向)的应变 具有足够的敏感性,且对垂直于测量方向上(天线宽 度方向)的应变不敏感。根据设计公式,矩形贴片天 线正好具备此特性,笔者采用尺寸最小的矩形贴片, 即 1/4 波长矩形贴片天线设计传感器。但是,设计 公式对天线模型进行了简化,该公式常用于指导天 线设计,能否精确描述应变对天线谐振频率的影响 还有待进一步研究。因此,笔者通过模拟和实验来 研究贴片天线在长度和宽度方向上的应变与其谐振 频率偏移的关系。

1 应变传感器工作原理

贴片天线应变传感器根据天线谐振频率的偏移 来测量应变,谐振频率是天线的最佳工作频率。当 天线以谐振频率工作时,被天线反向散射的能量最 少,天线接收的能量最多。谐振频率的偏移与天线 尺寸的变化存在一定关系,当天线的电长度增加时, 天线的谐振频率将会降低;当天线的电长度减小时, 天线的谐振频率将会升高。

1.1 贴片天线谐振频率与应变的关系

如图 1 所示, 1/4 波长矩形贴片天线的顶部由 上辐射贴片、匹配线、馈电点和过孔组成,通过馈电 点和匹配线,天线与负载连接,只有当天线与负载阻 抗匹配时,二者才能较好地协同工作。天线的底部 是下辐射贴片,介质板位于天线上、下辐射贴片之 间。天线的上、下辐射贴片都由黄铜制成,介质板由 有机材料制成。过孔贯穿了整个介质板,并将上、下 辐射贴片短接起来。

该天线的初始谐振频率与其长度有关^[11],即

$$f_{\rm R0} = \frac{c}{4\sqrt{\epsilon_e}} \frac{1}{L_1 + 2\Delta L_1} \tag{1}$$

其中: f_{R0} 为天线在初始谐振频率;c为真空中的光速; ϵ_e 为介质板的等效介电常数; L_1 为上辐射贴片的长度; ΔL_1 为天线的附加长度,与天线宽度、厚度及材料有关。

当天线在长度方向上经历应变 ϵ 时,谐振频率 f_{R} 会发生相应改变。当 $\Delta L_{1} \leqslant L_{1}$ 时, f_{R} 会与应变 呈现近似线性关系,即

$$f_{\rm R} \approx \frac{c}{4\sqrt{\epsilon_e}} \frac{1}{L_1(1+\epsilon)} = \frac{f_{\rm R0}}{(1+\epsilon)} \approx f_{\rm R0}(1-\epsilon)$$
(2)

由式(2)可知, f_{R} 主要受天线长度方向上应变 的影响, 且 f_{R} 与 ε 成线性关系, 斜率约等于 f_{R0} 。因 此, f_{R0} 越大, 传感器的灵敏度越高。

1.2 贴片天线谐振频率的检测技术

笔者采用网络分析仪测量无负载情况下贴片天 线的谐振频率。首先,将网络分析仪通过同轴线与 天线的馈电点相连;其次,网络分析仪以频率 f 向 天线发射功率为 $P_{in}(f)$ 的电磁波,网络分析仪接收 到被天线反射回来的电磁波,其功率为 $P_{ref}(f)$ 。根 据式(3)计算天线在该频率的回波反射系数 $S_{11}(f)$

$$S_{11}(f) = 10 \lg \left[\frac{P_{\text{ref}}(f)}{P_{\text{in}}(f)} \right]$$
(3)

在某一频段范围内的每一个采样频率点,通过 网络分析仪测量天线的回波反射系数,最终可获得 这一频段范围的回波反射曲线。天线回波反射曲线 的最小值点对应的频率为天线的谐振频率 f_{R} ,即天 线的回波反射系数 $S_{II}(f)$ 在其谐振频率 f_{R} 处达到 最小值。当天线尺寸发生改变时,回波反射曲线也 随之变化,如图 2 所示,天线的谐振频率会发生相应 的变化。

图 2 回波反射曲线和谐振频率 Fig. 2 Reflection curve and resonance frequency

2 应变传感器的设计与模拟

2.1 应变传感器的设计

通过 HFSS[™]软件,笔者设计了基于 1/4 波长 矩形贴片天线的应变传感器。该天线的 3D 模型如 图 3 所示,图中的紫色区域为本模型的辐射边界条 件,模拟采用真空介质。

图 3 HFSS[™]中天线的 3D 模型 Fig. 3 3D prototypes of antennas in HFSS[™]

根据式(2)初步确定天线的尺寸后,需对天线的 尺寸进行微调,以保证天线与同轴线阻抗匹配。若 阻抗不匹配,测量时 S_{11} 参数的绝对值将会降低,增 加实验中测量天线谐振频率 f_{R} 的难度。天线的阻 抗可以通过调节匹配线的长度 L_2 实现。

经优化,确定了天线的相关参数如图 4 和表 1 所示。表中: *H* 为天线的厚度,与长度单位均为 mm; tanδ为损耗角,影响天线的品质系数;ε_r 为介 质板的相对介电常数。

图 4 贴片天线的尺寸

Fig. 4 Dimension of patched antenna

表 1 贴片天线的相关参数

Tab. 1	Parameter	\mathbf{of}	patched	antenna
--------	-----------	---------------	---------	---------

W	L	Н	$oldsymbol{W}_1$	${oldsymbol{W}}_2$
39	45.5	0.51	35	2.1
L_1	L_2	L_3	ε _r	tan∂
20.6	18.7	4	2.33	0.02

$$\varepsilon_{\rm e} = \frac{\varepsilon_{\rm r} + 1}{2} + \frac{\varepsilon_{\rm r} - 1}{2} (1 + \frac{10h}{W})^{-\frac{1}{2}} \tag{4}$$

通过寻找天线 S_{11} 参数的最小值,可以测出该天 线在初始应变下的谐振频率 f_{R0} 为 2.460 8 GHz,如 图 5 所示。

图 5 天线初始应变下的谐振频率

Fig. 5 The resonance frequency at initial stage of antenna

2.2 应变传感器的电学模拟

通过改变天线模型的长度,即改变 L,L₁,L₂ 和 L₃ 来模拟长度方向应变。笔者模拟了天线在不同 应变下的电磁响应,获得 S₁₁曲线,计算出各谐振频 率,如图 6(a)所示。在 16%的应变下,贴片天线的 谐振频率减至 2.418 3 GHz。如图 6(b)所示,天线 的谐振频率与长度方向应变呈良好的线性关系,回

归系数 R^2 为 0.998 6, 拟合直线斜率为 $-2.6 \text{ kHz}/\mu\epsilon$, 即应变增加 1 $\mu\epsilon$, 谐振频率会降低 2.6 kHz。根据式(2), 该斜率理论值约等于 $f_{R0}(2.46 \text{ kHz}/\mu\epsilon)$, 该值接近模拟结果。

采用相同的方法研究天线宽度方向上应变对谐 振频率的影响。图 7 对比了两个方向上应变对谐振 频率的影响,天线谐振频率对宽度方向上应变的灵 敏度仅为一0.37 kHz/με,为谐振频率对长度方向 应变灵敏度的 14.2%,影响相对较小。

图 7 长度与宽度方向应变对天线谐振频率的影响

2.3 应变传感器的力学模拟

模拟结果展示了天线谐振频率的偏移与天线长 度方向、宽度方向应变之间的关系。在实际应变测 量过程中,天线粘贴在被测构件上。由于应变传递 效率 η 的影响,被测构件的应变不能完全传递至天 线,因此有必要研究应变从铝板表面传递到上辐射 贴片上的传递效率。准备实验前,采用 Abaqus 模 拟了粘贴在铝板上天线受拉时的应变分布规律,以 研究传感器的应变传递效率。

由于本实验采用夹具(济南测试厂 WDW-50) 的尺寸限制,铝板端部宽度不大于 3cm。设计的天 线需要粘贴在宽度不小于 6cm 的构件表面,故本实 验铝板和天线的模型如图 8 所示。铝板及应变传感 器的材料参数如表 2 所示。

模型中,介质板与铝试件采用实体单元,上下辐 射贴片采用壳单元,传感器部分的网格划分更为精 细。加载方式为铝板受拉,模型中的铝板加载区受 到了来自夹具的压力(咬合力)与静摩擦力(拉力)的 作用。当铝板受到的拉力为 10 kN 时,全截面都未 达到屈服极限,此时铝板表面纵向(受拉方向)名义 应变(铝板受到的拉力除以铝板截面的刚度)为 609 με。该模型忽略了传感器与铝板之间粘贴材料 的影响。

Fig. 8 Model of specimen and sensor in Abaqus(unit:mm)

表 2 试件与传感器的材料参数 Tab. 2 Material property of specimen and sensors

材料参数	铝板	介质板	辐射贴片
材料种类	铝合金	RT-5870	黄铜
弹性模量/GPa	68.4	1.3	110

0 4

0 33

0 33

泊松比

Abaqus 模拟结果如图 9 所示。铝板受到拉力 为 10kN 时,在传感器区域铝板上表面的应变约为 512~557 με,传递到下辐射贴片上的应变约为 497~562με,最终传递到上辐射贴片的应变约为 349~469 με。根据图 10 的计算结果,上辐射贴片 上平均应变与铝板纵向名义应变的比值即为传递效 率 η ,为 67%。

Fig. 9 Simulation of the longitudinal stretching

3 应变传感器的测试

为验证模拟结果,笔者委托中国电子科技集团 第五十一研究所加工制作了矩形贴片天线,如图 10 所示。天线的设计参数如图 4 和表 1 所示。

图 10 矩形贴片天线 Fig. 10 Rectangle patched antenna

将贴片天线粘贴在铝板表面,铝板设计尺寸如 图 8 与表 2 所示。应变传感器分别以纵向(铝板受 拉方向与长度方向一致)、横向方式(受拉方向与宽 度方向一致)粘贴在铝板表面,如图 11 所示。通过 拉伸实验测量天线在两种粘贴方式下谐振频率偏移 与应变的关系,以研究传感器对长度、宽度方向应变 的灵敏度差异。

图 11 两种粘贴方式

Fig. 11 Two pasting method

当经历相同拉力时,图 11(a)与图 11(b)中天线 长度方向的应变 ε 与铝板的纵向名义应变 ε_{AL}的关 系为

$$\boldsymbol{\varepsilon} = \begin{cases} \eta \, \boldsymbol{\varepsilon}_{\text{AL}} & (\mathbf{M} \mathbf{0} \, \mathbf{K} \mathbf{M}) \\ - \, \mu \eta \, \boldsymbol{\varepsilon}_{\text{AL}} & (\mathbf{H} \mathbf{0} \, \mathbf{K} \mathbf{M}) \end{cases} \tag{5}$$

其中:μ为铝板的泊松比,值为 0.33;根据力学模拟 结果,η约为 0.67。 贴片天线的设计理论忽略了天线宽度方向的应 变对天线谐振频率偏移的影响,若该假设成立,由式 (2)与式(5)可以推出 $\Delta f_{\rm R}/f_{\rm R0}$ 与 $\epsilon_{\rm AL}$ 的关系为

$$\Delta f_{\rm R} / f_{\rm R0} = (f_{\rm R} / f_{\rm R0}) \approx -\epsilon = \begin{cases} -\eta \epsilon_{\rm AL} & (纵向粘贴) \\ \mu \eta \epsilon_{\rm AL} & (横向粘贴) \end{cases}$$
(6)

其中: $\Delta f_{\rm R}/f_{\rm R0}$,为无量纲量,当天线纵向粘贴时, $\Delta f_{\rm R}/f_{\rm R0}$ 与 $\epsilon_{\rm AL}$ 的斜率为 $-\eta$;天线横向粘贴时,该斜 率为纵向拉伸的-0.33倍。

笔者进行了拉伸实验,为检验真实情况是否符 合式(6)的预期,采用网络分析仪测量天线的 S₁₁曲 线,设备如图 12 所示。

图 12 实验设备 Fig.12 Experiment equipment

采用拉伸机(SJV-30000,思为仪器有限公司) 对铝板分级加载,每级加载增量约为2 kN,最终约 加载至约 12 kN 停止,加载完成时,铝板的纵向名 义应变约 700 με。

利用网络分析仪测量天线的 S₁₁曲线,每级荷载 进行 10 次测量,取其平均值,如式(7)所示

$$\overline{S}_{11}(f) = \sum_{i=1}^{10} S_{11,i}(f)$$
(7)

如图 13(a) 所示,为显示方便,两条相邻曲线间 的荷载增量约为 6kN。随着拉力的增加,天线的谐 振频率逐渐减少。

 $S_{11,i}(f)$ 各频率点平均误差约为 3‰。经平均 处理后, $\overline{S}_{11}(f)$ 的各频率点平均误差减小至 1‰,但 部分频率点误差达到 4‰。若谐振频率 f_{R} 附近频 点出现 4‰的误差,直接从 $\overline{S}_{11}(f)$ 曲线上读取最小 值,可能使测得误差达到 1 MHz,而天线横向粘贴 时谐振频率的总偏移量 Δf_{R} 只有 5 MHz,因此该误 差不可忽略。

如图 13(b)所示,选取 $\overline{S}_{11}(f)$ 曲线最小值附近的小段曲线,采用二次曲线对其拟合,选用拟合曲线的最小值点作为天线在该级荷载下的谐振频率点。

利用上述方法处理每一条 $\overline{S}_{11}(f)$ 曲线,最终得 到纵向粘贴时,天线谐振频率与铝板纵向名义应变 的关系如图 13(c)所示。

图 13 天线的测试结果

利用同样方法测试横向粘贴的贴片天线,得到 该粘贴方式下 f_{R} 偏移与 ϵ_{AL} 的关系。

图 14 对比了两种粘贴方式中 f_{R} 与 ϵ_{AL} 的关系。 由于两测试中天线初始谐振频率 f_{R0} 不同,为方便 两种方式比较,纵坐标采用谐振频率偏移率 $\Delta f_{\rm R}/f_{\rm R0}$,其与横坐标铝板表面名义应变都为无量纲量。

图 14 谐振频率偏移与名义应变的关系实验结果

Fig. 14 Experiment result of the relationship between shifting of resonance frequency and nominal strain

在图 14 中,纵向粘贴天线时, $\Delta f_{\rm R}/f_{\rm R0}$ 与 $\varepsilon_{\rm AL}$ 具 有线性关系,拟合直线斜率为-0.7049,比较接近 式(6)中的理论值。横向粘贴天线时,拟合直线斜率 为 0.2518,为纵向粘贴时斜率的-0.357倍,按式 (6)的预期,该值应为-0.33。这说明天线宽度方向 应变对谐振频率的影响不能忽略,式(6)需要修正。

假设天线宽度方向上应变对天线谐振频率的影响是线性的,该影响为天线纵向应变影响的 β 倍,根据式(6),计算出两粘贴方式下 $\Delta f_{\rm R}/f_{\rm R0}$ 与 $\epsilon_{\rm AL}$ 的斜率为

$$k = = \begin{cases} -\eta + \beta \mu \eta & (\text{纵向粘贴}) \\ \mu \eta - \beta \eta & (\text{横向粘贴}) \end{cases}$$
(8)

实际测量中,应变传递效率 η未知,铝板的泊松 比 μ为 0.33。将图 14 结果带入式(8)求解此方程 组,计算得到该组实验中 β= -0.030 6,即天线宽度 方向应变影响为其长度方向应变影响的-3.06%。

重复两组实验,分别测量各组实验纵向、横向粘 贴时的斜率,带入式(8)计算 β 值,如表3所示。

表 3 实验结果与β值 Tab. 3 Experiment result and β

实验组数	纵向粘贴 斜率	横向粘贴 斜率	eta / $%$
1	-0.704 9	0.251 8	-3.06
2	-0.684 5	0.279 2	-9.00
3	-0.670 8	0.285 3	-11.08

测试的平均值为 $\bar{\beta}$ = -7.71%。按照设计公式, 式,β应接近于0。按照图7的模拟结果,β应等于 14.2%。实际情况与设计公式和模拟结果不同,天 线宽度方向应变对谐振频率有影响,该影响约为长 度方向应变影响的一7.71%。若对应变测量的精度 要求不高时,该影响可忽略;若要精确测量应变时, 可同时沿横向和纵向粘贴两个应变传感器。

4 结 论

1)本研究仅进行了传感器的静态测试,基于
 2.4GHz的1/4 波长矩形贴片天线尺寸与其谐振频
 率之间的关系,设计了一种贴片天线应变传感器。

2)通过 HFSS™对矩形贴片天线进行模拟,根据模拟结果,该天线的谐振频率偏移与天线的长度 方向应变之间具有较好的线性关系,拟合直线的斜 率接近天线的初始谐振频率,且宽度方向应变对天 线谐振频率影响较小。

3)为了量化实际应变测量中传感器应变传递 效率的影响,在 Abaqus 中对实际的应变传递进行 了模拟,探究应变传递效率对天线谐振频率偏移的 影响。

4)进行了贴片天线应变传感器的受拉实验,通 过分析实验结果,发现该天线的谐振频率偏移率与 铝板的纵向名义应变之间具有较好的线性关系,拟 合直线的斜率约等于应变传递效率;并且横向应变 对天线的谐振频率偏移影响较小。

5)本研究中,HFSS[™]软件模拟结果与实验测 试结果有少量差异,笔者认为是因为 HFSS[™]模拟 未考虑天线应变对天线介电常数的影响。

参考文献

- [1] 周智,欧进萍. 土木工程智能健康监测与诊断系统
 [J].传感器技术,2001(20): 1-4.
 Zhou Zhi, Ou Jinping. System of smart health monitoring and diagnosis in civil engineering[J]. Journal of Transducer Technology, 2001(20):1-4. (in Chinese)
- [2] Lynch J P, Loh K J. A summary review of wireless sensors and sensor networks for structure health monitoring[J]. Shock and Vibration Digest, 2006(38): 91– 128.
- [3] Mita A, Takahira S. Damage index sensor for smart structures[J]. Structure Engineering and Mechanics, 2004, 17(3-4): 1-23.

- [4] Yi X, Cho C, Cooper J, et al. Passive wireless antenna sensor for strain and crack sensing-electromagnetic, simulation, and testing[J]. Smart Material snd Structure, 2013(22): 1-17.
- [5] Sanders J W, Yao J, Huang H. Microstrip patch antenna temperature sensor[J]. IEEE Sensors Journal, 2015, 15(9): 5312-5319.
- [6] Huang H. Flexible wireless antena sensor: a review [J]. IEEE Sensors Journal, 2013, 13 (10): 3865-3872.
- [7] Cho C, Yi X, Wang Y, et al. Compressive strain measurement using RFID patch antenna sensors[C]// Proceeding of SPIE 9061, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems. San Diego; SPIE, 2014.
- [8] Yao J, Hew Y M, Mears A, et al. Strain gauge-enable wireless vibration sensor remotely powered by light
 [J]. IEEE Sensors Journal, 2015, 15(9): 5185-5192.
- [9] Cho C, Yi X, Li D, et al. Passive wireless frequency doubling antenna sensor for strain and crack sensing [J]. IEEE Sensors Journal, 2016, 16 (14): 5725-5733.
- [10]Ozbey B, Erturk V B, Demir H V, et al. A wireless passive sensing system for displacement/strain measurement in reinforced concrete members[J]. Sensors, 2016, 4(16): 496.
- [11]张钧,刘克诚,张贤泽,等.微带天线理论与工程[M]. 北京:国防工业出版社,1988:42-52.
- [12]李英. 电磁介质谐振器理论与应用[M]. 北京:电子工 业出版社, 1988: 78-95.

第一作者简介:薛松涛,男,1963 年 12 月生,博士、教授、博士生导师。主要研 究方向为结构防灾及结构健康监测等。 曾发表《建筑结构力学》(西安:西安交通 大学出版社,2003)等论著。 E-mail: xue@tongji.edu.cn

通信作者简介:谢丽宇,男,1978 年 10 月生,博士、硕士生导师。主要研究方向 为结构健康监测、智能传感器和土木工 程信息化等领域。 E-mail, livuxie@tongji.edu.cn LIU Zilong, WANG Chunyao, XU Zheng fang, ZHANG Zhi, ZHANG Yaobin (School of Mechanical Engineering, Xinjiang University Urumqi, 830047, China)

Abstract Under external loads, the vibration energy transfer from excitation position to the branches of fruit trees, and we analyze the effects of fruit tree morphology on energy transfer. Two "Y" type of fruit trees and three branches of fruit trees are chosen as the test samples, and the acceleration signal is fitted to get the acceleration function. Then the speed function can be obtained by the integral of the acceleration function and the kinetic energy of the measuring point on the branches of fruit tree can be also calculated. The kinetic energy we calculated can be regarded as external loads transfer to energy of each point. The value of the acceleration signal frequency and the excitation frequency are almost the same. When the energy flowing goes through the bifurcation point, it would be shunted, and more energy move to the side branches with large diameter. The efficiency of transmitting energy is better, and the maximum of the instantaneous velocity of fruits and amplitude of swing are much larger. So, fruits become easier to fall off.

Keywords vibration of tree; transmitting energy; morphological structure; excitation frequency

Strain Sensor Based on Rectangle Patched Antenna: Simulation and Test

XUE Songtao^{1, 2}, JIANG Can¹, XIE Liyu¹, WANG Shicong³, WAN Guochun³
(1. Institute of Structural Engineering and Disaster Reduction, Tongji University Shanghai, 200092, China)
(2. Department of Architecture, Tohoku Institute of Technology Sendai, 982-8577, Japan)
(3. Department of Electronic Science and Technology, Tongji University Shanghai, 201804, China)

Abstract When a patch antenna is undergoing strain, causing the antenna to deform, its resonance frequency shifts accordingly. Based on this principle, a strain sensor with patched antenna can be used for monitoring strain in structural members. This paper adopts 2. 4GHz quarter-wave rectangular patched antennas as strain-sensing units. Firstly, the dimension parameters of patched antennas are determined via $HFSS^{TM}$, and the resonance frequency shifting of the antennas is simulated when antennas are undergoing the tension strain in length and width direction respectively. Then, the antennas are glued on the surface of aluminum plates along the longitudinal and transverse direction respectively. The resonance frequency of antennas under different stressing level is identified via network analyzer. Both the simulation and test results show there is a good linear relationship between resonance frequency variation and the strain in length direction, while the width variation of the rectangular patched antenna has limited influence on the variation of resonance frequency.

Keywords patched antenna; strain sensor; resonance frequency; strain transfer efficiency

Crack Growth Monitoring of Horizontal Stabilizer Shaft Based on Lamb Wave

YANG Weibo^{1,2}, YUAN Shenfang^{1,2}, QIULei^{1,2}

 (1. State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics Nanjing, 210016, China)
 (2. Research Center of Structural Health Monitoring and Prognosis, Nanjing University of Aeronautics and Astronautics Nanjing, 210016, China)

Abstract As a main bearing part of in-service aircraft, horizontal stabilizer shaft has a slender cavity with