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1. Introduction  

Conventional structural control designs are performed 

by adjusting the stiffness of the structures and installing 

energy-dissipating devices, which means that two terms, the 

stiffness coefficient and the damping coefficient are modified in 

the equation of motion. Another method to protect the structure 

from undesired vibrations is to decrease earthquake ground 

motion inputs. The inerter is a two-terminal mechanical 

element that can adjust the structural inertia characteristic 

without introducing considerable physical mass[1]. By the 

property that the mass of the left side in the equation of motion 

for an SDOF system increases with the addition of the 

inertance, while the mass of the right side remains unchanged 

(as seen in Eq. (1)), the inerter can be used to reduce the 

vibration response produced by earthquakes, wind, etc.  

The previous study[2] has already proposed the 

mechanical model of the cable-bracing inerter system (CBIS). 

A CBIS is composed of the combination of a parallel system 

with an inertial mass element and a damping element, and a 

spring element connecting to the parallel system in series 

contracting a tuned viscous mass damper (TVMD)-like system. It 

uses tension-only cables to convert translational movement into 

rotational movement between the structure and the inerter-based 

devices. However, cables can not transmit compression force. 

Combined with compression-resistant materials, a nonlinear 

cable brace model[3] was proposed to transmit compression 

force and improve the performance of tension-only cables. 

Thus, it has the characteristics of being able to bear both tensile 

and compressive forces. A series of parametric analyses 

indicates that the CBIS with nonlinear cable model can 

outperform a tuned viscous mass damper system having 

symmetric stiffness support member. 

In this paper, we focus on the optimal design problem to 

minimize the magnitudes of structural displacement responses, in 

which the fixed-point method is used to obtain the initial 

parameters. Then, seismic responses of the CBIS-controlled 

system are evaluated in the time domain taking the non-linearity 

and the damping enhancement effect into account.  

2. Equations of motion 

A nonlinear CBIS (shown in Fig.1a), is incorporated into an 

SDOF frame structure (shown in Fig.1b) with mass m, stiffness k, 

and damping coefficient c. With the ground displacement �̈�𝑔(𝑡), 

the motion equation of this system is expressed as follows： 
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where  𝑥(𝑡) and 𝑥d(𝑡) are respectively the displacement of the 

primary structure relative to the ground and the deformation of 

the nonlinear cable brace. Superimposed dots indicate derivatives 

with respect to the time. We express the inertance of inerter 

element 𝑚d and the damping coefficient of the inerter system 𝑐d . 

F is the output force of the CBIS, and 𝑘d  is the equivalent 

stiffness of the nonlinear cable brace which is given by Eq. (2):  
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where 𝑘T and 𝑘C are the tension and compressive stiffnesses of 

the cable brace element, respectively (shown in Fig.1a). 

        

(a) (b) 

Fig. 1 Mechanical models of an SDOF structure with a nonlinear 

cable model 

3. Optimum response control of an SDOF structure with a 

CBIS 

In this section, a numerical optimization method, sequential 

quadratic programming (SQP), is used to design the inerter 

system parameters. First, the initial design parameters for the 

numerical optimization are determined according to the fixed-

point method. The optimum angular frequency of the inerter 

system ωr is obtained from the condition where the two fixed 

points[1] have the same ordinates on the resonance curves. The 
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inertance-mass ratio μ is set to 0.1, and the optimum frequency 

ratio and optimum damping ratio can be obtained by: 
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The inherent damping of the primary structure is ignored. The 

inerter system is tuned to the primary structure by setting the 

average of the compressive stiffness and the tension stiffness of 

cable braces equal to the supporting spring stiffness kd: 
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The optimization design problem can be expressed 

mathematically to purse the optimal solutions:  
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This procedure includes four key parameters[3], namely the 

inertance-mass ratio μ, supporting spring stiffness ratio κ, 

compression-tension stiffness ratio γ and damping ratio of an 

inerter system ξ. y is the design variable vector consisting of four 

parameters. The essential performance index is the maximum 

displacement responses xmax of the structure that need to be 

minimized. Using the SQP method, we employed an artificial 

earthquake BCJ-L2 as the input ground motion and obtained a set 

of optimal parameters listed in Table 1. 

Table 1. Optimal Design 

μ=0.1 

 κ ξ γ 

Initial parameters 0.1111 0.1987 1.0000 

Optimum parameters 0.1038 0.0147 1.1410 

Then, time-history analyses based on Newmark’s β 

method (β=1/4) were conducted to verify the accuracy of the 

SQP method (shown in Fig.2) and the vibration reduction 

effects are listed in Table 2.  

Table 2. Responses of an SDOF structure (BCJ-L2) 

 
Displacement (m)   Acceleration (m/s2) 

Peak RMS Peak RMS 

Primary structure 0.2380 0.0579 10.5223 2.4534 

With CBIS 0.1061 0.0298 7.0371 1.5974 

The damping enhancement evaluation parameter α[4] is defined as 

Eq. (7) and is used to assess the energy dissipation capacity of the 

damping element in the inerter system. It this case, α is 2.40, 

which means the deformation of the damping element is 

amplified by the interactions among these elements and a better 

response mitigation effect is obtained. 
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Fig. 2 Responses of an SDOF structure with and without a 

nonlinear CBIS (BCJ-L2) 

4. Conclusions  

In this paper, an optimum design problem to obtain a set of 

optimum parameters for a nonlinear CBIS that contains a 

supporting member having asymmetric spring stiffness in tension 

and compression is formulated. The transfer function of the 

optimized nonlinear CBIS indicates that it can outperform a 

TVMD system having symmetric stiffness spring. We conducted 

a time-history analysis to verify the optimum design derived 

using the SQP method and confirmed that the nonlinear CBIS 

efficiently mitigated the seismic response achieving damping 

enhancement effect. 
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