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Abstract: Due to the increased service life, environmental corrosion, unreasonable construction, and
other issues, local defects inevitably exist in civil structures, which affect the structural performance
and can lead to structural failure. However, research on grout defect identification of precast
reinforced concrete frame structures with rebars spliced by sleeves faces great challenges owing to the
complexity of the problem. This study presents a multiple-variable spatiotemporal regression model
algorithm to identify local defects based on structural vibration responses collected using a sensor
network. First, numerical simulations were carried out on precast beam–column connection models by
comparing the identification results based on a single-variable regression model, two-variable spatial
regression model, and two-variable spatiotemporal regression model; furthermore, a multiple-variable
spatiotemporal regression model was proposed and robustness analysis of the damage indicator
was carried out. Then, to explore the validity of the proposed method, a nondestructive vibration
experiment was considered on a half-scaled, two-floor, precast concrete frame structure with column
rebars spliced by defective grout sleeves. The results show that local defects were successfully
identified based on a multiple-variable spatiotemporal regression model.

Keywords: local defect identification; linear regression model; damage indicator; beam–column
connection; concrete frame structure

1. Introduction

Due to overloading, environmental corrosion, material aging, operating loads, fatigue, and other
unexpected events, engineering structures inevitably sustain different kinds of defects that can lead to
structural failure. Therefore, it is necessary to develop a defect identification method to guarantee
structural safety [1–5].

Structural physical parameters will be altered due to structural damage, which will result in a
difference in the corresponding dynamic characteristics (e.g., natural frequency, mode curvature, and
strain mode), through which structural damage can be identified [6–9]. Several studies have focused
on damage identification based on structural global responses. Based on natural frequency responses,
Sha et al. [10–12] carried out damage detection in beams, aluminum samples, and a soil box according
to numerical simulations and experiments. The results demonstrated the capability of the methods
to localize damage and to estimate the damage severity. Based on modal flexibility, the procedure
used to detect and locate damage was experimentally validated and applied to a simply supported
beam, a long-span arch bridge, a full-scale long span, and circular-hollow-sectional and box-sectional
steel cantilever beams by Su et al. [13–15], in which damage was identified. Cui et al. [16] defined a
damage-detection method according to strain modes under ambient excitation, and experiments on
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single-damage and multi-damage cases with different degrees and locations were performed, in which
damage cases were reasonably detected. Damage identification based on structural local vibration
responses has also been proposed. Dorvash et al. [17,18] proposed local damage-detection algorithms
based on the regression of vibration responses and they validated their performance on a beam–column
connection and a frame structure, where both algorithms were shown to be effective. A local-damage
identification method was proposed by Naito [19], and a local vibration test was conducted on a
portion of a deteriorated concrete deck with results indicating that the method can be applied to detect
damage in concrete decks. Downey [20] proposed a dense sensor network to derive a data-driven
damage-detection and localization method for wind turbine blades, where numerical simulations
demonstrated the method’s ability to distinguish healthy sections.

Recently, precast structures have attracted much attention. In a precast concrete structure, sleeve
grouting of rebar connections is widely used throughout the world. However, sleeve grout defects
always exist, such as sleeve-end defects caused by the leakage of slurry, middle defects caused by
incompletely discharging air, and the eccentric defects of steel [21]. Therefore, several studies focused
on grout defect identification based on different methods. Li et al. [22] established a piezoelectric
impedance model for a prefabricated structure, where grouting defects were identified qualitatively
using a statistical method showing that piezoelectric impedance analysis can effectively identify defects
in the structure nodes. By comparing the actual experimental results and the simulation parameter
model, a method for detecting the fullness of a grouting sleeve based on microwave radio frequency
S parameters was proposed by Zheng et al. [23], which provided a valuable reference for the actual
engineering inspection. Based on the differences between the guided wave signals of a healthy specimen
and defective specimens, Li et al. [24] explored the influence of the grouting defects on the guided
wave signal through experiments and simulations, where the results showed that there was a positive
correlation between the proposed damage index and grouting defects. A preformed-aisle device was
designed to inspect the grouting fullness of a sleeve of prefabricated structures by Sun et al. [25].
The results showed that the construction defects of insufficient grouting caused by grout leakage
were located at the top of the sleeve and the device was effective at checking the grouting fullness
at the outlet port of the sleeve. Based on the X-ray digital radiography method, grout inspection on
precast shear wall specimens and precast sandwich insulation shear wall specimens was conducted
by Li. et al. [26], where the results indicated that the technology was feasible for grouting quality
inspection for single-row-centered walls.

In summary, there have been several studies on grout defect identification. However, these
methods have limits due to the expensive testing equipment, complex operation, or destructive
detection. The nondestructive identification methods based on regression models have the advantage
of not needing to know the structural characteristics in advance. Furthermore, the measuring point
arrangement is easy and flexible, and sensors need only be arranged near the component of concern.
As there are few studies on sleeve grout defect identification of precast concrete structures based on
regression models via vibration responses, in this study, we adopted single-variable regression (SVR),
two-variable spatial regression (TVSR), and two-variable spatiotemporal regression (TVSTR) model
algorithms to identify grout defects in a precast beam–column connection model simulated in finite
element software ABAQUS [27]. By analyzing and comparing the results of the three algorithms,
a multiple-variable spatiotemporal regression model algorithm was proposed. The experiment was
conducted on a half-scaled, two-floor, precast concrete frame structure with column rebars spliced by
grout sleeves to explore the validity of the multiple-variable spatiotemporal regression model on local
defect identification and good results were obtained.
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2. Methodology

2.1. Theory Background

2.1.1. Linear Regression Model

In this paper, the initial linear-elastic structure was assumed to remain linear-elastic after damage.
Hence, a linear relationship was used to depict the structural nodes’ responses. A linear regression
model was applied to depict this relationship:

Y = α+
∑

βiXi + ε, (1)

where Y is the dependent variable, Xi is the independent variable, α is the intercept, βi is the regression
coefficient, and ε is the random error in regression prediction, which is mainly due to noise in the data
acquisition and the neglected higher-order modal dynamic response.

Three linear regression models were adopted: SVR, TVSR, and TVSTR [28–31].

1. SVR model

The SVR model has only one independent variable and one dependent variable:

û j(tk) = αi jui(tk) + εi j(tk) + βi j, (2)

where ui(tk) is the independent variable, representing the vibration response data (such as displacement,
velocity, and acceleration) of node i at moment tk; û j(tk) is the dependent variable, representing the
estimated dynamic response data of node j at moment tk; αij is the influence coefficient between node
i and node j at moment tk, which changes with the variation of external excitation and structural
stiffness; εij(tk) is the random error in the regression prediction; and βij is the intercept.

2. TVSR model

The TVSR model has two independent variables and one dependent variable:

û j(tk) = α1 ju1(tk) + α2 ju2(tk) + εi j(tk) + βi j, (3)

where u1(tk) and u2(tk) are the independent variables, α1j is the regression coefficient between node 1
and node j, and α2j is the regression coefficient between node 2 and node j. The vibration response
data of the two independent variables come from the nodes near the dependent variable data node.

3. TVSTR model

The TVSTR model also has two independent variables and one dependent variable. However,
different from the TVSR model, the dynamic response data of the two independent variables are from
the same node and different moments:

û j(tk) = αi jui(tk) + α′i jui(tk−1) + εi j(tk) + βi j, (4)

where α’ij is the regression coefficient between nodes j and i at moment tk-1, and ui(tk-1) is the dynamic
response data of node i at moment tk-1. The space and time constraints of the two independent variables
are considered simultaneously.
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2.1.2. Accuracy Verification

To verify the fitting degree of the linear relationship, the coefficient of determination (CoD) r2

was introduced in the SVR model, and the adjusted CoD r2
adj was introduced to the TVSR and TVSTR

models. These are calculated as follows:

r2 = 1−

∑
i (u j − û j)

2∑
j (u j − u)2 , (5)

r2
adj = 1−

∑n
j=1

(u j−û j)
2

(n−2)∑n
j=1

(u j−û)2

(n−1)

, (6)

where u j is the actual value of node j and û is the average value of u j. The fitting effect of the estimated
regression model is better when r2 and r2

adj are closer to 1 and worse as they approach zero. Generally,
if the value of r2 or r2

adj is smaller than 0.8, the fitting effect of the linear relationship is not good.

2.1.3. Damage Indicator

The linear relationship between the nodes’ responses in a defective structure is different than in a
non-defective structure, and this is reflected in the influence coefficients of the linear regression model.
By comparing the influence coefficients of non-defective and defective states, the change of the linear
relationship can be identified. In other words, by measuring the angle θ between the regression lines
(or planes) of the two states, the damage location can be identified. Therefore, angle θ is defined as the
damage indicator.

The damage indicator θ in the SVR model is calculated as follows:

θ = cos−1
∣∣∣∣∣ vv′
‖v‖‖v′‖

∣∣∣∣∣ = cos−1

∣∣∣∣∣∣∣ ββ′+ 1√
β2 + 1

√
β′2 + 1

∣∣∣∣∣∣∣ (7)

where v = [β, −1] is the normal vector of the regression line of the non-defective state and v′ = [β′,
−1] is the normal vector of the regression line of the defective state. Figure 1 shows the geometric
significance of θ in the SVR model.
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The damage indicator θ in the TVSR and TVSTR models is calculated as follows:

θ = cos−1
∣∣∣∣∣ vv′
‖v‖‖v′‖

∣∣∣∣∣ = cos−1

∣∣∣∣∣∣∣∣∣
β1β1′+ β2β2′+ 1√

β2
1 + β2

2 + 1
√
β1′

2 + β2′2 + 1

∣∣∣∣∣∣∣∣∣, (8)

where v = [β1, β2, −1] and v′= [β1
′, β2’, −1]. Figures 2 and 3 show the geometric significance of θ in the
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2.2. Proposed Methodology

All steps used in this methodology are condensed as follows:

1. When investigating both the non-defective and defective structures, the acceleration responses of
nodes near sleeves in both structures were obtained using an accelerometer network.

2. A reasonable linear regression model (SVR model, TVSR model, TVSTR model, or the proposed
multiple-variable model proposed in Section 3.3.4) was adopted to analyze the obtained
acceleration responses.
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3. The coefficient of determination (CoD) r2 or the adjusted CoD r2
adj was calculated to verify the

accuracy of the linear regression model.
4. Every damage indicator was calculated based on the two linear regression models of the

non-defective and defective states. Generally, the damage indicators of nodes near defects were
larger than those of other nodes, and the locations of the defects could be identified.

3. Numerical Simulation on Grout Defect Identification in Precast Beam-Column Connection

3.1. Finite Element Model (FEM)

To verify the performance of the proposed local damage detection method, we simulated a precast
beam–column connection in ABAQUS finite element software, with longitudinal rebars spliced by a
grout sleeve, and the sleeve grout defect was simulated via stiffness reduction of the grouting concrete.

Figure 4 shows the concrete and rebars of a precast beam–column joint model. The joint consisted
of a precast column with a cross-section of 400 mm × 400 mm and a height of 4500 mm, and a precast
beam with a cross-section of 200 mm × 400 mm and a length of 2800 mm. The concrete compressive
strength was 30 MPa, and the tensile strength of the longitudinal reinforcement and stirrup was
400 MPa. Based on the sensitivity study of mesh convergence, an optimal FE mesh that could provide a
relatively accurate solution within an acceptable computation time was determined, where the element
size of the beam and column was 50 mm, and the element size of the connection was 40 mm.

Sensors 2020, 20, x FOR PEER REVIEW 6 of 22 

 

spliced by a grout sleeve, and the sleeve grout defect was simulated via stiffness reduction of the 
grouting concrete. 

Figure 4 shows the concrete and rebars of a precast beam–column joint model. The joint 
consisted of a precast column with a cross-section of 400 mm × 400 mm and a height of 4500 mm, and 
a precast beam with a cross-section of 200 mm × 400 mm and a length of 2800 mm. The concrete 
compressive strength was 30 MPa, and the tensile strength of the longitudinal reinforcement and 
stirrup was 400 MPa. Based on the sensitivity study of mesh convergence, an optimal FE mesh that 
could provide a relatively accurate solution within an acceptable computation time was determined, 
where the element size of the beam and column was 50 mm, and the element size of the connection 
was 40 mm. 

 
 

(a) Concrete (b) Rebars 

Figure 4. Concrete and rebars of a precast beam–column joint model. 

3.2. Working Cases 

To explore the effects of the degree and location of grout defects, the excitation location, and the 
boundary condition on the algorithm, nine working cases were designed, as shown in Table 1.  
Figure 5 shows descriptions of these cases. There were 12 measure nodes in each case. Nodes 1–3 
were located in the right beam, nodes 4–6 in the left beam, nodes 7–9 in the upper column, and nodes 
10–12 in the bottom column. The excitation was harmonic, with a maximum amplitude of 1 kN and 
frequency of 5 Hz, and acceleration responses at the nodes were collected for 10 s at an interval of 
0.05 s. 

Table 1. Working cases in the numerical simulations. 

Boundary Case 
Sleeve 

Location 
Degree of 

Defects Excitation Location 

Fixed supports for the 
bottom column end, 

incomplete fixed supports 
for the other three ends, 

with no horizontal 
constraints in the plane 

1 
Upper 
column None 

Horizontal rightward on 
top column end 

2 Upper 
column 

20% stiffness 
reduction 

Horizontal rightward on 
top column end 

3 Upper 
column 

30% stiffness 
reduction 

Horizontal rightward on 
top column end 

4 Bottom 
column None Horizontal rightward on 

top column end 

5 Bottom 
column 

20% stiffness 
reduction 

Horizontal rightward on 
top column end 

6 Upper 
column 

None Vertical downward on 
right beam end 

7 Upper 
column 

20% stiffness 
reduction 

Vertical downward on 
right beam end 

Fixed supports for the 
four ends 

8 Upper 
column 

None Horizontal rightward on 
top column end 

Figure 4. Concrete and rebars of a precast beam–column joint model.

3.2. Working Cases

To explore the effects of the degree and location of grout defects, the excitation location, and the
boundary condition on the algorithm, nine working cases were designed, as shown in Table 1. Figure 5
shows descriptions of these cases. There were 12 measure nodes in each case. Nodes 1–3 were located
in the right beam, nodes 4–6 in the left beam, nodes 7–9 in the upper column, and nodes 10–12 in the
bottom column. The excitation was harmonic, with a maximum amplitude of 1 kN and frequency of
5 Hz, and acceleration responses at the nodes were collected for 10 s at an interval of 0.05 s.
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Table 1. Working cases in the numerical simulations.

Boundary Case Sleeve Location Degree of Defects Excitation Location

Fixed supports for the bottom
column end, incomplete fixed

supports for the other three ends,
with no horizontal constraints

in the plane

1 Upper column None Horizontal rightward on
top column end

2 Upper column 20% stiffness reduction Horizontal rightward on
top column end

3 Upper column 30% stiffness reduction Horizontal rightward on
top column end

4 Bottom column None Horizontal rightward on
top column end

5 Bottom column 20% stiffness reduction Horizontal rightward on
top column end

6 Upper column None Vertical downward on
right beam end

7 Upper column 20% stiffness reduction Vertical downward on
right beam end

Fixed supports for the four ends 8 Upper column None Horizontal rightward on
top column end

9 Upper column 20% stiffness reduction Horizontal rightward on
top column end

3.3. Results and Discussion

3.3.1. Acceleration Responses

Taking case 1 as an example, the acceleration responses of the 12 nodes are shown in Figure 6
with different maximum amplitudes.Sensors 2020, 20, x FOR PEER REVIEW 8 of 22 
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3.3.2. Results Based on the SVR, TVSR, and TVSTR Models

All acceleration response data from cases 1–9 was analyzed based on the three linear regression
models SVR, TVSR, and TVSTR. If the damage indicator values based on different nodes were similar
for a case, it was considered that there were no sleeve grout defects in the column. If the damage
indicator values of some nodes were significantly larger than others, it was considered that the
structural dynamic characteristic near these nodes had changed, which shows that grout defects were
located near these nodes. In the experiment, case X_Y represents the analysis based on cases X and Y.
For example, “case 1_2” indicates that the damage indicator is calculated according to cases 1 and 2.

1. SVR model

Based on the SVR model, the CoD r2 of every case was calculated. The values of cases 1–5 and 8–9
were almost all equal to 1. The values of cases 6–7 were greater than 0.8, as shown in Table 2. Therefore,
the SVR model of every case was reliable.
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Table 2. r2 of cases 6–7 in an SVR model.

r2
Measure Node

1 2 3 4 5 6 7 8 9 10 11 12

Measure
Node

1 - 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.81 0.96
2 1.00 - 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.81 0.96
3 1.00 1.00 - 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.81 0.96
4 1.00 1.00 1.00 - 1.00 1.00 0.99 1.00 1.00 1.00 0.82 0.96
5 1.00 1.00 1.00 1.00 - 1.00 0.99 0.99 0.99 1.00 0.82 0.96
6 1.00 1.00 1.00 1.00 1.00 - 0.99 0.99 0.99 0.99 0.83 0.96
7 0.99 0.99 1.00 0.99 0.99 0.99 - 0.99 0.99 0.99 0.84 0.97
8 1.00 1.00 1.00 1.00 0.99 0.99 0.99 - 1.00 1.00 0.80 0.95
9 1.00 1.00 1.00 1.00 0.99 0.99 0.99 1.00 - 1.00 0.80 0.95

10 1.00 1.00 1.00 1.00 1.00 0.99 0.99 1.00 1.00 - 0.81 0.95
11 0.81 0.81 0.81 0.82 0.82 0.83 0.84 0.80 0.80 0.81 - 0.89
12 0.96 0.96 0.96 0.96 0.96 0.96 0.97 0.95 0.95 0.95 0.89 -

The damage indicators of cases 1_2 in SVR mode are shown in Table 3. It is seen that the damage
indicators of nodes 7–10 were greater than those of other nodes. This shows that for this case, a sleeve
defect was near nodes 7–10, which were in the upper column near the beam–column connection.
The actual location of the defect was consistent with the identified result.

Table 3. Damage indicator of case 1_2 using the SVR model.

Damage Indicator (◦)
Measure Node

1 2 3 4 5 6 7 8 9 10 11 12

Measure Node

1 - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
2 0.00 - 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
3 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
4 0.00 0.00 0.00 - 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 - 0.00 0.00 0.00 0.01 0.00 0.00 0.00
6 0.00 0.00 0.00 0.00 0.00 - 0.00 0.00 0.01 0.00 0.00 0.00
7 0.00 0.00 0.00 0.00 0.00 0.00 - 0.03 0.07 0.00 0.00 0.00
8 0.00 0.00 0.00 0.00 0.00 0.00 0.03 - 0.03 0.04 0.03 0.03
9 0.01 0.01 0.01 0.01 0.01 0.01 0.07 0.03 - 0.06 0.06 0.04
10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.06 - 0.00 0.00
11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.06 0.00 - 0.00
12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.04 0.00 0.00 -

To better show the relationship of the damage indicator and damage location, the damage
indicators of all pairwise nodes were sorted and summed using:

∆θi =
n∑

j=1

θi j, (9)

where ∆θi is the total damage indicator at node i, and θi j is the damage indicator of nodes i and j.
Based on Equation (9), the total damage indicators ∆θi of cases 1_2, 1_3, 4_5, 6_7, and 8_9 at the

specified measure nodes were all calculated, as shown in Table 4. It was found that the total damage
indicators of nodes 7–10 in cases 1_2 and 1_3 were larger than those of the other nodes, showing that a
defect was located in the upper column near node 10. In case 4_5, the first three damage indicator
values came from nodes 10–12 located in the bottom column, which means that the defects were
located at the positions of nodes 10–12. In case 6_7, the first three values were from nodes 7, 8, and 10,
indicating that the defects were near the beam–column joint and upper column. In case 8_9, the first
three values were from nodes 7, 8, and 10, indicating that the defects were near the beam–column
connection and the upper column. In all cases, the locations of identified defects were in accordance
with those of the actual sleeve defects, showing the SVR model was reliable.



Sensors 2020, 20, 3264 10 of 22

Table 4. Total damage indicators of every case using the SVR model.

Total Damage
Indicator

Measure Node

1 2 3 4 5 6 7 8 9 10 11 12

Case

1_2 0.02 0.02 0.02 0.02 0.02 0.02 0.20 0.32 0.64 0.20 0.18 0.14
1_3 0.08 0.08 0.10 0.10 0.08 0.08 0.34 0.60 0.96 0.32 0.28 0.22
4_5 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.06 0.11 0.24
6_7 0.02 0.02 0.02 0.03 0.04 0.06 0.22 0.12 0.10 0.19 0.09 0.09
8_9 0.55 0.58 0.61 0.47 0.49 0.49 1.09 1.24 0.90 1.24 0.94 0.84

2. TVSR model

Based on the TVSR model, the adjusted CoD r2
adj of every case was calculated. All the values

were nearly equal to 1, which shows that the fitting effect of the estimated regression model was good.
In the TVSR model, the acceleration responses of the right beam, left beam, upper column, and

bottom column in the TVSR model were independently analyzed. The dependent variable data came
from nodes 2, 5, 8, and 11. Correspondingly, the responses of nodes 1 and 10, 4 and 6, 7 and 9, and 10
and 12 were respectively taken as the independent variables. The total damage indicators of every
case in the TVSR model are shown in Table 5. In cases 1_2 and 1_3, the damage indicator of nodes
7–9 in the upper column was the largest, showing that the defect was located in the upper column.
In case 4_5, the total damage indicator of nodes 10–12 was the largest, showing that the defect was
located in the bottom column, which was the same as the sleeve defect location. In case 6_7, the total
damage indicator of nodes 7–9 was the largest, indicating that the defects were located in the upper
column, which was consistent with the location of the grout defect. In case 8_9, the total damage
indicator of nodes 10–12 was the largest, indicating the defects were in the bottom column, which was
inconsistent with the grout defect location in the upper column. Therefore, the TVSR model algorithm
could effectively identify the component where grout defects were located in cases 1_2, 1_3, 4_5, and
6_7, but could not accurately identify the defect in case 8_9.

Table 5. Total damage indicators of every case using the TVSR model.

Total Damage Indicator
Measure Node

1–3 4–6 7–9 10–12

Case

1_2 0.030 0.0091 0.049 0.0027
1_3 0.047 0.014 0.078 0.0044
4_5 0.0021 0.0022 0 0.12
6_7 0.011 0.0077 0.061 0.0019
8_9 0.044 0.027 0.13 0.23

3. TVSTR model

Based on the TVSTR model, the r2
adj of every case was calculated. The values in cases 1, 2, 3 were

1 and in cases 4, 5, 8, and 9, they were almost 1. The adjusted CoDs r2
adj of cases 6 and 7 were nearly

the same. Taking case 6 as an example, the values of r2
ad are shown in Table 6, in which all values were

greater than 0.8. Therefore, the TVSTR model was reliable in every case.
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Table 6. r2
adj of case 6 in a TVSTR model.

r2
adj

Measure Node

1 2 3 4 5 6 7 8 9 10 11 12

Measure
Node

1 - 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.84 0.98
2 1.00 - 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.84 0.98
3 1.00 1.00 - 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.84 0.98
4 1.00 1.00 1.00 - 1.00 1.00 0.99 1.00 1.00 1.00 0.85 0.98
5 1.00 1.00 1.00 1.00 - 1.00 0.99 0.99 0.99 1.00 0.85 0.98
6 1.00 1.00 1.00 1.00 1.00 - 0.99 0.99 0.99 0.99 0.86 0.98
7 0.99 0.99 1.00 0.99 0.99 0.99 - 0.99 0.99 0.99 0.86 0.99
8 1.00 1.00 1.00 1.00 0.99 0.99 0.99 - 1.00 1.00 0.83 0.97
9 1.00 1.00 1.00 1.00 0.99 0.99 0.99 1.00 - 1.00 0.83 0.97
10 1.00 1.00 1.00 1.00 1.00 0.99 0.99 1.00 1.00 - 0.83 0.97
11 0.87 0.87 0.87 0.87 0.88 0.88 0.89 0.85 0.85 0.85 - 0.93
12 0.98 0.98 0.98 0.98 0.98 0.98 0.99 0.97 0.97 0.97 0.91 -

Based on the TVSTR model, the total damage indicators in every case were calculated, as shown
in Table 7. In cases 1_2 and 1_3, the damage indicators of nodes 7–10 were greater than those of
other nodes. It was concluded that the sleeve defect was located in the upper column near node 10.
In case 4_5, the damage indicators of nodes 11 and 12 were significantly greater than at other nodes,
indicating that the defects were located near nodes 11 and 12. In case 6_7, by comparing the total
damage indicators, it was found that the greatest one was node 7, followed by node 8, and the third
one was node 10, indicating that the defect was near nodes 7, 8, and 10. In case 8_9, compared with
other nodes, the values at nodes 7, 8, and 10 were greater, showing that the defects were near the
beam–column connection and the upper column. All the identified results were consistent with the
defect design.

Table 7. Total damage indicators of every case using the TVSTR model.

Total Damage
Indicator

Measure Node

1 2 3 4 5 6 7 8 9 10 11 12

Case

1_2 0.038 0.043 0.054 0.058 0.042 0.039 0.22 0.37 0.60 0.21 0.19 0.16
1_3 0.060 0.069 0.088 0.093 0.068 0.063 0.35 0.59 0.97 0.34 0.31 0.25
4_5 0.060 0.060 0.060 0.060 0.060 0.060 0.021 0.018 0.016 0.045 0.16 0.31
6_7 0.047 0.052 0.064 0.054 0.066 0.085 0.24 0.19 0.15 0.17 0.12 0.075
8_9 0.54 0.57 0.61 0.47 0.50 0.46 1.15 1.23 0.86 1.17 0.86 0.76

3.3.3. Comparison of the SVR, TVSR, and TVSTR Models

When comparing the total damage indicators of cases 1_2 and 1_3 from the three models, as shown
in Figure 7, Figure 8, and Figure 9, it was noticed that the values of nodes 7–9 in Figure 7b were larger
than in Figure 7a, those in Figure 8b were larger than in Figure 8a, and those in Figure 9b were larger
than in Figure 9a, indicating that the total damage indicator became larger with the increase of the
degree of defects. Furthermore, from all three models, the differences between nodes 7–10 and other
nodes in case 1_3 were greater than in case 1_2, showing that the SVR, TVSR, and TVSTR algorithms
could more accurately identify components with defects as the degree of defects increased.

For the different cases, the SVR and TVSTR algorithms could identify the structural component
where a sleeve grout defect was located well, except for the TVSR model algorithm of case 8_9, as seen
in Figure 10, where the nodes 10–12 corresponding to the greatest total damage indicator value were
not located near the defect. Additionally, the total damage indicators of nodes 1–3 in Figure 8a,b were
relatively large and could not be ignored, which affected the defect identification in a single component.
At the same time, the TVSR model algorithm requires that there are at least three measure nodes in each
component, where the middle node value is the dependent variable and the other two nodes’ values
are the two independent variables. In the precast concrete frame structure, three nodes were designed
for each of the right beam, left beam, upper column, and bottom column. The acceleration responses
of the middle node were chosen as the dependent variable and the acceleration responses of the other
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two nodes were chosen as independent variables in the TVSR model. Maybe due to the limited layout
and the number of measure nodes, the dependent variable and independent variables were chosen in a
limited fashion, which caused the error in case 8_9 and the obscure results in Figure 8a,b. Therefore,
the TVSR model algorithm has limitations regarding identifying grout defects in some cases, and based
on different layouts and the number of the measure nodes, the application of the TVSR model with
different dependent variables and independent variables for unknown defect identification should be
further studied.
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The total damage indicators of case 4_5 in the SVR and TVSTR models are shown in Figure 11a,b.
The value of node 10 seen in Figure 11a was 0.06, and in Figure 11b, it was 0.045, showing the value
of node 10 significantly decreased away from the defect in the TVSTR model compared with SVR
model. The values of nodes 11 and 12 in Figure 11b were greater than in Figure 11a, indicating that the
values of nodes near the defect increased in the TVSTR model compared with the SVR model. In case 6,
comparing r2 in the TVR model and r2

adj in the TVSTR model, as shown in Tables 6 and 7, it is seen that
all corresponding values were greater in Table 7 than those in Table 6, indicating that the TVSTR model
had an improved regression fitting effect than the SVR model. The above shows the TVSTR model
could more accurately identify the defect locations in structural components than the SVR model.
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3.3.4. Multiple-Variable Regression Model

By analyzing all working cases, it was concluded that the TVSR model considered only the data of
adjacent measure nodes and did not fully consider the data of different nodes and moments, resulting
in poor defect identification in some cases. Based on the SVR model, an independent variable was
added to the TVSTR model to fully consider the linear relationship between the dependent variable and
the two independent variables at different moments, contributing to better identification results. Based
on the TVSTR model, a multiple-variable spatiotemporal regression model was proposed. Figure 12
shows the integrated process of the regression model recognition algorithm. Independent variables
could be continuously added according to the value of r2 or r2

adj. A variance inflation factor was used
to detect multicollinearity in multiple linear models, where R2 represents r2 or r2

adj. If VIF is greater
than 10, then it is considered that there is severe collinearity among the independent variables [32,33].

VIF =
1

1−R2 (10)
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3.3.5. Robustness Analysis of Damage Indicator

Noise inevitably exists in signals obtained in practical engineering. To discuss the ability of the
total damage indicator to resist noise and provide justified suggestions for grout defect detection,
the robustness analysis was explored. Taking case 1_2 as an example, acceleration signals with
signal-to-noise ratios (SNRs) of 1 dB, 5 dB, and 10 dB were analyzed based on a multiple-variable
regression model, and the results are shown in Table 8. It is seen that as the level of noise increased,
the total damage indicators of nodes 7–10 near the defects became smaller and for nodes 1–6 away
from defects, the damage indicators became bigger in general, showing that the identification results
tended to be obscured by noise. Meanwhile, for the results with SNRs of 1 dB, 5 dB, and 10 dB inputted,
the values of nodes 7–10 were all larger than those of other nodes, indicating a good identification
result. In conclusion, although the total damage indicator had a certain robustness against noise with
SNRs of 1 dB, 5 dB, and 10 dB inputted, attention needs to paid to avoid the great environmental noise
during the experiment to obtain good identification results.

Table 8. Results comparison based on signals with different levels of noise.

Total Damage Indicator
Measure Node

1 2 3 4 5 6 7 8 9 10 11 12

Signal-to-Noise
Ratio

0 dB 0.02 0.02 0.02 0.02 0.02 0.02 0.20 0.32 0.64 0.20 0.18 0.14
1 dB 0.02 0.021 0.03 0.025 0.03 0.03 0.20 0.31 0.64 0.19 0.18 0.15
5 dB 0.03 0.04 0.042 0.044 0.043 0.046 0.19 0.29 0.60 0.19 0.17 0.15
10 dB 0.042 0.06 0.058 0.064 0.065 0.064 0.18 0.25 0.58 0.18 0.17 0.16

4. Experimental Verification of Grout Defect Identification in a Precast Concrete Frame Structure

To verify the effectiveness of the proposed defect identification method, an experiment on a
precast concrete frame structure is carried out.

4.1. Experimental Model

A half-scaled, two-floor, precast concrete frame structure with a column space of 1500 mm was
constructed, as shown in Figure 13. The structure consisted of precast columns, precast beams, precast
foundation beams, cast-in-place slabs, and slurry layers, where all rebars in precast columns were
spliced using grout sleeves, as shown in Figure 14. The concrete compressive strength was 30 MPa and
the tensile strength of the longitudinal reinforcement and stirrup was 400 MPa.
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Table 8. Results comparison based on signals with different levels of noise. 

Total Damage Indicator 
Measure Node 

1 2 3 4 5 6 7 8 9 10 11 12 

Signal-to-Noise 

Ratio 

0 dB 0.02 0.02 0.02 0.02 0.02 0.02 0.20 0.32 0.64 0.20 0.18 0.14 

1 dB 0.02 0.021 0.03 0.025 0.03 0.03 0.20 0.31 0.64 0.19 0.18 0.15 

5 dB 0.03 0.04 0.042 0.044 0.043 0.046 0.19 0.29 0.60 0.19 0.17 0.15 

10 dB 0.042 0.06 0.058 0.064 0.065 0.064 0.18 0.25 0.58 0.18 0.17 0.16 

4. Experimental Verification of Grout Defect Identification in a Precast Concrete Frame Structure 

To verify the effectiveness of the proposed defect identification method, an experiment on a 

precast concrete frame structure is carried out. 

4.1. Experimental Model 

A half-scaled, two-floor, precast concrete frame structure with a column space of 1500 mm was 

constructed, as shown in Figure 13. The structure consisted of precast columns, precast beams, 

precast foundation beams, cast-in-place slabs, and slurry layers, where all rebars in precast columns 

were spliced using grout sleeves, as shown in Figure 14. The concrete compressive strength was  

30 MPa and the tensile strength of the longitudinal reinforcement and stirrup was 400 MPa. 
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4.2. Experimental Setup 

For structural safety, the sleeve grout defects were designed to be in the second floor. There were 
seven cases, as shown in Figure 15. For the convenience of construction, a sleeve with a grout defect 
was designed without grouting. A hollow circle in a column indicates the sleeve was not grouted 
completely, and a black circle indicates that it was grouted tightly. It should be noted that in each 
case, one column was defective and the other was non-defective. To ensure the two columns received 
the same excitation in each case, the excitation point (EP) was in the middle of the beam, hence there 
were seven EPs, where EPi indicates an EP in case i. For each case, the locations of the measure nodes 
were the same. Taking case 6 as an example, the measure nodes arranged along the column and beam 
are shown in Figures 15 and 16, respectively. There were seven nodes in each column, where nodes 
1–3 and 1′–3′ were located at the beam end, and nodes 4–7 and 4′–7′ were located along the column. 
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4.2. Experimental Setup

For structural safety, the sleeve grout defects were designed to be in the second floor. There were
seven cases, as shown in Figure 15. For the convenience of construction, a sleeve with a grout defect
was designed without grouting. A hollow circle in a column indicates the sleeve was not grouted
completely, and a black circle indicates that it was grouted tightly. It should be noted that in each case,
one column was defective and the other was non-defective. To ensure the two columns received the
same excitation in each case, the excitation point (EP) was in the middle of the beam, hence there were
seven EPs, where EPi indicates an EP in case i. For each case, the locations of the measure nodes were
the same. Taking case 6 as an example, the measure nodes arranged along the column and beam are
shown in Figures 15 and 16, respectively. There were seven nodes in each column, where nodes 1–3
and 1′–3′ were located at the beam end, and nodes 4–7 and 4′–7′ were located along the column.

Figure 17 shows the arrangement of the experimental equipment and Table 9 shows the instrument
parameters. The acceleration sensors collected the node data, and external excitation was applied
using the vibration exciter, signal source, and power amplifier, which were produced by Yangzhou
Kedong Electronics Co. LTD in Yangzhuo, China. At the same time, a data acquisition system was
used to collect the acceleration responses, which was produced by China Orient Institute of Noise &
Vibration in Beijing, China. The excitation force was 200 N and the acquisition frequency was 1024 Hz.
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Table 9. Instrument parameters.

Instrument Model Overview Features

Signal source KD5602
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Instrument Model Overview Features 

Signal source KD5602 
Output mode： 

Sinusoidal, logarithmic, linear 
Frequency range: 10 Hz–20 kHz 

Power 
amplifier KD5702 

Rated output power: 200 W 
Rated output voltage: 14 V 
Rated output current: 15 A 

Frequency range: 20 Hz–10 kHz 

Vibration 
exciter 

KDJ-20 
Maximum force: 200 N 

Maximum amplitude: ±5 mm 
Frequency range: DC ≈2 kHz 

Acceleration 
sensor 

KD8-
LP16D 

Calibration value: 
about 60 mV/g 

Data 
acquisition 

system 
INV3060 

Corresponding acquisition software: 
DASP-V10 produced by China Orient 

Institute of Noise & Vibration  

4.3. Experimental Steps 

For each case, the experimental steps were the same. Taking case 6 as an example, the 
experimental steps were as follows: 

1. The accelerometers were arranged near the sleeve defects on the columns and beam, whose
locations are shown in Figures 16 and 17.

2. The vibration exciter was arranged at the excitation point in the middle of the beam, whose
location is shown in Figure 17. At the same time, the annunciator, power amplifier, and
acquisition system were arranged as well.

3. Once the external force was applied, the acceleration time history curves of each measuring point 
were recorded by the acquisition system.

4. Using the proposed multiple-variable regression model, the damage indicators were calculated
based on the acceleration responses to identify the defects.

4.4. Results and Discussion 

4.4.1. Acceleration Responses 

The acceleration responses of all measuring points in cases 1–7 were similar. Taking nodes 2 and 
2′ of case 3 as an example, Figure 18 shows representative portions of the acceleration responses. In 
the macro view, the responses of nodes 2 and 2′ were different, showing that the grout sleeve defects 
influenced the structural acceleration responses. 

Output mode:
Sinusoidal, logarithmic, linear

Frequency range: 10 Hz–20 kHz

Power amplifier KD5702
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Rated output power: 200 W
Rated output voltage: 14 V
Rated output current: 15 A

Frequency range: 20 Hz–10 kHz

Vibration exciter KDJ-20
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Maximum force: 200 N
Maximum amplitude: ±5 mm
Frequency range: DC ≈2 kHz

Acceleration sensor KD8-LP16D
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4.3. Experimental Steps

For each case, the experimental steps were the same. Taking case 6 as an example, the experimental
steps were as follows:

1. The accelerometers were arranged near the sleeve defects on the columns and beam, whose
locations are shown in Figures 16 and 17.

2. The vibration exciter was arranged at the excitation point in the middle of the beam, whose
location is shown in Figure 17. At the same time, the annunciator, power amplifier, and acquisition
system were arranged as well.

3. Once the external force was applied, the acceleration time history curves of each measuring point
were recorded by the acquisition system.

4. Using the proposed multiple-variable regression model, the damage indicators were calculated
based on the acceleration responses to identify the defects.

4.4. Results and Discussion

4.4.1. Acceleration Responses

The acceleration responses of all measuring points in cases 1–7 were similar. Taking nodes 2 and
2′ of case 3 as an example, Figure 18 shows representative portions of the acceleration responses. In the
macro view, the responses of nodes 2 and 2′ were different, showing that the grout sleeve defects
influenced the structural acceleration responses.

4.4.2. Results Based on Multiple-Variable Regression Model

Cases 1–4 were located in the structural longitudinal direction, and cases 5–7 were in the structural
transverse direction. Considering the different boundary conditions, cases 1–4 and cases 5–7 were
separately analyzed. Comparing cases 1–4, the defect degrees in cases 1 and 2 were the most severe
with three sleeves ungrouted; case 4 was second with two sleeves ungrouted; and in case 3, just one
sleeve was ungrouted. Comparing cases 5–7, the defect degree in case 6 was most severe with three
sleeves ungrouted, case 7 was second with two sleeves ungrouted, and case 5 had one sleeve ungrouted.
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Based on the proposed regression model algorithm for local damage identification in Figure 12,
multiple variables were adopted in each case. Figure 19 shows the total damage indicators of cases 1–7
in histogram form. It is seen that the total damage indicators of nodes 4–7 were greater than those of
nodes 1–3 for all cases, and the value of node 4 was the greatest. The results indicated that the defect
was in the column and near node 4, which was consistent with the defect design. Figure 20 shows the
total damage indicators of cases 1–7 in a line chart. Figure 20a shows that the defect degrees in cases 1
and 2 were similar, followed by case 4, and case 3 was last. Considering node 4, the value of case 1
was 0.437; the value of case 2 was close at 0.456; the value of case 4 was 0.337, which was smaller than
those of cases 1 and 2; and case 3 had the smallest value of 0.264. Figure 20b shows that the defect
degree in case 6 was the most severe, followed by case 7, and the least was that of case 5. Taking node
4 as an example, the value of case 6 was 0.134, the value of case 7 was smaller at 0.036, and the value
of case 5 was the least at 0.013. The adjusted CoDs r2

adj in all cases were larger than or equal to 0.8.
Taking column I in case 5 as an example, the corresponding r2

adj are shown in Table 10. Therefore,
the proposed regression model algorithm could accurately identify sleeve grout defects in structures.

Table 10. r2
adj of column I in case 5.

r2
adj

Measure Node

1 2 3 4 5 6 7

Measure Node

1 1.00 0.95 0.88 0.83 0.80 0.81 0.82
2 0.95 1.00 0.92 0.87 0.82 0.97 0.83
3 0.87 0.91 1.00 0.84 0.86 0.91 0.89
4 0.83 0.86 0.83 1.00 0.84 0.80 0.83
5 0.80 0.82 0.86 0.85 1.00 0.88 0.95
6 0.80 0.96 0.91 0.81 0.87 1.00 0.89
7 0.82 0.83 0.89 0.84 0.95 0.90 1.00
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5. Conclusions

This study proposed a grout defect identification method based on a linear regression model
algorithm in precast structures, which used the angle between linear regression lines or planes obtained
from two measure nodes’ acceleration response as a damage indicator, with the advantage that it was
not necessary to know the structural properties in advance. First, a nondestructive vibration test was
conducted on precast beam–column joint models simulated in ABAQUS to compare the SVR, TVSR,
and TVSTR algorithms, and a multiple-variable regression model was proposed. Based on the model,
one nondestructive vibration experiment was conducted on a half-scaled, two-floor, precast concrete
frame structure with grout sleeve defects.

The main conclusions were as follows:

1 Comparing the SVR, TVSR, and TVSTR model algorithms, the TVSTR model could most
accurately identify the defective components, the SVR was the second best, and the TVSR was
the worst, in which the defect of case 8_9 in the numerical simulation could not be identified
well. A flowchart of the regression model recognition algorithm was proposed based on multiple
spatiotemporal variables.

2 Grout defects in the precast concrete frame structure were successfully identified based on
the proposed multiple-variable regression model, with results showing that the total damage
indicators of nodes near defects were greater than those of other nodes.

3 The total damage indicator displayed robustness against different levels of noise with SNRs
of 1 dB, 5 dB, and 10 dB inputted, but attention still needs to paid to avoid the significant
environmental noise that was present during the experiment to obtain good identification results.

4 The proposed method has the limitations that the damage indicator was calculated based on two
working conditions, where the structural design and boundary conditions were the same. At the
same time, the result could only show the damage difference between the two conditions and one
control working case needed to be chosen.

Further research is needed on different layouts and numbers of the measure nodes to put forward
efficient suggestions for grout defect identification in precast structure based on a multiple-variable
spatiotemporal regression model.
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