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A B S T R A C T

The small first passage probability of nonlinear dynamic structures under nonstationary seismic excitation
implies a prohibitive computational demand because of the epistemic uncertainties rooted in structure system.
In this work, a hybrid Kriging-high dimensional model representation (Kriging-HDMR) methodology for
drastically simplifying this task is proposed. The epistemic uncertainties with well-defined bounds but no
concrete distribution forms are addressed by interval model. Therefore, the first passage probability of the
generic response process that the epistemic uncertainties involved, is represented by the conditional univariate
extreme value distribution (EVD) of structural parameters with interval form. Then, a Kriging assisted HDMR
together with third moment saddle point approximation (TMSA) is proposed to alleviate the computational
burden and provides an accurate depiction of possible model outcome. The differential evolution (DE) interval
optimization strategy is performed to accelerate the post process of searching the lower bound (LB) and upper
bound (UB) of first passage probability with interval form. Finally, a nine-story shear frame with Bouc–Wen
model is presented to demonstrate the accuracy and efficiency of proposed method.

1. Introduction

The first passage probability is of paramount importance in struc-
tural engineering that delivers the ability to satisfy several perfor-
mance requirements within a specified time span. During the past
few decades, such an extensive effort has been devoted in this topic.
On the basis of well-established stochastic process and probability
theorem, the randomness of outside excitation was firstly considered
and the substantial achievements are obtained, such as, mean out-
crossing based formulation [1] and its extensions [2–4] were proposed
to evaluate the first passage probability of linear structure under sta-
tionary or nonstationary excitation. As one might expect, the analytical
solution of mean out-crossing may seldom amendable for nonlinear
system due to its theoretical background [5]. On the other hand, the
simulation-based methods may overcome this dilemma. This measure
is beginning by Shinozuka [6,7], who combined the power spectral rep-
resentation and Monte-Carlo (MC) simulation to model the stochastic
excitation in stochastic dynamic analysis. While, substantial amounts
of samples of brute force simulations requires significant computa-
tional and analysis time for large and complex systems. To over-
come this problem, the importance simulation [8], subset simulation
method [9] and MC-based extreme value distribution [10] are devel-
oped. Some other potential approximation methods, such as equivalent
linearization method [11], trail equivalent linearization method [12],
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generalized extreme value distribution [13], generalized Gaussian dis-
tribution [14], shifted generalized lognormal distribution [15,16], ker-
nel density maximum entropy [17], are also developed in prediction of
first passage probability.

However, not only the outside excited loads demonstrate uncertain,
but also structural systems. Apart from the randomness of excited loads,
the uncertainties of structural systems are always epistemic due to
incomplete information, ignorance, or modeling (e.g., simplification
of mathematical models of buildings for structural analysis) [18]. As
the classical methodology, the uncertainties of structural system are
seemed as randomness. Zhang and co-workers [19] developed a fourth-
statistical moments based Edgeworth series expansion to approximate
the first passage for single degree-of-freedom nonlinear oscillators with
random parameters. Chaudhuri et al. [20] presented a perturbation
based conditional first passage probability with uncertain parameters.
Gupta [21] proposed a first order Taylor expansion based analytical
framework for first passage probability analysis of vibrating struc-
tures with random parameters. Sundar et al. [22] combined Girsanov
transformation and subset simulation to investigate the benchmark
problem [23]. However, the extremely insufficient data may lead to
an ambiguous form of probability distribution. Furthermore, Refs. [24,
25] demonstrated that a tiny fluctuation of probability model would
lead a large bias of reliability approximation. From another aspect,
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the probability theory gives an excessively optimistic quantification
result but cannot sufficiently emphasize extremes or epistemic uncer-
tainties. Alternatively, the non-probability theories are applicable to
model imprecise, vague, fuzzy, and incomplete variabilities involved
in engineering. Among the potential non-probability theories [26–28],
interval theory is more perfect to model the uncertainties that the
lower and upper bounds are well defined but the concrete distribution
form is missing. The interval theory was initialized by Moore [27] and
has been implemented in static response analysis of structures [29],
time variant excitation [30]. To the best of the authors’ knowledge,
the endeavors of interval theory addressed in first passage probability
approximation are limited. Muscolino etc. [31–33] proposed an interval
based up-crossings rate formulation of linear structures under Gaus-
sian random process. Do and co-workers [34] employed an improved
particle swarm optimization algorithm to search the lower and upper
bounds of dynamic reliability for an interval based structural system.
Wang et al. [35,36]successfully implemented the interval and convex
model to investigate the influence of the independent and dependent
epistemic uncertainties in time variant reliability analysis.

Although some attempts have been implemented in linear system
response, there are still latent challenges regarding the first passage
probability of nonlinear system with interval uncertainties. One of
major challenges of this topic is the formulation of first passage prob-
ability with interval uncertainties rooted in structural system. In this
framework, the approximation of interval first passage probability is
equivalent to estimate the lower bound (LB) and upper bound (UB)
of an extreme value distribution (EVD) with a specified threshold
value [13,37]. However, the evaluation of LB and UB of EVD may
be trapped in the high dimensional uncertainty quantification prob-
lem, often known as the‘‘curse of dimensionality’’. To overcome this
deficiency, the high dimensional model representation (HDMR) is pre-
sented to reduce the computational cost for high dimensional problem.
The HDMR is an efficient meta-model for high dimensional mapping
for large and complex system with weak correlations of higher order
variable, which reflected in most physical model [38]. With the eviden-
tial character for dramatically reducing the computational dimensions,
HDMRs are developed and applied for various purposes [39–41]. In this
work, a combination of HDMR and Kriging interpolation technique [42]
is presented to construct the meta-model of first passage probability of
nonlinear system with interval uncertainties. The realization of Kriging
model is approximated by the third moment saddle point approxima-
tion (TMSA) [43]. After construction of meta-model, the differential
evolution (DE) interval optimization technique [44] is presented to
search the LB and UB of interval formed first passage probability.

The remaining parts of this paper are organized as follows. Section 2
provides the formulation of dynamic reliability considering the uncer-
tainty of structural parameters. Section 3 explains interval modeling
of dynamic reliability with interval numbers. Section 4 describes the
HDMR combining Kriging interpolation and TMSA methodology. Sec-
tion 5 gives the DE based evaluation method for LB and UB of interval
formed first passage probability. A 9-story shear frame with Bouc–Wen
model is presented in Section 6 to investigate the effectiveness and
accuracy of the proposed method. Based on the studies in this work,
some conclusions are drawn in Section 7.

2. Dynamic reliability with uncertain structural parameters

Without loss of the generality, a mathematical expression of dy-
namic system is simplified as:

𝐌(θ)𝐗̈
(

θ,η, 𝑡
)

+ 𝐂(θ)𝐗̇
(

θ,η, 𝑡
)

+ 𝐑(θ,η, 𝑡) = 𝐅(θ,η, 𝑡) (1)

where 𝐗̈
(

θ,η, 𝑡
)

and 𝐗̇
(

θ,η, 𝑡
)

denote the n×1 acceleration and ve-
locity vectors, respectively; 𝐌(θ) and 𝐂

(

θ
)

denote the n×n mass and
damping matrices, respectively; 𝐑

(

θ,η, 𝑡
)

is the n×1 restoring force
vector. The symbol θ = [𝜃1, 𝜃2,… , 𝜃𝑑 ]T is a d-dimensional uncertain
vector involving structural parameters with epistemic uncertainties;

η = [𝜂1, 𝜂2,… , 𝜂𝑚]T is a m-dimensional uncertain vector that is used
to represent the uncertainties rooted in outside excitation; 𝐅(θ,η, 𝑡)
denotes the n×1 output excitation vector. For a well posed dynamic
system, the system response quantities of interest 𝐙(θ,η, 𝑡) is expressed
as:

𝐙
(

θ,η, 𝑡
)

= H
(

𝐗̈
(

θ,η, 𝑡
)

, 𝐗̇
(

θ,η, 𝑡
)

,𝐗
(

θ,η, 𝑡
))

(2)

where 𝐙(θ,η, 𝑡) is L×1 observation quantities of structural states. Given
a series of threshold values 𝑏𝜏 , 𝑏1 < ⋯ , < 𝑏𝜏 <,… , < 𝑏𝛤 , the failure
probability of dynamic system response at time cut 𝑡𝑖 with different
threshold value 𝑏𝜏 is defined as:

𝑃𝑓
(

θ,η, 𝑏𝜏 , 𝑡𝑖
)

= 𝑃

{ 𝐿
⋃

𝑙=1
𝑍𝑙

(

θ,η, 𝑡𝑖
)

≥ 𝑏𝜏 ,∃𝑡𝑖 ∈ [0, 𝑇 ]

}

(3)

The equivalent expression of Eq. (3) can be expressed as:

𝑃

{ 𝐿
⋃

𝑙=1
𝑍𝑙

(

θ,η, 𝑡𝑖
)

≥ 𝑏𝜏 ,∃𝑡𝑖 ∈ [0, 𝑇 ]

}

= 1 − 𝑃

{ 𝐿
⋂

𝑙=1
𝑍𝑙

(

θ,η, 𝑡𝑖
)

≤ 𝑏𝜏 ,∃𝑡𝑖 ∈ [0, 𝑇 ]

}

(4)

As defined in Refs. [16,21,37], suppose 𝑍1
(

θ,η, 𝑡𝑖
)

,… , 𝑍𝑙
(

θ,η, 𝑡𝑖
)

,
… , 𝑍𝐿

(

θ,η, 𝑡𝑖
)

are random variables and let 𝑍ext
(

θ,η, 𝑡𝑖
)

= max𝑙∈[1,𝐿]
{

𝑍𝑙
(

θ,η, 𝑡𝑖
)}

, the right hands of Eq. (4) are rewritten as:

𝑃
{

𝑍ext
(

θ, 𝑡𝑖
)

≤ 𝑏𝜏 ,∃𝑡𝑖 ∈ [0, 𝑇 ]
}

= 𝑃

{ 𝐿
⋂

𝑙=1
𝑍𝑙

(

θ,η, 𝑡𝑖
)

≤ 𝑏𝜏 ,∃𝑡𝑖 ∈ [0, 𝑇 ]

}

(5)

Define 𝑍̃ext
(

θ,η, 𝑇
)

= max𝑡𝑖∈[0,𝑇 ]
{

𝑍ext
(

θ,η, 𝑡𝑖
)}

, the corresponding
extreme value distribution (EVD) of 𝐙(θ,η, 𝑡) in time interval [0, 𝑇 ] is
defined as:

𝑃
{

𝑍ext
(

θ,η, 𝑇
)

≤ 𝑏𝜏
}

= 𝑃

{ 𝑁
⋂

𝑖=1
𝑍ext

(

θ,η, 𝑡𝑖
)

≤ 𝑏𝜏

}

(6)

Then, the first passage probability of dynamic response of structural
system is expressed as:

𝑃𝑓
(

θ,η, 𝑏𝜏 , 𝑇
)

= 1 − 𝑃
{

𝑍ext
(

θ,η, 𝑇
)

≤ 𝑏𝜏
}

(7)

where,

𝑃
{

𝑍ext
(

θ,η, 𝑇
)

≤ 𝑏𝜏
}

= 𝑃

{ 𝑁
⋂

𝑖=1

𝐿
⋂

𝑙=1
𝑍𝑙

(

θ,η, 𝑡𝑖
)

≤ 𝑏𝜏

}

(8)

To obtain the computational results of first passage probability, the
total probability theorem (TPT), the 𝑃

{

𝑍̃ext
(

θ,η, 𝑇
)

≤ 𝑏𝜏
}

is expressed
with the continuous form:

𝑃
{

𝑍ext
(

θ,η, 𝑇
)

≤ 𝑏𝜏
}

= ∫𝛺η ∫𝛺θ 𝑝
{

𝑍ext
(

θ,η, 𝑇
)

≤ 𝑏𝜏
|

|

|

θ = θ0
}

𝑝
(

θ0
)

dηdθ0, θ0 ∈ 𝛺θ
(9)

or with discrete form:

𝑃
{

𝑍ext
(

θ,η, 𝑇
)

≤ 𝑏𝜏
}

=
𝑁
∑

𝑖=1
𝑃
(

θ0𝑖
)

∫𝜴η
𝑝
{

𝑍ext
(

θ,η, 𝑇
)

≤ 𝑏𝜏
|

|

|

θ = θ0𝑖
}

dη, θ0𝑖 ∈ 𝛺θ
(10)

where, the continuous form 𝑝
{

𝑍̃ext
(

θ,η, 𝑇
)

≤ 𝑏𝜏 |θ = θ0
}

or discrete
form 𝑃

{

𝑍̃ext
(

θ,η, 𝑇
)

≤ 𝑏𝜏 |θ = θ0𝑖
}

denote the conditional probability
of first passage probability of dynamic system response; 𝑝

(

θ0
)

or
𝑃
(

θ0𝑖
)

denote the joint probability density function (PDF) in Eq. (9)
or joint probability mass function in Eq. (10) of the input variable
θ; 𝜴θ denotes the support field of 𝑝

(

θ0
)

or 𝑃
(

θ0𝑖
)

; N denotes the
number of support point in 𝜴θ; and the 𝜴η is the support domain
of outside excitation uncertainties η. As shown in above theoretical
deviations, the expression of dynamic reliability of structural system is
obtained. However, it should be noted that the essence of probabilistic

2



D. Li, H. Tang, S. Xue et al. Probabilistic Engineering Mechanics 58 (2019) 103001

distribution may not sufficiently address the complex mechanics and
scarce information of structural uncertainties θ. From another side,
the boundary range of uncertain variable is suitable to describe the
epistemic uncertainty θ that always demonstrate the fluctuation around
its nominal value. Integrating the information provided so far, the
interval model is presented to investigate the dynamic reliability with
epistemic uncertainties with the well-defined bounds but not concrete
distribution form.

3. Interval modeling of dynamic reliability with epistemic uncer-
tainties

The interval numbers theory is originally proposed by Moore [27]
to descript the uncertainty form limit data and lack of knowledge.
Given a vector of uncertain parameter θ = [𝜃1, 𝜃2,… , 𝜃𝑑 ]T, the interval
representation of θ is defined as θI = [𝜃I1, 𝜃

I
2,… , 𝜃I𝑑 ]

T. According to
interval representation rule, the bounds of interval parameters vector
can be written as:

θI =
(

𝜃I𝑖
)

=
[

θmed − θrad,θmed + θrad
]

(11)

in which,

θmed =
(

𝜃med
𝑖

)

=
(

θ + θ
)

∕2,

θrad =
(

𝜃rad𝑖
)

=
(

θ − θ
)

∕2, 𝑖 = 1, 2,… , 𝑑
(12)

where, the symbol θmed and θrad denote the midpoint and radius of
θ; and θ denotes the LB and UB of interval θ. The fluctuation of an
interval variable is defined as the degree of uncertain level 𝜈𝑖:

𝜈𝑖 = 𝜃rad𝑖 ∕𝜃med
𝑖 (13)

Taking the interval uncertainties θ into Eq. (10), the value of EVD
𝑃
{

𝑍̃ext
(

θ,η, 𝑇
)

≤ 𝑏𝜏 |θ = θ0𝑖
}

and first passage probability 𝑃𝑓
(

θ,η, 𝑏𝜏 ,
𝑇 ) becomes an interval:
[

𝑃 𝑓
(

θI,η, 𝑏𝜏 , 𝑇
)

, 𝑃 𝑓
(

θI,η, 𝑏𝜏 , 𝑇
)

]

=
[

1 − 𝑃
{

𝑍ext
(

θ,η, 𝑇
)

≤ 𝑏𝜏
|

|

|

θ = θI
}

,

1 − 𝑃
{

𝑍ext
(

θ,η, 𝑇
)

≤ 𝑏𝜏
|

|

|

θ = θI
}]

(14)

where,

𝑃
{

𝑍ext
(

θ,η, 𝑇
)

≤ 𝑏𝜏 ||θ = θI
}

= maximize
{

∫𝜴η 𝑝
{

𝑍ext
(

θ,η, 𝑇
)

≤ 𝑏𝜏
|

|

|

θ = θtemp

}

dη
}

,

θtemp ∈ θI
(15)

𝑃
{

𝑍ext
(

θ,η, 𝑇
)

≤ 𝑏𝜏 ||θ = θI
}

= minimize
{

∫𝜴η 𝑝
{

𝑍ext
(

θ,η, 𝑇
)

≤ 𝑏𝜏
|

|

|

θ = θtemp

}

dη
}

,

θtemp ∈ θI
(16)

As shown in Eqs. (14)–(16), the estimation of LB and UB of first pas-
sage probability involves a nested-loop solution procedure, in which,
the inner loop manages treatment of aleatory uncertainties and outer
loop affords treatment of epistemic uncertainties. Strictly speaking, the
nested-loop Monte-Carlo (MC) method can afford the most accurate
solutions, as shown in Eqs. (15)–(16). Unfortunately, the approxima-
tion of inner integration ∫𝛺η 𝑝{𝑍̃ext (θ,η, 𝑇 ) ≤ 𝑏𝜏 |θ = θtemp} always
involves hundreds even thousands of variables may lead to tremendous
computational challenges for nested-loop MC simulation. On the other
hand, the outer-loop solution procedure needs such a large number of
samples to determine the maximum and minimum value corresponding
to interval variables. To overcome the inefficiency of nested-loop MC,
meta-model that combines third moment saddle point approximation
(TMSA) and high dimensional model representation (HDMR) technique
is employed in this work to replace the high dimensional integration
∫𝛺η 𝑝{𝑍̃ext (θ,η, 𝑇 ) ≤ 𝑏𝜏 |θ = θtemp} and decrease the computational

burden. In our proposed method, the TMSA-HDMR will be adopted as
meta-model to predict the interval extreme value probability response
of 𝑃 {𝑍̃ext (θ,η, 𝑇 ) ≤ 𝑏𝜏 |θ = θtemp}. Then, the evaluation of LB and UB of
first passage probability are converted to the searching minimum and
maximum values of constructed HDMR in the epistemic variable space
[

θ,θ
]

.

4. Meta-model for the evaluation of EVD

In line with the derivations of Section 3, the approximation of LB
and UB of first passage probability is transformed as the evaluation
of the bounds of 𝑃 {𝑍̃ext (θ,η, 𝑇 ) ≤ 𝑏𝜏 |θ = θI} with an interval
vector θI. In this section, the detailed information of meta-model is
presented. HDMR is the mapping hierarchical relationship between
the d-dimensional system input 𝐱 =

[

𝑥1, 𝑥2,… , 𝑥𝑑
]T and a continuous,

differentiable, real-valued, m-dimensional system response 𝑓 (𝐱).

𝑓 (𝐱) = 𝑓 0+
𝑑
∑

𝑖=1
𝑓 1 (𝑥𝑖

)

+
∑

1≤𝑖≤𝑗≤𝑑
𝑓 2 (𝑥𝑖, 𝑥𝑗

)

+⋯ ,+𝑓 𝑑 (𝑥1, 𝑥2,… , 𝑥𝑑
)

(17)

where 𝑓 0 is the constant term of denoting the zeroth-order effect of
system input. The 𝑓 1 (𝑥𝑖

)

is the first-order term of the expansion of
𝑓 (𝐱) denoting the individual contribution of univariate 𝑥𝑖 to the system
response 𝑓 (𝐱). The 𝑓 2 (𝑥𝑖, 𝑥𝑗

)

is the second-order term of expansion
of 𝑓 (𝒙) denoting the cooperative effect of bivariate 𝑥𝑖 and 𝑥𝑗 to the
system response 𝑓 (𝐱). The last term 𝑓 𝑑 (𝑥1, 𝑥2,… , 𝑥𝑑

)

is the 𝑑th-order
cooperative effect of 𝑥1, 𝑥2,… , 𝑥𝑑 , denoting the residual dependence
of all input variables together to effect the system response 𝑓 (𝐱).
As documented the basis of HDMR in [45], the target function is
accurately represented by the sum of D expansion terms, where 𝐷 =
∑𝑑

𝑖=0 𝑑! (𝑑 − 𝑖)!∕𝑖!. However, it should be noted that the most physical
systems always manifest the effect hierarchy principle [38,45], lower-
order effects are more important than higher order effects. In other
words, the lower expansion of HDMR would be adequate to describe the
practical system behavior. In this context, the second order expansion
of HDMR is used to construct the meta-model of the mapping between
epistemic uncertainties in structural system. Using the second order
HDMR, the approximation of 𝑃 {𝑍̃ext (θ,η, 𝑇 ) ≤ 𝑏𝜏 |θ = θtemp} is
rewritten as:

𝑃
{

𝑍ext
(

θ,η, 𝑇
)

≤ 𝑏𝜏
|

|

|

θ = θtemp

}

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

∑

1≤𝑖≤𝑗≤𝑑 𝑃
2
{

𝑍ext

(

θ2𝑖,𝑗 ,η, 𝑇
)

≤ 𝑏𝜏
}

− (𝑑 − 1)
∑𝑑

𝑖=1 𝑃
1
{

𝑍ext
(

θ1𝑖 ,η, 𝑇
)

≤ 𝑏𝜏
}

+ (𝑑−1)(𝑑−2)
2 𝑃 0

{

𝑍ext
(

θ0,η, 𝑇
)

≤ 𝑏𝜏
}

⎞

⎟

⎟

⎟

⎟

⎟

⎠

+ 𝜀 (18)

where,

𝑃 2
{

𝑍ext

(

θ2𝑖,𝑗 ,η, 𝑇
)

≤ 𝑏𝜏
}

= ∫𝜴η
𝑝
{

𝑍ext

(

θ2𝑖,𝑗 ,η, 𝑇
)

≤ 𝑏𝜏
|

|

|

θ2𝑖,𝑗

=
[

𝜃01 ,… , 𝜃𝑖,… , 𝜃𝑗 ,… , 𝜃0𝑑
]T} dη (19)

𝑃 1
{

𝑍ext
(

θ1𝑖 ,η, 𝑇
)

≤ 𝑏𝜏
}

= ∫𝜴η
𝑝
{

𝑍ext
(

θ1𝑖 ,η, 𝑇
)

≤ 𝑏𝜏
|

|

|

θ1𝑖

=
[

𝜃01 ,… , 𝜃𝑖,… , 𝜃0𝑑
]T} dη (20)

𝑃 0
{

𝑍ext
(

θ0,η, 𝑇
)

≤ 𝑏𝜏
}

= ∫𝜴η
𝑝
{

𝑍ext
(

θ0,η, 𝑇
)

≤ 𝑏𝜏
|

|

|

θ0

=
[

𝜃01 ,… , 𝜃0𝑖 ,… , 𝜃0𝑑
]T} dη (21)

where, θtemp =
(

𝜃1,… , 𝜃𝑖,… , 𝜃𝑗 ,… , 𝜃𝑑
)

denotes the interesting point
to be computed; θ0 =

(

𝜃01 , 𝜃
0
2 ,… , 𝜃0𝑑

)

denotes the origin of variable
space 𝐕

(

θ
)

=
[

𝜃1, 𝜃1
]

×
[

𝜃2, 𝜃2
]

×,… ,×
[

𝜃𝑑 , 𝜃𝑑
]

and the symbol 𝜀
denotes the residual error for the HDMR. According to the definitions
of interval number theory, the constant term 𝑃 0{𝑍̃ext (θ0,η, 𝑇 ) ≤ 𝑏𝜏}
is computed by fixed the variable input at support point θmed =

3
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(

𝜃med
1 , 𝜃med

2 ,… , 𝜃med
𝑑

)

. The first order term 𝑃 1{𝑍̃ext (θ1𝑖 ,η, 𝑇 ) ≤ 𝑏𝜏} is the
response of 𝑃 {𝑍̃ext (θ,η, 𝑇 ) ≤ 𝑏𝜏}at cut line θ1𝑖 =

(

𝜃med
1 ,… , 𝜃𝑖,… , 𝜃med

𝑑
)

.
The second order terms 𝑃 2{𝑍̃ext (θ2𝑖,𝑗 ,η, 𝑇 ) ≤ 𝑏𝜏} is the response of
𝑃 {𝑍̃ext (θ,η, 𝑇 ) ≤ 𝑏𝜏}at cut plane θ2𝑖,𝑗 =

(

𝜃med
1 ,… , 𝜃𝑖,… , 𝜃𝑗 ,… , 𝜃med

𝑑
)

.
As reflected in Eq. (18), 𝑃 {𝑍̃ext (θ,η, 𝑇 ) ≤ 𝑏𝜏 |θ = θtemp} is repre-
sented by the combination of the zeroth, first order and second order
terms. Similar to other meta-models, the most crucial step of con-
struction of HDMR is determination of the sub-expression of expansion
terms. Because the implicit formulation of high dimensional integration
∫𝛺η 𝑝{𝑍̃ext (θ,η, 𝑇 ) ≤ 𝑏𝜏 |θ = θtemp}, it is hard to construct an explicit
formulation of first-order and second-order terms of HDMR. To improve
the computational efficiency and accuracy, a wise choice is to use
the sub-level surrogate model to replace the complicated time history
analysis. Herein, the classical kriging model is used to approximate the
response of univariate function 𝑃 1{𝑍̃ext (θ1𝑖 ,η, 𝑇 ) ≤ 𝑏𝜏} and bivariate
function 𝑃 2{𝑍̃ext (θ2𝑖,𝑗 ,η, 𝑇 ) ≤ 𝑏𝜏}.

4.1. Kriging HDMR based conditional meta-model of epistemic uncertainty

The DACE toolbox [42] is employed in this work to build the lower-
order terms of HDMR. This section briefly summary the principle of
Kriging, a more detailed introduction of is presented in [42,46]. In
Kriging model, the system response 𝐲 (𝐱) is represented as:

𝐲 (𝐱) = 𝐠T (𝐱)β + 𝑧 (𝐱) (22)

in which, 𝐠T (𝐱)β gives the trend term of Kriging. The 𝐠 (𝐱)
=

[

𝑔1 (𝐱) , 𝑔2 (𝐱) ,… , 𝑔𝑘 (𝐱)
]T is the vector of basis functions and β =

[

𝛽1, 𝛽2,… , 𝛽𝑘
]T is the vector of regression coefficients. The residual

process 𝑧 (𝐱) is defined with zero mean and the following covariance
between two points:

Cov
(

𝑧 (𝑥) , 𝑧
(

𝑥
))

= 𝜎2𝑅
(

𝜔, 𝑥, 𝑥
)

(23)

where 𝜎2 is the stochastic process variance, 𝑅 (𝜔, 𝑥, 𝑥̃) is the corre-
lation function of 𝑥 and 𝑥̃ with parameter 𝜔. Given a design set
𝐗D =

{

𝐱1, 𝐱2,… , 𝐱𝑚
}

and corresponding system response set 𝐘D =
{

𝑦
(

𝐱1
)

, 𝑦
(

𝐱1
)

,… , 𝑦
(

𝐱𝑚
)}

, the parameter 𝜔 is determined by using
maximum likelihood estimation. With an optimal parameter 𝜔, the
value of 𝑅 (𝜔, 𝑥, 𝑥̃) is determined, thus the prediction of sample is
determined as:

𝑦̂ (𝐱) = 𝐠Tβ + 𝐫T𝐑−1 (𝐘D −𝐆Tβ
)

(24)

in which, β =
(

𝐆T𝐑−1𝐆
)−1 𝐆T𝐑−1𝐘D, 𝐆 =

{

𝐠
(

𝐱1
)

, 𝐠
(

𝐱2
)

,… , 𝐠
(

𝐱𝑚
)}

.
In this work, we set the basis function 𝐠 (𝐱) = 1, then the β becomes
a scalar 𝛽. The first-order term 𝑃 1{𝑍̃ext (θ1𝑖 ,η, 𝑇 ) ≤ 𝑏𝜏} and second-
order term 𝑃 2{𝑍̃ext (θ2𝑖,𝑗 ,η, 𝑇 ) ≤ 𝑏𝜏} are constructed by Kriging model
as shown in Eqs. (25)–(26):

𝑃 1
{

𝑍ext
(

θ1𝑖 ,η, 𝑇
)

≤ 𝑏𝜏
}

= 𝛽1 + 𝐫T𝑖
(

θ1𝑖
)

𝐑−1
𝑖

(

𝐘1
D − 𝟏T𝛽1

)

(25)

𝑃 2
{

𝑍ext

(

θ2𝑖𝑗 ,η, 𝑇
)

≤ 𝑏𝜏
}

= 𝛽2 + 𝐫T𝑖𝑗
(

θ2𝑖𝑗

)

𝐑−1
𝑖𝑗

(

𝐘2
D − 𝟏T𝛽2

)

(26)

where, 𝛽1 =
(

𝟏T𝐑−1𝟏
)−1 𝟏T𝐑−1

𝑖 𝐘1
D, 𝛽2 =

(

𝟏T𝐑−1𝟏
)−1 𝟏T𝐑−1

𝑖𝑗 𝐘
2
D are used

to represented the regression coefficient for 𝑃 1{𝑍̃ext (θ1𝑖 ,η, 𝑇 ) ≤ 𝑏𝜏} and
𝑃 2{𝑍̃ext (θ2𝑖,𝑗 ,η, 𝑇 ) ≤ 𝑏𝜏}, respectively. The Gauss correlation model is
employed to estimate the correlations between two candidates 𝜃1𝑖 , 𝜃2𝑖
for 𝑃 1{𝑍̃ext (θ1𝑖 ,η, 𝑇 ) ≤ 𝑏𝜏} and 𝜃1𝑖𝑗 , 𝜃

2
𝑖𝑗 for 𝑃 2{𝑍̃ext (θ2𝑖,𝑗 ,η, 𝑇 ) ≤ 𝑏𝜏}:

𝑅𝑖 = exp
(

−𝜔
(

𝜃1𝑖 − 𝜃2𝑖
)2) (27)

𝑅𝑖𝑗 =
2
∏

𝑘=1
exp

(

−𝜔𝑘

(

𝜃1𝑖𝑗,𝑘 − 𝜃2𝑖𝑗,𝑘
)2

)

(28)

Substituting Eqs. (21), (25) and (26) into Eq. (18), the HDMR model
for 𝑃

{

𝑍̃ext
(

θ,η, 𝑇
)

≤ 𝑏𝜏 |θ = θtemp
}

is rewritten as:

𝑃
{

𝑍ext
(

θ,η, 𝑇
)

≤ 𝑏𝜏
|

|

|

θ = θtemp

}

=
∑

1≤𝑖≤𝑗≤𝑑

(

𝛽2,𝑖𝑗 + 𝐫T𝑖𝑗
(

θ2𝑖𝑗

)

𝐑−1
𝑖𝑗

(

𝐘2
D,𝑖𝑗 − 𝟏T𝛽2,𝑖𝑗

))

− (𝑑 − 1)
∑𝑑

𝑖=1

(

𝛽1,𝑖 + 𝐫T𝑖
(

θ1𝑖
)

𝐑−1
𝑖

(

𝐘1
D,𝑖 − 𝟏T𝛽1,𝑖

))

+
(𝑑 − 1) (𝑑 − 2)

2
𝑃 0

{

𝑍ext
(

θmed,η, 𝑇
)

≤ 𝑏𝜏
}

(29)

With above derivations, the computational consuming of estimation
𝑃
{

𝑍̃ext
(

θ,η, 𝑇
)

≤ 𝑏𝜏 |θ = θtemp
}

is substantially relived by combining
HDMR and Kriging technique. However, it should be noted that the
computational costs of determination of support point set 𝐘1

D, 𝐘2
D and

zeroth-order term 𝑃 0{𝑍̃ext (θmed,η, 𝑇 ) ≤ 𝑏𝜏} are the still not afford-
able as discussed in Section 3. Alternatively, the TMSA [43] with
finite sampling is employed to overcome the computational barrier of
approximation the support point set 𝐘1

D, 𝐘2
D and zeroth-order term

𝑃 0{𝑍̃ext (θmed,η, 𝑇 ) ≤ 𝑏𝜏}.

4.2. Approximation of the small first passage probability with TMSA

With the advantage of saddle point approximation, TMSA can pro-
vide a high accuracy prediction of heavy trail distribution. The main
difference of TMSA and other classical saddle point approximation is
the weak assumption of the existence of cumulant generating function
(CGF) of input variable. Moreover, the lower computational needs of
TMSA that only using the first three statistical moment is of importance.
In TMSA, the estimation of EVD of 𝑍̃s

ext
(

θtemp,η, 𝑇
)

with deterministic
structure parameter θtemp is expressed as:

𝑃
{

𝑍ext
(

θtemp,η, 𝑇
)

≤ 𝑏𝜏
}

= 𝑃
{

𝑍s
ext

(

θtemp,η, 𝑇
)

≤ 𝑧ext
(

𝑏𝜏
)

}

=

⎧

⎪

⎨

⎪

⎩

𝛷
{

𝑟𝑒 +
1
𝑟𝑒
ln
(

𝑞𝑒
𝑟𝑒

)}

𝑏𝜏 ≠ 𝜇𝑍ext
(

θtemp ,η,𝑇
)

0.5 + 𝛼3
𝑍s
ext

(

θtemp ,η,𝑇
)∕6

√

2𝜋 𝑏𝜏 = 𝜇𝑍ext
(

θtemp ,η,𝑇
)

(30)

𝑟𝑒 = sign
{

𝜉
(

𝑏𝜏
)}

{

2
[

𝜉
(

𝑏𝜏
)

𝑧ext
(

𝑏𝜏
)

−𝐾𝑍s
ext

(

θtemp ,η,𝑇
)

{

𝜉
(

𝑏𝜏
)}

]}1∕2

(31)

𝑞𝑒 = 𝜉
(

𝑏0
)

[

𝐾 ′′
𝑍s
ext

(

θtemp ,𝑇
)

{

𝜉
(

𝑏0
)}

]1∕2
(32)

where, 𝑍̃s
ext

(

θtemp,η, 𝑇
)

=
(

𝑍̃ext
(

θtemp,η, 𝑇
)

− 𝜇𝑍̃ext
(

θtemp ,η,𝑇
)

)

∕𝜎𝑍̃ext
(

θtemp ,η,𝑇
) and 𝑍̃ext

(

𝑏𝜏
)

=
(

𝑏𝜏 − 𝜇𝑍̃ext
(

θtemp ,η,𝑇
)

)

∕𝜎𝑍̃ext
(

θtemp ,η,𝑇
)

denote the standardized form of 𝑍̃ext
(

θtemp,η, 𝑇
)

and 𝑏𝜏 ; 𝜇𝑍̃ext
(

θtemp ,η,𝑇
)

and 𝜎𝑍̃ext
(

θtemp ,η,𝑇
) denote the mean and standard variation of variable

𝑍̃ext
(

θtemp,η, 𝑇
)

. The saddle point 𝜉
(

𝑏𝜏
)

is expressed as:

𝜉
(

𝑏𝜏
)

= 2𝑍ext
(

𝑏𝜏 , 𝑇
)

∕
(

2 + 𝛾𝑍s
ext

(

θtemp ,η,𝑇
)𝑍ext

(

𝑏𝜏 , 𝑇
)

)

(33)

in which, 𝛾𝑍̃s
ext (θ𝑘 ,η,𝑇 ) = 𝐸

(

𝑍̃ext
(

θtemp,η, 𝑇
)

− 𝜇𝑍̃ext
(

θtemp ,η,𝑇
)

)3

∕𝜎3
𝑍̃ext

(

θtemp ,η,𝑇
) is represented the skewness of standard variable

𝑍̃s
ext

(

θtemp,η, 𝑇
)

. Given the value of 𝜉
(

𝑏𝜏
)

the CGF 𝐾𝑍̃s
ext

(

θtemp ,η,𝑇
)

×
{

𝜉
(

𝑏𝜏
)}

and 𝐾 ′′
𝑍̃s
ext

(

θtemp ,η,𝑇
)

{

𝜉
(

𝑏𝜏
)}

the second derivation of CGF is
written as:

𝐾𝑍s
ext (θtemp ,η,𝑇 )

{

𝜉
(

𝑏𝜏
)}

=

⎧

⎪

⎨

⎪

⎩

−2𝜉
(

𝑏𝜏
)

∕𝛾𝑍s
ext (θtemp ,η,𝑇 ) − 2 ln

{

(

1 − 𝛾𝑍s
ext (θtemp ,η,𝑇 )𝜉

(

𝑏𝜏
)

∕2
)2

}

𝛾𝑍s
ext (θtemp ,η,𝑇 ) ≠ 0

0.5𝜉2
(

𝑏𝜏
)

𝛾𝑍s
ext (θtemp ,η,𝑇 ) = 0

(34)

𝐾 ′′
𝑍s
ext

(

θtemp ,η,𝑇
)

{

𝜉
(

𝑏𝜏
)}

= 1∕
{

1 − 0.5𝛾𝑍s
ext

(

θtemp ,η,𝑇
)𝜉

(

𝑏𝜏
)

}2
(35)

4
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As shown in above formulations, the TMSA only needs the first three
statistical moment to predict the uncertain distribution of variables.
Consider the hundreds even thousands components in aleatory vector
η, the first three statistical moments are obtained by several thou-
sands of simulations with good convergence for estimation of 𝐘1

D, 𝐘2
D

and zeroth-order term 𝑃 0{𝑍̃ext (θmed,η, 𝑇 ) ≤ 𝑏𝜏}. As depicted in this
section, the combination of Kriging-HDMR and TMSA is employed
to construct the meta-model of the estimation of conditional EVD
𝑃 {𝑍̃ext (θ,η, 𝑇 ) ≤ 𝑏𝜏 |θ = θtemp}. By constructing the meta-model,
the estimation of 𝑃

{

𝑍̃ext
(

θtemp,η, 𝑇
)

≤ 𝑏𝜏
}

is transformed to the ap-
proximation of 𝑃

{

𝑍̃ext
(

θtemp
)

≤ 𝑏𝜏
}

. In other words, the process of
estimation of 𝑃

{

𝑍̃ext
(

θ,η, 𝑇
)

≤ 𝑏𝜏
}

is converted to the uncertainty
quantification of θ corresponding to the meta-model. The uncertainty
propagation of θ is discussed in Section 5.

5. Estimation bounds of EVD

As mentioned in above sections, the uncertainties rooted in struc-
tural parameters are depicted with interval theory. Therefore, the
estimation of LB and UB of 𝑃

{

𝑍̃ext
(

θI,η, 𝑇
)

≤ 𝑏𝜏
}

is expressed as
the process of searching the maximum and minimum value of system
response in the d-dimensional hypercube space 𝐕

(

θ
)

=
[

𝜃1, 𝜃1
]

×
[

𝜃2, 𝜃2
]

×,… ,×
[

𝜃𝑑 , 𝜃𝑑
]

. From the traditional view, the solution of two
bounds constrained problem 𝑃

{

𝑍̃ext
(

θI,η, 𝑇
)

≤ 𝑏𝜏
}

is obtained by MC
simulation. However, MC simulation with the high degree of accuracy
may become computationally very extensive. To alleviate the compu-
tational burden, the differential evolution (DE) interval optimization
technique is used to estimate the LB and UB of 𝑃

{

𝑍̃ext
(

θI,η, 𝑇
)

≤ 𝑏𝜏
}

.
DE is a stochastic population-based search method developed by [44]
and has been effectively used to uncertainty quantification [47,48] and
structural optimization [49] by authors. With the mutation, crossover
and selection operations, DE may give a robust search result with fast
convergence. The concrete description of DE is documented in [44,50].

5.1. Uncertainty propagation using DE

The estimation of LB and UB of 𝑃
{

𝑍̃ext
(

θ,η, 𝑇
)

≤ 𝑏𝜏
}

is expressed
as the process of searching the minimum and maximum value of
objective function subject to sample space θ ≤ θtemp ≤ θ. From
Eq. (29), we can find that the constant terms of meta-model make
no contributions to the variation of 𝑃

{

𝑍̃ext
(

θ,η, 𝑇
)

≤ 𝑏𝜏
}

. Then, the
objective functions of optimization process for 𝑃

{

𝑍̃ext
(

θI,η, 𝑇
)

≤ 𝑏𝜏
}

and 𝑃
{

𝑍̃ext
(

θI,η, 𝑇
)

≤ 𝑏𝜏
}

are rewritten as Eqs. (36)–(37) in Box I:
As shown in Eqs. (36)–(37), the conventional optimization algorithms
are computationally efficient in general, but maybe trapped in local
extreme value of objective functions. Herein we use DE to search the
global optimal value of objective function. Similar to other evolution
algorithms, DE starts with the stochastic sampling in variable space
𝐕
(

θ
)

=
[

𝜃1, 𝜃1
]

×
[

𝜃2, 𝜃2
]

×,… ,×
[

𝜃𝑑 , 𝜃𝑑
]

. The mutation and crossover
operations guarantee its robustness and diversity throughout the vari-
able space. Compare to conventional optimization algorithms, the main
advantage of DE is its selection strategy. The greedy criterion as shown
in Eq. (38) is employed to search the best individual between the
competitors:

θ𝐺+1 =
{

θc𝐺 𝑖𝑓
(

obj
(

θc𝐺
)

< obj
(

θ𝐺
))

θ𝐺 otherwise (38)

where θ𝐺+1 denotes the updated individual; θ𝐺 and θc𝐺 denote the old
individual and competitor, respectively. The competitions not only exist
in offspring generations but between offspring and its parents. Thus,
the better individual will pass to the next generation until the optimal
results are obtained. According to Eqs. (36)–(37), the LB and UB of
𝑃
{

𝑍̃ext
(

θI,η, 𝑇
)

≤ 𝑏𝜏
}

can be expressed as:
[

𝑃
{

𝑍ext
(

θI,η, 𝑇
)

≤ 𝑏𝜏
}

, 𝑃
{

𝑍ext
(

θI,η, 𝑇
)

≤ 𝑏𝜏
}]

=
[

𝑃
{

𝑍ext
(

θtemp,1,η, 𝑇
)

≤ 𝑏𝜏
}

, 𝑃
{

𝑍ext
(

θtemp,2,η, 𝑇
)

≤ 𝑏𝜏
}]

(39)

Substituting the Eq. (39) into the Eq. (7), the LB and UB of first passage
probability 𝑃𝑓

(

θI,η, 𝑏𝜏 , 𝑇
)

is obtained.

5.2. Framework of dynamic reliability with epistemic uncertainty

Based on the above discussion, the proposed Kriging-HDMR to-
gether with TMSA is implemented as following steps:

Step 1. Determine the interval range of uncertain structural parame-
ters and support point for zeroth-order term of HDMR;

Step 2. Identify the number of random uncertainties in stochastic
excitation 𝜂.

Step 3. Generate the sample input of first and second order terms of
HDMR.

Step 4. Use randomness variable that generated by the identified in
Step 2 to determine N time series with the quasi-Monte-Carlo
simulations. Repeat the time history analysis for the structure
with designate parameters under these excitation series.

Step 5. Estimate the conditional EVD of 𝑍̃ext
(

θtemp,η, 𝑇
)

and con-
struct the Kriging models for first and second order HDMR
approximation, respectively.

Step 6. Perform DE interval optimization to determine the LB and UB
of 𝑃

{

𝑍̃ext
(

θ,η, 𝑇
)

≤ 𝑏𝜏
}

.

The above outlined analytical process of dynamic reliability of struc-
tural system is illustrated in Fig. 1.

6. Case study

The nine-story shear structure [51], as shown in Fig. 2, is considered
here to investigate the efficiency and effectiveness of proposed in this
work. The nominal value of stiffness and lumped mass of each story as
shown in Table 1. The Rayleigh damping 𝐂

(

θ
)

= 𝑐0𝐌
(

θ
)

+ 𝑐1𝐊
(

θ
)

is
used here to denote energy dissipation. The corresponding parameters
𝑐0 = 0.3843s−1 and 𝑐1 = 0.0052s are given by assuming the mode
damping ratio 𝜉 = 0.05 for the first and second modes. The nonlinear
relationship of restoring force and inter-story drift is characterized by
the classical Bouc–Wen model [52]:

𝐌(θ)𝐗̈
(

θ,η, 𝑡
)

+ 𝐂(θ)𝐗̇
(

θ,η, 𝑡
)

+𝐊(θ)
[

𝛼𝐗̇
(

θ,η, 𝑡
)

+ (1 − 𝛼)𝐙
(

θ,η, 𝑡
)]

= 𝐌(θ)𝑥̈𝑔
(

η, 𝑡
)

(40)

𝛥𝐙̇
(

θ,η, 𝑡
)

= −𝛾 ||
|

𝛥𝐗̇
(

θ,η, 𝑡
)

|

|

|

𝛥𝐙
(

θ,η, 𝑡
)

|

|

|

𝛥𝐙
(

θ,η, 𝑡
)

|

|

|

𝑛0−1

− 𝛽𝛥𝐗̇
(

θ,η, 𝑡
)

|

|

|

𝛥𝐙
(

θ,η, 𝑡
)

|

|

|

𝑛0 + 𝐴𝛥𝐗̇
(

θ,η, 𝑡
)

(41)

where, 𝐊
(

θ
)

is the initial stiffness matrix of structural system;
𝛥𝐗̇

(

θ,η, 𝑇
)

and 𝛥𝐗
(

θ,η, 𝑇
)

are the inter-story velocity and drift
vectors, respectively; 𝐙

(

θ,η, 𝑇
)

is the hysteretic displacement vector;
𝛥𝐙̇

(

θ,η, 𝑇
)

and 𝛥𝐙
(

θ,η, 𝑇
)

are the inter-story velocity and drift
vectors of hysteretic system, respectively. The Bouc–Wen parameters:
𝐴 = 𝑛0 = 1.0; the nominal value of 𝛾 = 40, 𝛽 = 20. The seismic excitation
𝑥̈𝑔

(

η, 𝑡
)

is modeled by a non-stationary filtered white noise process and
corresponding power spectral density is denoted by the Kanai–Tajimi
model:

𝑆𝑓𝑓 (𝜔) = 𝑆0
4𝜍2𝑔𝜔

2
𝑔𝜔

2 + 𝜔4
𝑔

(

𝜔2
𝑔 − 𝜔2

)2
+ 4𝜍2𝑔𝜔2

𝑔𝜔2
(42)

in which, the constant power spectral density intensity of the bed rock
𝑆0 = 0.0156 m2∕s3, the factor 𝜉𝑔 = 0.6 is used here to denote the efficient
damping ratio of the ground, and ground frequency 𝜔g = 4𝜋 rad∕s.
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𝑓𝑖𝑛𝑑 θtemp,1

minmize ∑

1≤𝑖≤𝑗≤𝑑 𝐫T𝑖𝑗
(

θ
)

𝐑−1
𝑖𝑗

(

𝐘2
D,𝑖𝑗 − 𝟏T𝛽2,𝑖𝑗

)

− (𝑑 − 1)
∑𝑑

𝑖=1 𝐫
T
𝑖
(

θ
)

𝐑−1
𝑖

(

𝐘1
D,𝑖 − 𝟏T𝛽1,𝑖

)

𝑠.𝑡. θtemp,1 ∈
[

θ,θ
]

(36)

𝑓𝑖𝑛𝑑 θtemp,2

minmize −
∑

1≤𝑖≤𝑗≤𝑑 𝐫T𝑖𝑗
(

θ
)

𝐑−1
𝑖𝑗

(

𝐘2
D,𝑖𝑗 − 𝟏T𝛽2,𝑖𝑗

)

+ (𝑑 − 1)
∑𝑑

𝑖=1 𝐫
T
𝑖
(

θ
)

𝐑−1
𝑖

(

𝐘1
D,𝑖 − 𝟏T𝛽1,𝑖

)

𝑠.𝑡. θtemp,2 ∈
[

θ,θ
]

(37)

Box I.

Fig. 1. Flowchart of dynamic reliability analysis of structure system with epistemic uncertainties.

Spectral representation method [6,7] is used here to express the time
domain nonstationary process as shown in following:

𝑥̈𝑔 (𝑡) = 𝑔 (𝑡)

[

√

2
𝑁
∑

𝑖=1
𝐴𝑖 cos

(

𝜔𝑖𝑡 + 𝜑𝑖
)

]

(43)

where, the amplitude 𝐴𝑖 =
√

2𝑆𝑓𝑓
(

𝜔𝑖
)

𝛥𝜔, 𝜔𝑖 = 𝑖𝛥𝜔 and 𝑁 =
𝜔upper∕𝛥𝜔; the upper cut frequency 𝜔upper = 100 rad∕s, the equal
frequency interval 𝛥𝜔 = 0.2 rad∕s. The uniform modulate function 𝑔 (𝑡)
is used here to denote the intensity variation based on time:

𝑔 (𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

𝑡∕𝑡𝑎
)2 0 ≤ 𝑡 ≤ 𝑡𝑎

1 𝑡𝑎 < 𝑡 ≤ 𝑡𝑏
exp

[

−𝛽
(

𝑡 − 𝑡𝑏
)]

𝑡𝑏 < 𝑡 ≤ 𝑇

0 𝑡 > 𝑇

, (44)

where 𝑡𝑎 = 1 s and 𝑡𝑏 = 7 s are the start and end time of stationary part
of stochastic process; 𝛽 = 0.35 is the attenuation ratios of the stationary
section. The 4th order Runge–Kutta method is used here to compute
the dynamic response of nine-story shear structure under the excited
with the generated artificial acceleration. The time step is designated
as 𝛥𝑡 = 0.02 s, and the time span is determined as 15 s.

Table 1
Mean value of lumped mass and inter-story stiffness.

Story No. 1 2 3 4 5 6 7 8 9

Mass(×105 kg) 3.442 3.278 3.056 2.756 2.739 2.739 2.739 2.739 2.692

Stiffness
(

×105 N∕m
)

3.7 3.4 3.0 2.8 2.6 2.4 2.0 1.6 1.0

6.1. Deterministic value of structural parameters

In the first case, the structural properties, including the story mass,
stiffness, and parameters of Bouc–Wen model are assumed as deter-
ministic. The uncertainty involved in dynamic analysis is the ran-
domness of external excitation. The inter-story drift 𝛥𝐗

(

θ,η, 𝑇
)

is
considered quantities of interest. Then, the probability density func-
tion (PDF) of 𝛥𝐗ext

(

θ,η, 𝑇
)

and corresponding first passage probabil-
ity of 𝛥𝐗

(

θ,η, 𝑇
)

is represented as 1 − 𝑃
{

𝛥𝐗ext
(

θ,η, 𝑇
)

≤ 𝑏𝜏
}

. The
correlation-reduction Latin hypercube sampling (CLHS) [53] method
is used here to generate the sampling. A 2500 numbers of CLHS is
generated to obtain the first three moment of dynamic system response.
To investigate the accuracy and efficiency of the obtained dynamic
reliability by using TMSA, a 106 MC simulations is employed to act
the baseline as shown in Fig. 3. In comparison with the efficiency and
accuracy of CLHS-TMSA results, the TMSA estimation of the PDF of
EVD and the first passage probability with 106 MC simulations also

6
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Fig. 2. The story-shear structure.

plotted in Fig. 3(a) and (b), respectively. The 𝑃𝑓
(

𝑏𝜏 , 15s
)

in Fig. 3(b)
is the short note of 𝑃𝑓

(

θ,η, 𝑏𝜏 , 15s
)

.

From Fig. 3(a), the fairly close agreement of CLHS-TMSA result
with 2500 samples and MC simulation result with 106 samples demon-
strate the proposed method captures the characters of the EVD of
𝛥𝐗ext

(

θ,η, 𝑇
)

. As shown in Fig. 3(b), the estimated first passage proba-
bility of inter-story drift obtained by TMSA with 2500 CLHS simulations
is well matched with the results given by 106 direct MC simulations at
the range of threshold value [0.01 m, 0.06 m]. While, the first passage
probability of inter-story obtained by direct Monte-Carlo simulations
is effective and accurate for the probability larger than 10−4 ∼ 10−5.
Moreover, the first passage probability of inter-story drift obtained by

TMSA with 2500 CLHS simulations is well agree with the estimated
results obtained by TMSA with 106 Monte-Carlo simulations for the
large threshold value. From above comparison, we can conclude that
the proposed methodology for the TMSA provide a meaningful measure
for small passage probabilities as low as 10−8, even the numbers of
sampling are not sufficiently large.

6.2. Dependent uncertain parameter with interval numbers

In the second scenario, we assume the dependent variable lumper
mass matrix 𝐌(θ) and the Bouc–Wen model parameters 𝛼, 𝛽, 𝛾 of each
story are interval formed. The interval uncertain degree 𝜈 of uncertain
vector θI =

[

𝜃I𝑴 , 𝜃I𝛼 , 𝜃
I
𝛽 , 𝜃

I
𝛾

]T
is assumed as 0.05, 0.1, 0.15 and 0.2. Then,

the element expression of LB and UB of θI is defined as:
[

θ,θ
]

=
[

(1 − 𝜈)
[

𝜃med
𝐌 , 𝜃med

𝛼 , 𝜃med
𝛽 , 𝜃med

𝛾

]T
, (1 + 𝜈)

[

𝜃med
𝐌 , 𝜃med

𝛼 , 𝜃med
𝛽 , 𝜃med

𝛾

]T
]

(45)

where, 𝜃med
𝑖 is the median value of 𝜃𝑖. From the above Section 6.1, it

seemed that the computational needs of EVD computation is evidently
released by using the CLHS-TMSA for deterministic parameters of struc-
ture. While, the computational burden of dynamic reliability involving
in epistemic may be extremely increased due to the computational
consuming of interval extreme value. To solve this problem, the Kriging
assistant HDMR is used here to act the response surface of first passage
probability of inter-story drift of structure system 𝛥𝐗

(

θ,η, 𝑇
)

. It is well
known that the accuracy and computational efficiency are tradeoff for
each other.

6.2.1. Construction and test of the HDMR
The first order and second order expansion of HDMRs are con-

structed in uncertain domain θI with four support points in each
dimension. Correspondingly, the conditional EVD of each support point
is determined by TMSA with 2500 CHLS simulations. The first passage
probability 𝑃𝑓

(

𝑏𝜏 , 15𝑠
)

with the structural parameter vector θ and θ
are used here to study the accuracy and efficiency of first order and
second order HDMRs for the uncertain level of structural parameter are
0.05, 0.1, 0.15 and 0.2. The investigation results are shown in Fig. 4.
The TMSA approximation with 2500 CHLS simulations is used here to
act the reference one.

Fig. 3. (a) EVD and (b) first passage probability of inter-story drift with deterministic structure parameters.

7
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Fig. 4. Comparison the accuracy of first order HDMR and second order HDMR prediction with (a) uncertain level 𝜈 = 0.05; (b) uncertain level 𝜈 = 0.1; (c) uncertain level 𝜈 = 0.15
(d) uncertain level 𝜈 = 0.2 of structural parameters.

As shown in Fig. 4(a), both first order and second order HDMR
gives a precise approximation results for the prediction 𝑃𝑓

(

𝑏𝜏 , 15 s
)

corresponding to θ and θ for the uncertain level 𝜈 = 0.05. However,
the scenario of the uncertain level 𝜈 = 0.1 as shown in Fig. 4(b) demon-
strated that the prediction accuracy of first order HDMR for the LB of
𝑃𝑓

(

𝑏𝜏 , 15 s
)

is decreased with the increase of threshold value 𝑏𝜏 . In
other words, the first order HDMR gives a non-conservative prediction
results for the LB of first passage probability when the uncertain level
𝜈 = 0.1. The Fig. 4(c) and (d) show that the prediction of second
order HDMR is well matched with the simulation result of TMSA with
2500 CLHS sampling. Especially, the distinction between the prediction
value of first order HDMR and the simulation of TMSA is evidently
enlarged with the increment of threshold value of 𝑏𝜏 . This means that
the prediction first passage probability with first order HDMR is not
applicable for the small value of 𝑃 𝑓

(

𝑏𝜏 , 15 s
)

corresponding to 𝜈 = 0.15
and 𝜈 = 0.2. Thus, the prediction frame using second order HDMR
is employed in subsequent prediction of bounds value of first passage
probability 𝑃𝑓 with large uncertain level.

6.2.2. Estimation of the LB and UB of first passage probability
As discussed above, the second order HDMR may give a more

accurate estimation result for the first passage probability of inter-story
drift 𝛥𝐗

(

θ,η, 𝑇
)

. Therefore, the second order HDMR based probabil-
ity response surface is employed to approximate the LB and UB of
𝑃𝑓

(

𝑏𝜏 , 15 s
)

. After the construction of meta-model, the DE interval op-
timization algorithm is used to estimate the LB and UB of 𝑃𝑓

(

𝑏𝜏 , 15 s
)

.

The initial population and maximum number of iterations are desig-
nated as 30 and 50, respectively. The MC simulations with 104 and
105 sampling are also implemented here to investigate the efficiency of
DE-HDMR method as shown in Fig. 5. The LB and UB of 𝑃𝑓

(

𝑏𝜏 , 15 s
)

in Fig. 5(a), (b), (c) and (d) are corresponding to the uncertain level
𝜈 = 0.05, 𝜈 = 0.1, 𝜈 = 0.15 and 𝜈 = 0.2.

As shown in Fig. 5(a) and (b), the LB and UB results predicted
by DE are well agree with MC simulation with 104 and 105 samples
at the uncertain level 𝜈 = 0.05 and 𝜈 = 0.1. Compare Fig. 5(c) and
(d) with above two subfigures, the estimation with DE gives a more
wider approximation range of the LB and UB of 𝑃𝑓

(

𝑏𝜏 , 15 s
)

. This
demonstrates that the predicted result of post process DE gives a more
robust estimation of the 𝑃 𝑓

(

𝑏𝜏 , 15 s
)

and 𝑃 𝑓
(

𝑏𝜏 , 15 s
)

. To investigate
above discussion by numerical form, Tables 2–3 are used to collect
the LB and UB values of 𝑃𝑓

(

𝑏𝜏 , 15 s
)

by fixing the threshold value
𝑏𝜏 = 0.06 m and 0.08 m at the uncertain level 𝜈 = 0.05, 0.1, 0.15 and 0.2.

From a more detailed comparison of these three different post
processes as allocated in Table 2, the difference between the MC
simulation with 104 sampling and DE post process larger than 11%,
15%, 50% and 111% for the 𝑃 𝑓 (0.06 m, 15 s) with uncertain level 𝜈 =
0.05, 0.1, 0.15 and 0.2; the difference is larger than 7.7%, 13.2%, 12.7%
and 24% for 𝑃 𝑓 (0.06 m, 15 s) with uncertain level 𝜈 = 0.05, 0.1, 0.15 and
0.2, respectively. As reflected in Table 3, the difference of MC sim-
ulation with 104 samples and DE is larger than 17.4%, 26%, 92%
even 171.2% for the 𝑃 𝑓 (0.08 m, 15 s) with the uncertain level𝜈 =
0.05, 0.1, 0.15 and 0.2, respectively. From above comparison, it can be

8
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Fig. 5. Comparison the prediction of 𝑃 𝑓

(

𝑏𝜏 , 15 s
)

and 𝑃 𝑓
(

𝑏𝜏 , 15 s
)

using MC simulation with 104 and 105 samples and DE simulation with (a) uncertain level 𝜈 = 0.05; (b) uncertain
level 𝜈 = 0.1; (c) uncertain level 𝜈 = 0.15 and (d) uncertain level 𝜈 = 0.2 of structural parameters.

Table 2
Comparison the LB and UB of 𝑃𝑓

(

𝑏𝜏 , 15 s
)

corresponding to 𝑏𝜏 = 0.06 m under uncertain
level 𝜈 = 0.05, 0.1 and 0.2 with different post process of prediction.

Uncertain level 𝜈 104 MC 105 MC DE

0.05 LB 2.113×10−6 2.001×10−6 1.905×𝟏𝟎−𝟔

UB 3.471×10−5 3.667×10−5 3.760×𝟏𝟎−𝟓

0.1 LB 3.265×10−7 3.425×10−7 2.833×𝟏𝟎−𝟕

UB 1.288×10−4 1.351×10−4 1.484×𝟏𝟎−𝟒

0.15 LB 2.644×10−8 2.213×10−8 1.760×𝟏𝟎−𝟖

UB 4.572 × 10−4 4.604 × 10−4 5.238×𝟏𝟎−𝟒

0.2 LB 1.215×10−9 8.718×10−10 5.755×𝟏𝟎−𝟏𝟎

UB 0.00119 0.00137 0.00156

found that the difference of 𝑃 𝑓
(

𝑏𝜏 , 15 s
)

is smaller than and
𝑃 𝑓

(

𝑏𝜏 , 15 s
)

. The main reason for this scenario is the variation of small
value of probability is more sensitivity than large value. In other words,
the DE interval optimization technique gives a more robust bounds of
first passage probability compare to MC simulation. After the discussion
of the accuracy and efficiency of proposed method, the sensitivity
analysis of first passage probability of inter-story drift corresponding
to the interval uncertainties in structural parameters is investigated.

6.2.3. Sensitivity of each uncertain parameter
The first passage probability of dynamic system is characterized

by the small value, which always be depicted in semi-logarithmic

Table 3
Comparison the LB and UB of 𝑃𝑓

(

𝑏𝜏 , 15 s
)

corresponding to 𝑏𝜏 = 0.08 m under uncertain
level 𝜈 = 0.05, 0.1 and 0.2 with different post process of prediction.

Uncertain level 𝜈 104 MC 105 MC DE

0.05 LB 8.865×10−10 8.130×10−10 7.552×𝟏𝟎−𝟏𝟎

UB 5.743×10−8 6.265×10−8 6.509×𝟏𝟎−𝟖

0.1 LB 5.209×10−11 5.583×10−11 4.123×𝟏𝟎−𝟏𝟏

UB 4.198×10−7 4.518×10−7 5.237×𝟏𝟎−𝟕

0.15 LB 1.001×10−12 7.608×10−13 5.215×𝟏𝟎−𝟏𝟑

UB 2.962×10−6 2.952×10−6 3.670×𝟏𝟎−𝟔

0.2 LB 6.664×10−15 4.275×10−15 2.457×𝟏𝟎−𝟏𝟓

UB 1.632×10−5 1.891×10−5 2.220×𝟏𝟎−𝟓

coordinates. Then, the sensitivity index defined in this work is based on
the logarithmic representation of first passage probability. According
to the definition of interval theory, the radius of interval based first
passage probability 𝑃 rad

𝑓
(

θI,η, 𝑏𝜏 , 𝑇
)

is expressed as:

𝑃 rad
𝑓

(

θI,η, 𝑏𝜏 , 𝑇
)

= log 10
{

𝑃 𝑓
(

θI,η, 𝑏𝜏 , 𝑇
)

∕𝑃
(

θI,η, 𝑏𝜏 , 𝑇
)

}

(46)

Then, the sensitivity of first passage probability 𝑃𝑓
(

θI,η, 𝑏𝜏 , 𝑇
)

corre-
sponding to uncertain parameter 𝜃I𝑖 is defined as:

𝑆
(

𝜃I𝑖 , 𝑏𝜏
)

=
𝑃 rad
𝑓

(

θI𝑖 ,η, 𝑏𝜏 , 𝑇
)

𝜃med
𝑖

log 10
{

𝑃𝑓
(

θmed,η, 𝑏𝜏 , 𝑇
)}

𝜃rad𝑖

(47)

9
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Fig. 6. Sensitivity index of uncertain parameter (a) 𝛼 (b) 𝛾 (c) 𝛽 and (d) 𝑀0 with respect to the first passage probability 𝑃𝑓
(

𝑏𝜏 , 15 s
)

.

in which, θI𝑖 = [𝜃med
1 ,… , 𝜃I𝑖 ,… , 𝜃med

𝑛 ]T denote the midpoint of interval
vector θI except the component 𝜃𝑖. The normalized sensitivity index is
given by following:

𝑆
(

𝜃I𝑖 , 𝑏𝜏
)

= 𝑆
(

𝜃I𝑖 , 𝑏𝜏
)

∕
𝑑
∑

𝑖=1
𝑆
(

𝜃I𝑖 , 𝑏𝜏
)

(48)

The sensitivity analysis of the first passage probability 𝑃𝑓
(

𝑏𝜏 , 15 s
)

are
performed with the degree of uncertain level 𝜈 = 0.05, 0.1, 0.15 and 0.2.
The Fig. 6 shows the variation of sensitivity index with the increment
of threshold value 𝑏𝜏 .

As shown in Fig. 6(a), (b), (c) and (d), the sensitivity index of
lumped mass of structural system is much important than other three
uncertain parameters. Compare the tendency of variation of sensitivity
index of these four uncertain parameters with the increment of thresh-
old value 𝑏𝜏 , the sensitivity of lumped mass have a negative effect
on the 𝑃𝑓

(

𝑏𝜏 , 15 s
)

, while other three parameters may have positive
effect on the 𝑃𝑓

(

𝑏𝜏 , 15 s
)

. This can be interpreted that the increase
of lumped mass of each story may lead a high failure probability of
structural system under stochastic seismic excitation. In contrast, the
increase parameter 𝛼, 𝛾 and 𝛽 may decrease the value of 𝑃𝑓

(

𝑏𝜏 , 15 s
)

.
Moreover, the degree of importance for lumped mass is increased with
the amplification of uncertain level 𝜈, while the degree of importance
for other three parameters suffered a decrease tendency with the in-
crease of uncertain level. As reflected in Fig. 6, we can conclude that
the epistemic uncertainties in lumped mass may dominated the first
passage probability of structural system under stochastic excitation. To
diminish the influence of epistemic uncertainties in structural system
effectively, the more data or higher level of completeness of knowledge
for lumped mass is necessary.

Fig. 7. Comparison the accuracy of first order HDMR prediction with uncertain level
𝜈 = 0.02 of structural parameters.

6.3. Independent uncertain parameter with interval numbers

As reflected in above section, it can be found that the first order
HDMR may give a well-matched approximation of first passage prob-
ability 𝑃𝑓

(

𝑏𝜏 , 15 s
)

at the lower degree of uncertain level. Moreover,
the HDMR is applicable to high dimension problems. To investigate

10



D. Li, H. Tang, S. Xue et al. Probabilistic Engineering Mechanics 58 (2019) 103001

Fig. 8. The convergent history of the LB and UB of (a) log 10(𝑃𝑓 (0.06 m, 15 s)) and (b) log 10(𝑃𝑓 (0.08 m, 15 s)).

the performance of proposed method for high dimensional problem, the
uncertain parameter in structural system are assumed as independent
to each other. Then, there are 36 independent uncertain parameters of
structural system shall be considered.

6.3.1. Construction and test of HDMR
In this section, the interval uncertain level 𝜈 of epistemic uncertain

vector θI =
[

𝜃𝐼𝐌,1,… 𝜃𝐼𝐌,9, 𝜃
I
𝛼,1,… , 𝜃I𝛼,9, 𝜃

I
𝛽,1,… , 𝜃I𝛽,9, 𝜃

I
𝛾,1,… , 𝜃I𝛾,9

]T
is as-

sumed as 0.02. To investigate the accuracy of proposed method, the
EVDs of case 1 and case 2 corresponding to the LB θ and UB θ of
structural uncertain vector θ are estimated by TMSA and depicted in
Fig. 7, respectively.

In Fig. 7, the estimates of case 1 and case 2 predicted by HDMR
are well matched with the results obtained by TMSA with 2500 CLHS
simulations. Very accurate estimation of 𝑃𝑓

(

𝑏𝜏 , 15 s
)

demonstrates that
the first order HDMR may give a good estimation of 𝑃𝑓

(

𝑏𝜏 , 15 s
)

.
Therefore, the prediction frame using first order HDMR is employed in
the prediction of bounds value of first passage probability 𝑃𝑓

(

𝑏𝜏 , 15 s
)

.

6.3.2. Estimation of the LB and UB of first passage probability
After construction the first order HDMR, we use DE interval opti-

mization algorithm to approximate the LB and UB of 𝑃𝑓
(

𝑏𝜏 , 15 s
)

. The
initial population and maximum number of iterations are designated
as 200 and 100, respectively. For investigation the convergence rate of
DE, the convergent history of LB and UB of log 10(𝑃𝑓 (0.06 m, 15 s)) and
log 10(𝑃𝑓 (0.08 m, 15 s)) are plotted in Fig. 8(a) and (b), respectively. For
comparison, the quantification results obtained MC simulation with 105

and 106 sampling are also depicted in Fig. 8. The prediction results of
DE and MC simulation with 105 and 106 samples are plotted in Fig. 9.

The Fig. 8(a) and (b), demonstrate the fast convergence of DE
interval optimization technique. Compare to MC simulations depicted
in Fig. 8(a) and (b), the DE with less than 10 iterations may present
convergent solution which are certainly better than 105 and 106 MC
simulation. As shown in Figs. 8 and 9, the width of the range between
LB and UB of 𝑃𝑓

(

𝑏𝜏 , 15 s
)

computed by Monte-Carlo simulation is
barely increased, while the number of samples increases from 105 to
106. In comparison, DE gives a wider range between LB and UB of
𝑃𝑓

(

𝑏𝜏 , 15 s
)

. From above comparison, it is seemed that the DE interval
optimization is very useful to search the LB and UB of 𝑃𝑓

(

𝑏𝜏 , 15 s
)

with good convergence. As shown in Figs. 8 and 9, the DE inter-
val optimization gives the interval range

[

8.24 × 10−6, 1.19 × 10−4
]

and
[

5.17 × 10−9, 5.08 × 10−7
]

for the LB and UB of 𝑃𝑓 (0.06 m, 15 s) and
𝑃𝑓 (0.08 m, 15 s), respectively. It is evidently found that the small fluc-
tuation of structural system parameters leads to a large variation of first
passage probability of nonlinear system.

Fig. 9. Comparison the prediction of 𝑃 𝑓

(

𝑏𝜏 , 15 s
)

and 𝑃 𝑓
(

𝑏𝜏 , 15 s
)

using MC simu-
lation with 105 and 106 samples and DE simulation with uncertain level 𝜈 = 0.02 of
structural parameters.

6.3.3. Sensitivity of each uncertain parameter
The sensitivity index of the 𝑃𝑓

(

θI, 𝑏𝜏 , 15 s
)

are performed with the
degree of uncertain level 𝜈 = 0.02. The Fig. 10 shows the variation of
sensitivity index for threshold value 𝑏𝜏 = 0.06 and 0.08.

As shown in Fig. 10(a) and (b), the sensitivity index is much differ-
ent from the scenario reflected from Fig. 6. On the one hand, Fig. 10(a)
and (b) manifest that the importance level of

[

𝛼1,… , 𝛼9
]T is smaller

than 0.05, and this means the variation of
[

𝛼1,… , 𝛼9
]T have a tiny

impact on the variation of 𝑃𝑓
(

𝑏𝜏 , 15 s
)

. However, the sensitivity index
of

[

𝛾1,… , 𝛾9
]T and

[

𝛽1,… , 𝛽9
]T reflected in Fig. 10(a) and (b) is different

from the sensitivity index shown in Fig. 6. Compare to other uncertain
parameter in

[

𝛾1,… , 𝛾9
]T and

[

𝛽1,… , 𝛽9
]T, the sensitivity of 𝛾3 and

𝛽3 pay a more important influence on the variation of 𝑃𝑓
(

𝑏𝜏 , 15 s
)

.
The most remarkable variation is the sensitivity index of lumped mass
parameter

[

𝑀1,… ,𝑀9
]T. Contrary to the analysis results demonstrated

in Fig. 6, the variation of
[

𝑀1,… ,𝑀9
]T may not dominate the first

passage probability of structural system. To summarize what has been
mentioned above, one reason for this scenario is the dependence of
structural parameters have a prominent impact on the first passage
probability of dynamic system.
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Fig. 10. Sensitivity of the first passage probability (a) 𝑃𝑓 (0.06 m, 15 s) and (b) 𝑃𝑓 (0.08 m, 15 s) with respect to the epistemic uncertainties in structural parameters.

7. Conclusions

This work is presented to investigate the small first passage proba-
bility of nonlinear structures with interval uncertainties under nonsta-
tionary seismic excitation. In this work, the first passage probability of
the generic response process is represented by the conditional univari-
ate EVD with interval form. The methodology involves the combination
of Kriging-HDMR and TMSA is proposed to estimate the trails of the
EVD of structural response for interval formed structural parameters.
After the construction of meta-model, the DE based interval optimiza-
tion technique is performed to search the LB and UB of first passage
probability. The propagation results and convergent history shows that
the DE gives a more robust quantification results than the traditional
Monte-Carlo simulation. Depend on the above techniques, an interval-
based sensitivity analysis is proposed to determine the importance of
uncertain structural parameters. The sensitivity analysis results show
that the correlation of structural uncertain parameters has an impor-
tance influence on the first passage probability of nonlinear structural
system. The numerical case shows the presented methodology is effi-
cient and high accuracy for approximation of the bounds first passage
probability.
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