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Experimental study of grout defect
identification in precast column based
on wavelet packet analysis
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Abstract
Grout defects always exist in sleeves of precast structures, but studies on grout defect identification are rarely per-
formed. This article proposes a combination method of dynamic excitation technique and wavelet packet analysis for
sleeve defect identification in the precast structure. Hammer excitation on a 1/2-scaled two-floor precast concrete
frame structure with column rebar splicing by grout sleeves is conducted to collect column acceleration responses.
Moreover, the corresponding energy spectrum is obtained by the wavelet packet analysis. Furthermore, three defect
identification indices, that is, percentage of energy transfer, energy ratio variation deviation, and energy spectrum average
deviation, are calculated and compared. Robustness analysis of the energy ratio variation deviation is carried out by add-
ing white noise in the original acceleration response signals. The results show that (1) the percentage of energy transfer,
the energy ratio variation deviation, and the energy spectrum average deviation are positively correlated with the grout
defect degree where the energy ratio variation deviation is more sensitive in the identification of defects; (2) the energy
ratio variation deviation robustness of the original signal with the inputted multiplicative white Gaussian noises is better
than that with the inputted additive white Gaussian noise; and (3) the proposed defect identification method can charac-
terize the sleeve grout defect degree in column.
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Introduction

Currently, due to substantial advantages such as faster
all-weather production, lower running costs, safer
working conditions, and better environmental out-
comes,1–5 precast structures have attracted much atten-
tion. In the precast structures, rebar connection
methods mainly include the sleeve grouting connection,
the anchor grouting connection, and the mechanical
connection,6 of which the sleeve grouting connection is
most widely adopted in the world. However, defects
always exist in the sleeves in practical engineering, for
example, the sleeve end defect caused by the leakage of
slurry, the middle defect caused by incompletely

discharging air, and the eccentric defect of the steel
rebars, which all significantly affect the structural con-
nection performance.7,8 Therefore, it is necessary and
important to develop the grout defect identification
method for the sleeves to guarantee structural safety.
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Currently, considerable studies focus on the dynamic
fingerprint analysis to find out ‘‘fingerprint’’ changes
related to structural defects. Once the structure is dam-
aged, the structural parameters will change, resulting in
corresponding dynamic fingerprint (e.g. the frequency,
the mode curvature, the strain mode, the flexibility, and
the power spectrum) change, which are regarded as the
signs of structural damage. By analyzing the changes in
the natural frequencies and damping ratios of the
reconstructed frequency response functions, Kim9

found that the delamination extent for the sandwich
beams and the fatigue damage level for the laminated
composites were easily identified. Raghuprasad et al.10

presented the changes in static defections and dynamic
parameters to identify the damage in the supported
beam. By establishing the structural frequency response
functions, Dackermann et al.11 developed a framework
to identify and assess progressive structural damage.
Based on the measured natural frequencies of struc-
tures, interval analysis technique for structural damage
identification was proposed by Wang et al.12 The
numerical results proved the validity and applicability
of the interval analysis method presented. Xia and
Hao13 discussed the effects of modal frequencies, noise
level, and damage level on damage identification.
Pandey et al.14 proposed a method to detect damage
location by comparing modal curvature where a large
number of sensors were applied to obtain the precise
modal curvature. Based on the modal strain energy, Shi
et al.15 proposed a method to identify the structural
damage location and damage in a steel frame structure.

In some cases, the dynamic fingerprints obtained
from measured signals are not good, sensitive indica-
tions of structural damage. A number of studies
focused on the wavelet analysis and wavelet packet
analysis, which were the mathematical tools with the
advantage of recognizing the subtle differences between
the normal and abnormal signals. Hou et al.16 pro-
posed a method for structural damage detection and
health monitoring based on wavelet analysis, where a
simple structure model was employed for harmonic
excitation to generate simulated data analyzed by wave-
let decomposition, and the damage was clearly deter-
mined. Hester and González17 established a vehicle–
bridge finite element interaction model and developed a
wavelet-based approach using wavelet energy content
at each bridge section to detect damage. In order to
enhance the damage identification accuracy, Zhou et
al.18 developed a damage index based on the two-
dimensional (2D) continuous wavelet transform. Rims
et al.19 reported a damage identification algorithm for
beams with multiple damage sites based on wavelet
transform method of vibration mode shapes and
pointed out that the algorithm can capture the areas of
damage. Analyzed by wavelet transform, Xu et al.20

clarified the mechanism of using 2D curvature mode

shape to depict damage and corroborated its advances
of characterizing damage, robustness against noise, and
sensitivity to slight damage. Zhao et al.21 carried out an
experimental study for identification of micro-damage
in reinforced concrete beam based on wavelet packet
method and found that the proposed methodology can
properly characterize the damage state of structures
under various stress stages. Han et al.22 developed a
method for damage detection of steel beams based on
wavelet packet energy where the wavelet energy rate
index was computed. Results showed the index was sensi-
tive to structural local damage.

In summary, there have been extensive studies on
identification of defects. However, the defect identifica-
tion studies on precast structure are few, especially on
grout sleeve in precast column. Accordingly, this article
proposes a combination of dynamic excitation tech-
nique and wavelet packet analysis for grout sleeve
defect identification in precast column. Nondestructive
testing is conducted on a 1/2-scaled two-floor precast
concrete frame structure with rebar splicing by grout
sleeves. The column acceleration responses are analyzed
based on wavelet packet. Three defect identification
indices—percentage of energy transfer (ET), energy
ratio variation deviation (ERVD), and energy spectrum
average deviation (ESAD)—are proposed to identify
the grout defects in column sleeves, and good results
are obtained.

Wavelet packet analysis based on defect
indicator extraction

Energy extraction based on wavelet packet
decomposition

Energy is widely used to identify structural defect.
Generally, structural excitation responses will appear
when the structure is under external vibration excita-
tion. Compared with the nondefective precast column,
excitation responses of the grout-defective precast col-
umn, for example, natural frequency, stiffness, and
damping, will change, which means the changes in
structural dynamic performance result in frequency
components redistributing in the response signals (fre-
quency components could be enhanced or inhibited).
Correspondingly, the energy of each frequency band is
different between the grout-defective precast column
and the nondefective precast column.

Wavelet packet decomposition is a refined signal
analysis method, which improves the time–frequency
resolution by decomposing the low-frequency signal
and high-frequency signal simultaneously.23,24 Through
extracting the energy value of each frequency band, the
characteristic vectors are formed to identify grout
defects in the precast column, including the degree and
location. Therefore, compared with analyzing wavelet
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packet decomposition coefficient, it is more sensitive
and robust to obtain signal features by analyzing the
frequency band energy.

Selection of wavelet function and the decomposed
level

The wavelet function used in the wavelet packet analy-
sis should possess the basic characteristics of orthogon-
ality, local property in time domain, and nondestructive
property in signal reconstruction.25 Based on the above
characteristics, an approximate symmetric wavelet
function Symlet is chosen in this article. Symlet is usu-
ally expressed as symN (N = 2, 3, ..., 8). The support
range of symN is 2N 2 1, and the vanishing moment
is N. If the structural parameters do not mutate in the
concerned time domain, with the increase in order N,
the frequency concentration of wavelet function is
better.

It is more sensitive to identify grout defects with the
increase in wavelet packet decomposition layers.
However, this is impractical; as the decomposition layer
increases, the computation time increases. Therefore, in
practical application, an appropriate decomposition
layer should be selected to construct the reasonable
energy spectrum. Norm entropy lp is used as the cost
function, which is defined in equation (1)
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where Ei
j represents the signal energy of the ith fre-

quency band in the jth layer.
The norm entropy values of the energy spectrum

under different orders and decomposition layers are
calculated. The order N and decomposition level are
reasonable when the norm entropy is relatively smaller
and the computing time is relatively shorter.

Extraction of the signal energy spectrum vector

1. x(t) represents the response signal of the precast
column, which is decomposed by wavelet packet
into j layers.

2. Ei
j represents the energy of the ith node in the jth

layer; the total energy of each node can be calcu-
lated by equation (2)
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where x
i, k
j (k = 1, 2, . . . , n) represents the discrete point

amplitude of the reconstructed signal, and n represents
the number of discrete points.

3. Energy spectrum vector is constructed by the
energy of 2j frequency bands, as shown in
equation (3)
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Defect identification indexes

By analyzing the dynamic response of precast column
based on wavelet packet decomposition, the energy in
each frequency band can be extracted and combined to
obtain the defect identification index. In this article,
three defect identification indexes PET, ERVD and
ESAD are defined.

PET. Li and Sun26 have shown that the changes of
energy in each frequency band can effectively identify
the defect in frame structure. Therefore, one defect
identification index PET is adopted and calculated by
equation (4)

PET =
1

2
3
X2j

i= 1

Ei
j, dP2j

k = 1 Ek
j, d

�
Ei

j, uP2j

k = 1 Ek
j, u

�����

�����3 100 ð4Þ

where Ei
j, d represents the energy of the ith node in the

jth layer in grout-defective column and Ei
j, u represents

the energy of the ith node in the jth layer in the nonde-
fective column.

ERVD. The observation noise decreases with the
increase in wavelet packet decomposition level, and the
energy of observation noise distributes more evenly in
each frequency band. Adopting the difference between
each frequency band energy and average frequency
band energy as defect identification index, it will be
more effective to identify structural defects.27

First, energy ratio Ii is defined as the defect identifica-
tion parameter, which can be calculated by equation (5)

Ii =
Ei

jP2j

k = 1 Ek
j

� �
=2j

ð5Þ

Then, normalize the energy ratio of each frequency
band (energy ratio of each frequency band is divided
by the maximum absolute value). The ERV, which is
the absolute difference value of normalized energy ratio
between the grout-defective column and the nondefec-
tive column, can be calculated by equation (6)
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ERV = ERVif g= Id, i � Iu, ij jf g ð6Þ

where Id, i represents the normalized energy ratio in the
grout-defective column and Iu, i represents the normal-
ized energy ratio in the nondefective column.

Finally, the ERVD is defined in equation (7). It rep-
resents the dispersion degree of energy ratio variation
to average value

ERVD=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2j

i= 1

ERVi � ERV
� �2

vuut ð7Þ

ESAD. The ERVD can well reveal the redistribution of
energy, and the energy average can represent the change
in total energy. On this basis, the defect identification
index ESAD is defined as28 follows.

First, the energy of the ith node in the jth layer is
normalized according to equation (8)

Pi =
Ei

jP2j

k = 1 Ek
j

� � 3 100 ð8Þ

where Pi represents the normalized energy of each fre-
quency band.

Then, the energy spectrum variation (ESV) is
obtained by equation (9)

ESV = ESVif g= Pd, i � Pu, ij jf g ð9Þ

where Pd, i represents the normalized energy in the
grout-defective column and Pu, i represents the normal-
ized energy in the nondefective column.

Finally, ESAD is defined in equation (10)

ESAD=ESV 3
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where ESV is the average of ESVi.

Experiment

Experimental model

The experiment is conducted on a 1/2-scaled precast
concrete frame structure with two floors, single span,
and two bays. The plane layout of columns and the
structural elevation in axial A–C are shown in Figures
1 and 2, respectively. The structure consists of precast
columns with a cross section of 250 mm3 250 mm and
height of 1480 mm, precast beams with a cross section
of 150 mm3 200 mm and length of 1250 mm, precast
foundation beam with a cross section of 300 mm3 300
mm, casting slab with a thickness of 70 mm, and slurry
layers with a thickness of 20 mm. All rebars in the pre-
cast columns are spliced by grout sleeves. The concrete

compressive strength is 25 MPa, and the yield strength of
the longitudinal reinforcement and stirrup is 400 MPa.
The experimental model is shown in Figure 3.

Defect introduction and layout of excitation and
measure-points

Parts of sleeves in the first floor are not grouted due to
dimensional deviation of precast components. Artificial
initial defects are located in the second floor, and thus
the defect identification mainly aimed at the grout
sleeves located in the second floor.

Figure 4 presents the grout sleeve defect state and
excitation point (recorded as EP) layout. The hollow
circle in column represents the sleeve is not grouted,
and black circle represents the sleeve is grouted tightly.
In column 2, only one sleeve is grouted. In column 6,
two sleeves are grouted. In column 4, three sleeves are
grouted. In columns 1, 3, and 5, all sleeves are grouted.

Figure 1. Column plane layout (unit: mm).

Figure 2. Structural elevation in axial A–C (unit: mm).
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EP 1-2 means the EP is located in the middle of the
beam next to column 1 and column 2. There are seven
EPs totally, which means there are seven cases, as
shown in Table 1. In order to compare the dynamic
response between the defective column and the nonde-
fective column, in each case only one column is defec-
tive, while the other one is nondefective.

The measure-points (recorded as MPs), arranged
along the column height, are located on the column
facade of the span where the EP acts, as shown in
Figures 4 and 5. Taking case 6 as an example, Figure 5
shows there are four MPs in the two columns, where
MP1–MP4 are located in the nondefective column and
MP5–MP8 in the defective column. MP1 and MP5
form the pair of measuring points (recorded as
MP1_MP5). In each case, the distance of MP1_MP5,
MP2_MP6, MP3_MP7, and MP4_MP8 from the bot-
tom of the column is 0, 320, 640, and 960 mm,
respectively.

Experimental equipment

In the experiment, external excitation is applied by
hammer shock. The analysis of such random excitation
can better illustrate the applicability of the defect iden-
tification method proposed in this article. Acceleration

sensor is used to collect the MP data. However, the
area of the hammerhead is big that the contact surface
between the hammerhead and the tested structural is
uncontrollable. Therefore, during the experiment,
instead of acting on the frame structure directly, the
hammer acts on the wood block that passes the vibra-
tion force to the frame structure. Accordingly, the
interference of hammerhead on the response of the sen-
sors is weakened. The acquisition system of Beijing
Oriental vibration and noise technology research insti-
tute is used as the data collection system, and its acqui-
sition frequency is set up as 1024 Hz. Taking case 5 as
an example, the arrangement of experimental equip-
ment is shown in Figure 6.

Experimental process

Taking case 6 as an example, the experimental steps are
as follows:

1. The accelerometers are arranged along the col-
umn height. It should be noticed that the surface
where MPs are located is the closest to the EP,
as shown in Figure 4.

2. One person evenly knocks on EP 5-2 with a
hammer, and each time the intensity of striking
is as far as possible to maintain homogeneity.
At the same time, the acceleration time-history
curves of each measuring point are recorded by
the data collection system.

Results and analysis

Acceleration responses

Acceleration responses of each MP in the seven cases
are recorded. The acceleration responses of all measur-
ing points in cases 1–7 are similar; therefore, case 1 is
randomly selected to show the acceleration time-history
curves of MP1–MP8 in Figure 7 (all are representative
excerpts). MP1–MP4 are located in nondefective
column 1, and MP5–MP8 are located in defective
column 2. In the macro view, it can be observed from
Figure 7(a) and (b) that for nondefective column 1, the
responses of MP2–MP4 are similar in shape and ampli-
tude, while MP1 is not in accordance with them. In
Figure 7(e)–(h), for defective column 2, the responses

Figure 3. Experimental model.

Table 1. Experimental cases.

Case number 1 2 3 4 5 6 7

Corresponding EP location EP 1-2 EP 3-2 EP 5-4 EP 5-6 EP 1-4 EP 5-2 EP 3-6

EP: excitation point.

Zhang et al. 5



of MP5, MP7, and MP8 are similar, while MP6 is
inconsistent with them.

Comparing the acceleration responses in four pairs
of MPs, the differences of MP1_MP5 and MP2_MP6

are more obvious than those of MP3_MP7 and
MP4_MP8. It means that MP1_MP5 and MP2_MP6
are more sensitive to grout sleeve defects than others.
This is because these MPs are more close to sleeves.

Figure 5. MP elevation in case 6.

Figure 4. Defect introduction and EP layout of the second floor.
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Energy spectrum analysis

During the experiment, the hammer intensity in differ-
ent cases cannot always be maintained the same; there-
fore, it is insignificant to compare the absolute values
of wavelet packet energy. In order to further analyze
acceleration responses and account for energy transfer
in different cases, the top 10 normalized energy (P) of
energy spectrum are obtained according to equation
(8), where the wavelet basis function sym8 is adopted,
and the decomposition level is 13.

Figure 8 shows the energy spectrum analysis. The
number marked on the histogram represents the node
number of the frequency band. In each histogram, from
the bottom to the top, the normalized energy is sorted
by values in descending order. The normalized energy is
recorded as No. n (n = 1, 2, ..., 10). For example, the
second normalized energy is recorded as No. 2, and the
energy node number of No. 2 of MP1 in case 1 is 5568.

In Figure 8, comparing the pairs of MPs in every
case, the values of first 10 normalized energy are differ-
ent, and the energy node numbers also change, which
indicates that the frequency band energy has trans-
ferred. For example, when the energy spectrum of MP1
is compared with that of MP5 in case 1, the value of
No. 1 in MP1 is 5.0% and the corresponding node
number is 5376, while the value of No. 1 in MP5 is
7.4% and the corresponding node number is 7296.

Table 2 shows the sum of changed energy nodes in
all seven cases. For instance, in case 2, Figure 8(b)
shows that the node number of No. 1 in MP1, MP3,
and MP4 is 5376, but in MP5, MP7, and MP8 it is
7296, which means all the node numbers of No. 1 chan-
ged in MP1_MP5, MP3_MP7, and MP4_MP8. In
MP2_MP6, the node number remains the same, which
is 5376. Therefore, in case 2, the sum of changed nodes
in No. 1 is 3 for the four pairs of MPs.

Cases 1–4 are located in the longitudinal direction of
frame structure, and cases 5–7 are located in the trans-
verse direction. Considering the differences in boundary
conditions, cases 1–4 and cases 5–7 of the experiment
are separately analyzed.

For cases 1–4 located in the longitudinal direction,
the sum of changed nodes in top 10 normalized energy
is 39, 38, 28, and 34, respectively. Analyzing the defect
degree, cases 1 and 2 are the most severe, followed by
case 4, and case 3 is the least, which has a positive cor-
relation with the sum of changed nodes. For cases 5–7
located in the transverse direction, the sum of changed
nodes in top 10 normalized energy is 20, 31, and 23,
respectively. Analyzing the defect degree, case 6 is the
most severe, followed by case 7, and case 5 is the least,
which also has a positive correlation with the sum of
changed nodes.

It can be summed up that with the increase in defect
degree, the sum of changed nodes in top 10 energy ratios
becomes bigger. By analyzing the top 10 energy ratios,
the defect degree can be determined preliminarily.

Defect identification indexes

Three indexes PET, ERVD, and ESAD introduced in
section ‘‘Defect identification indexes’’ are used to iden-
tify the defect of experimental structure. In accordance
with section ‘‘Energy spectrum analysis,’’ cases 1–4 and
cases 5–7 of the experimental structure are also sepa-
rately analyzed.

PET. Defect identification index PET is calculated
according to equation (4). Figure 9(a) and (b) shows
the individual PET values in cases 1–4 and cases 5–7.
Taking MP1_MP5, for example, the values in cases 1–4
are, respectively, 54.41, 56.06, 39.96, and 44.58.
Generally, PET values in cases 1–4 are increased with
column defect degree, except for MP2_MP6. In cases
5–7, PET values of MP1_MP5, MP3_MP7, and
MP4_MP8 are also increased with column defect
degree, except for MP2_MP6.

Figure 10(a) and (b) shows the total PET values in
cases 1–4 and cases 5–7 separately. For instance, in case
1, the total value 179.97 is the sum of individual value
54.4 in MP1_5, 44.52 in MP2_MP 6, 38.68 in MP3_MP
7, and 42.37 in MP4_MP 8. The total PET values in
cases 2–4 are 185.22, 144.84, and 178.09. It is found that
the total values of PET in each case are positively corre-
lated with column defect degree. In addition, it should
be noted that although the defect degree of case 1 and
case 2 are the same, there are subtle differences between
the values of case 1 and case 2. This is because under
every hammer excitation, the waveforms of acceleration
time-history curves are different.

Figure 6. Arrangement of experimental equipment.
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ERVD. Defect identification index ERVD is calculated
according to equations (5)–(7). Figure 11(a) and (b)
shows the individual ERVD values in cases 1–4 and
cases 5–7. In cases 1–4, for MP1_MP5, the values are
1.38, 1.49, 0.68, and 1.00, respectively, which means the
values increase with column defect degree. For
MP2_MP6, MP3_MP7, and MP4_MP8, the values
cannot indicate defect degree. In cases 5–7, the individ-
ual PET values are positively correlated with column
defect degree, except for MP2_MP6.

Figure 12(a) and (b) shows the total ERVD values
in cases 1–4 and cases 5–7. First, cases 1–4 are ana-
lyzed. In cases 1 and 2, defect degree is the most severe,
and the corresponding total ERVD values 5.08 and
4.85 are relatively greater than those of cases 3 and 4.
In case 4, the defect degree is in the middle with two
sleeves ungrouted, in which the total ERVD value 4.03

is greater than that of case 3 with one sleeve ungrouted.
Then, analyzing cases 5–7, total ERVD value 3.33 is
the biggest in case 6 with three sleeves ungrouted, 1.71
is the second in case 7 with two sleeves ungrouted, and
1.6 is the minimum in case 5 with one sleeve ungrouted.
The results show that with the increase of defect degree,
the total ERVD value becomes larger.

ESAD. Defect identification index ESAD is calculated
according to equations (8)–(10). Figure 13(a) and (b)
shows the individual ESAD values in cases 1–4 and
cases 5–7. In cases 1–4, the value of MP1_MP5 is 0.12,
0.14, 0.075, and 0.078, respectively, which can indicate
defect degree. However, the values of MP2_MP6,
MP3_MP7, and MP4_MP8 are not related to defect
degree. In cases 6, 7, and 5, the individual ESAD values
of MP3_MP7 are 0.0033, 0.015, and 0.006, which are

Figure 7. Acceleration responses of MP1–MP8 in case 1: (a) acceleration responses of MP1 in case 1, (b) acceleration responses of
MP2 in case 1, (c) acceleration responses of MP3 in case 1, (d) acceleration responses of MP4 in case 1, (e) acceleration responses of
MP5 in case 1, (f) acceleration responses of MP6 in case 1, (g) acceleration responses of MP7 in case 1, and (h) acceleration
responses of MP8 in case 1.
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increased with column defect degree, and the same law
exists in MP4_MP8 with an exception of MP1_MP5
and MP2_MP6.

Figure 14(a) and (b) shows the total values of ESAD
in cases 1–4 and cases 5–7, respectively. First, cases 1–4
are analyzed. For cases 1 and 2 with three sleeves

Figure 8. Energy spectrum analysis: (a) energy spectrum in case 1, (b) energy spectrum in case 2, (c) energy spectrum in case 3, (d)
energy spectrum in case 4, (e) energy spectrum in case 5, (f) energy spectrum in case 6, and (g) energy spectrum in case 7.

Table 2. Sum of changed energy nodes in different cases.

Energy ratio Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

No. 1 4 3 0 0 0 3 2
No. 2 4 3 2 4 0 2 2
No. 3 4 4 3 3 0 2 1
No. 4 4 4 1 3 2 2 2
No. 5 4 4 3 4 3 4 3
No. 6 3 4 3 4 2 4 3
No. 7 4 4 4 4 2 4 3
No. 8 4 4 4 4 4 3 2
No. 9 4 4 4 4 4 3 1
No. 10 4 4 4 4 3 4 4
Total 39 38 28 34 20 31 23

Zhang et al. 9



Figure 10. Total PET in cases 1–7: (a) total PET in cases 1–4 and (b) total PET in cases 5–7.

Figure 9. Individual PET in cases 1–7: (a) individual PET in cases 1–4 and (b) individual PET in cases 5–7.

Figure 11. Individual ERVD in cases 1–7: (a) individual ERVD in cases 1–4 and (b) individual ERVD in cases 5–7.

10 International Journal of Distributed Sensor Networks



ungrouted, the total ESAD values are separately 0.35
and 0.39. For cases 4 and 3, in which the number of
ungrouted sleeves is 2 and 1, respectively, the

corresponding values are 0.33 and 0.25. In cases 6, 7,
and 5, in which the relevant number of ungrouted
sleeves is 3, 2, and 1, separately, the total ESAD

Figure 13. Individual ESAD in cases 1–7: (a) individual ESAD in cases 1–4 and (b) individual ESAD in cases 5–7.

Figure 12. Total ERVD in cases 1–7: (a) total ERVD in cases 1–4 and (b) total ERVD in cases 5–7.

Figure 14. Total ESAD in cases 1–7: (a) total ESAD in cases 1–4 and (b) total ESAD in cases 5–7.
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values are 0.18, 0.16, and 0.14, respectively. The
results show that the bigger the total ESAD value, the
severe the defect degree.

Comparison of PET, ERVD, and ESAD. Considering the indi-
vidual values in each pair of MPs, the defect identifica-
tion result of PET is the best, and that of ESAD is the
worst. But by analyzing the individual PET values in
cases 1–4 and cases 5–7, there is still one pair of MP2
and MP6 which cannot indicate the defects. That is to
say, the individual PET, ERVD, and ESAD values of
each pair of MPs cannot well identify the structural
defects.

Considering the total values of PET, ERVD, and
ESAD in the second floor, all can be positively corre-
lated with column defect degree. That is to say, by ana-
lyzing the total values of PET, ERVD, and ESAD,
grout defects in sleeves are identified, and the values
become bigger with the increase in defect degree. At the
same time, it should be noted that parts of columns in
the first floor are defective. The above proves that the
identification of defects based on PET, ERVD and
ESAD is not influenced by the defects of other floor
obviously.

It is known that the defect degree in case 3 is the
minimum among cases 1–4, and the defect degree in
case 5 is the minimum among cases 5–7. For PET,
ERVD, and ESAD, the increasing rates of total values
in cases 1, 2, and 4 are calculated compared with those
in case 3, and the increasing rates of total values in cases
6 and 7 are calculated compared with those in case 5, as

shown in Table 3. For example, the total values of PET
in cases 1–4 are, respectively, 179.97, 185.22, 144.84 and
178.09, and the increasing rates in cases 1, 2, and 4 are
24%, 28% and 23% compared with those in case 3.
Comparing values of each column in Table 3, the maxi-
mum is marked in red and bold. It can be observed that
the values of ERVD are bigger than those of PET and
ESAD in cases 1, 2, 4, and 6, except for case 7. The
above indicates that the variation of ERVD is greater
than PET and ESAD in different defect degrees gener-
ally, which represents ERVD is more sensitive to iden-
tify structural defects than PET and ESAD. This is
because with the increase in the decomposition level of
wavelet packet, the observed noise signal decreases cor-
respondingly, and the energy of the observed noise sig-
nal is distributed more evenly in each frequency band.
Compared with indices PET and ESAD, the average
value of all energy frequency bands is introduced in
ERVD, which means the interference of noise is wea-
kened. As a result, ERVD is the optimum defect identi-
fication index in the three.

Robustness analysis of ERVD

Through the above analysis, ERVD is a more sensitive
grout defect identification index compared with PET
and ESAD. Therefore, ERVD is more reasonable in
practical engineering. However, noise exists in the
obtained signal inevitably. In order to discuss the abil-
ity of ERVD to resist noise and provide justified sug-
gestions for grout defect detection based on ERVD in

Table 3. Increasing rate of total values of PET, ERVD, and ESAD.

Identification index Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

PET 24% 28% – 23% – 45% 10%
ERVD 83% 74% – 45% – 108% 7%
ESAD 40% 56% – 32% – 29% 14%

PET: percentage of energy transfer; ERVD: energy ratio variation deviation; ESAD: energy spectrum average deviation.

Table 4. (ERVD)N with additive white Gaussian noises inputted.

Noise level e(t) Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

0.01% (ERVD)N 5.44 5.04 3.26 4.13 1.67 3.48 1.92
u (%) 7.09 3.92 17.27 2.48 4.37 4.50 12.28

0.02% (ERVD) 5.99 6.06 3.37 4.50 1.86 4.20 2.52
(ERVD) 17.91 24.95 21.22 11.66 16.25 26.13 47.37

0.05% (ERVD) 7.84 6.70 5.32 6.27 3.18 6.45 4.30
u (%) 54.33 38.14 91.37 55.58 98.75 93.69 151.46

0.1% (ERVD) 7.41 6.54 7.46 6.63 4.13 7.16 5.98
u 45.87 34.85 168.35 64.52 158.13 115.02 249.71

ERVD: energy ratio variation deviation.
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practical engineering, the robustness of ERVD is
explored.

Gaussian white noise, which is mutually independent
and normally distributed, is adopted in signal process-
ing. There are two types of noises, including additive
white noise mainly caused by environment and multipli-
cative white noise mainly caused by unreasonable signal
channel. The basic models of one-dimensional signal
including additive white noise and multiplicative white
noise are shown in equations (11) and (12), respectively

s1(t)= x(t)+ d(t) � r(t)= x(t)+ e(t) � r(t) ð11Þ

s2(t)= x(t)+ d(t) � r(t)= x(t) 1+ e(t) � r(t)ð Þ ð12Þ

where s1(t) represents the signal with additive white
noise, s2(t) represents the signal with multiplicative
white noise, x(t) represents the original signal, r(t) rep-
resents the Gaussian white noise, d(t) represents the
amplitudes of the white noise, and e(t) represents the
noise level (standard deviation) at the moment.

Additive white Gaussian noises of 0.01%, 0.02%,
0.05%, and 0.1% noise level are, respectively, inputted
into original experimental data based on equation (11),
and multiplicative white noises of 1%, 2%, 5%, and
20% noise level are, respectively, inputted into original
experimental data based on equation (12). The total
values of the ERVD in different cases are calculated, as
shown in Tables 4 and 5, in which u is calculated by
equation (13)

u=
(ERVD)O � (ERVD)N

(ERVD)N

����
����3 100% ð13Þ

where (ERVD)O represents the total value of ERVD
based on original experimental data, (ERVD)N repre-
sents the total value of ERVD based on original experi-
mental data inputted by white noise, and u represents
the relative percentage between (ERVD)O and (ERVD)N .

As shown in Table 4, as additive white Gaussian
noise is inputted, the values of (ERVD)N with different
noise levels in cases 1–4 are not positive relative to
grout defects, which means they cannot identify the

structural defects accurately. For instance, with the
noise level of 0.1%, the (ERVD)N value in case 3 is 7.46,
which is bigger than 6.63 in case 4, but the defect degree
in case 3 is smaller than that in case 4. As shown in
Table 5, as multiplicative white Gaussian noises are
inputted, under different noise levels, all the values of
(ERVD)N in the seven cases have a positive correlation
with grout defects, which means (ERVD)N can identify
the grout defects accurately. Compared with u in Tables
4 and 5 simultaneously, the values in Table 5 are much
smaller than in Table 4 generally. It can be concluded
that the robustness of the ERVD with inputted multi-
plicative white Gaussian noises is better than that with
inputted additive white Gaussian noises.

The reason can be found by analyzing equations
(11) and (12). In equation (12), the multiplicative white
noise is proportional to the original response data, in
which peak acceleration is percentile or even smaller.
Therefore, the added multiplicative white noise is actu-
ally small. In equation (11), the additive white noise is
independent, which is added directly to the original
response data. Since the original response data are per-
centile or even smaller, the measured effective signals
are easily drowned in additive white noise. As a result,
attention must be paid to avoid the environmental
noise during the experiment. In addition, to ensure the
high signal-to-noise ratio, greater peak acceleration
and total output energy should be acquired when exci-
tation is exerted.

Conclusion

In this article, a grout sleeve defect identification
method is proposed based on the external excitation
and wavelet packet analysis. The experiment on a 1/2-
scaled two-floor precast concrete frame structure with
rebar splicing by grout sleeves is carried out, and the
acceleration responses in columns are collected based
on the dynamic excitation technique and are analyzed
based on wavelet packet decomposition. Then the
energy spectrum analysis of acceleration responses is
conducted. The PET, ERVD, and ESAD are defined

Table 5. (ERVD)N with multiplicative white Gaussian noises inputted.

Noise level (ERVD)N Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

1% (ERVD)N 5.09 4.85 2.77 4.05 1.59 3.32 1.70
u (%) 0.20 0.01 0.36 0.50 0.63 0.30 0.58

2% (ERVD) 5.10 4.84 2.78 4.00 1.62 3.35 1.69
u (%) 0.39 0.21 0.02 0.74 1.25 0.60 1.17

5% (ERVD) 5.09 4.80 2.83 4.04 1.61 3.44 1.68
u (%) 0.20 1.03 1.80 0.25 0.63 3.30 1.75

20% (ERVD) 5.14 5.04 2.75 4.13 1.76 3.33 2.17
u (%) 1.18 3.92 1.08 2.48 10.00 0.02 26.90

ERVD: energy ratio variation deviation.
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as defect identification indexes. Finally, the comparison
between PET, ERVD, and ESAD is explored, and the
robustness of ERVD is analyzed.

Based on the study, the following main conclusions
are drawn:

1. The acceleration responses of the pair of MPs
located in defective column and nondefective
column, respectively, are different in amplitude.

2. With the increase in defect degree, the sum of
changed nodes in top 10 normalized energy is
greater. The defect degree can be determined
preliminarily based on the energy spectrum
analysis.

3. Defect identification indexes PET, ERVD, and
ESAD are positively correlated with grout
defect degree and can identify structural defects.
The three indexes are not influenced by the
defects of other floor. ERVD is the optimum
defect identification index among the three.

4. The ERVD robustness of original signal with
multiplicative white Gaussian noises inputted is
better than that with additive white Gaussian
noises inputted. High signal-to-noise ratio
should be ensured during the experiment.
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