2001年 1月

# 横观各向同性层状场地的动力边界条件\*

薛 松 涛<sup>1,2,3</sup> 陈 <sub>4</sub><sup>3</sup> 秦 岭<sup>1</sup> 陈 竹 吕<sup>1</sup> (同济大学工程力学与技术系和泉研究室 上海 200092) (<sup>2</sup>日本近畿大学理工学部)(同济大学固体力学教育部重点实验室 上海 200092)

摘要 采用横观各向同性层状弹性体模拟场地土,对该场地底部采用了三种不同的边界:固定边界、阻尼边界及半空边界。推导了这三种边界条件的公式,并且给出了它们进入离散化后的 Rayleigh 波与 Love 波的代数特征方程方法。然后,计算了场地在三种边界条件下对垂直及水平简谐集中荷载的位移响应,并与理论解进行了比较,指出了它们的适用范围。

关键词 横观各向同性层状弹性场地,固定、阻尼与半空间边界条件

分类号 TU 435 文献标识码 A 文章编号 1000-6915(2001)01-0065-05

#### 1前言

对于横观各向同性 (以下简称 TI)层状场地的动 力分析, Wass等人已提出了一套完整的分析方 法<sup>[1]</sup>。其后, Liu与 Novak将该成果用于单桩的动力 分析中<sup>[2]</sup>。但在处理场地的下部边界时, Wass等人 采用了固定边界条件。 Liu与 Novak采用了同样的 边界条件,并认为:薄层元素法只能用于底部固定的 土层 实际上,这一论点很值得商榷 采用固定边界 将使场地的振动能量无法向半空间辐射, 从而使解 失真<sup>[3-7]</sup>。鉴于此,本文对 TI层状场地的动力边界 条件进行讨论,并探讨它们的适用范围。

#### 2 横观各向同性层状场地的力学模型

设一场地由 *m* – 1层土层组成,置于半空间之上,它们在水平方向延伸至无穷远。这些土层在水平面内为各向同性,而在垂直方向材料性质随深度不同而变化<sup>[8]</sup>。

设其层与层交界面上作用有形如  $P(k) = \bar{p} \cos n\theta$ ·  $e^{i\nu t}$ 或  $P(k) = \bar{p} \sin n\theta$  ·  $e^{i\nu t}$ 的环形荷载,它们可能沿 径向、切向及垂直方向作用。 k 为圆频率 该场地的

2000年 1月 31日收到初稿, 2000年 3月 27日收到修改稿。

\* 国家自然科学基金 (59778033)资助项目及国家杰出青年基金资助项目。

作者 薛松涛 简介: 男,1963年生,1985年毕业于同济大学工程力学系,现任教授,主要从事地震工程、振动控制和结构健康监测等方面的研究工作。

力学模型及一种可能的荷载见图 1

### 3 固定边界条件

在处理层状场地下部边界时, Wass等人采用了 固定边界。对于这种边界,在场地作自由振动时,有 如下的边界条件:



stratified medium

式中:  $\int_{\mathbb{R}}$ ,  $\int_{\mathbb{R}}$ 为沿谷向, 切向的应力:  $\mathcal{G}$ 为 z方向的 正应力; U, W, V分别为沿  $r, z \mathcal{D} \theta$  方向位移 u略 去  $e^{i \kappa}$ 后的幅值,  $u = [u, w, v]^{T} = [U, V, W]^{T} e^{i \kappa}$ 

对图 1所示的力学模型及固定边界条件,利用 薄层元素法,可得到离散化后的广义 Rayleigh 波及 Love波代数特征方程如下<sup>[1]</sup>:

> $(A_R k_R^2 + B_R k_R^2 + C_R) f_R = 0$ (2) $(\mathbf{A}_{l}\mathbf{k}_{l}^{2} + \mathbf{C}_{l})\mathbf{f}_{l} = 0$

式中:  $A_R, B_R, C_R$ 为 2(m-1) 2(m-1) 阶矩阵;  $A_L$ 及  $C_R$ 为 (m-1)× (m-1)阶矩阵,详细表达式见文 [1];  $f_{R=}^{T}$  [ $f_{r}^{T}$ ,  $f_{z}^{T}$ ];  $f_{L}$  =  $f_{\theta}$  表示场地所有土层交界 面 (包括顶面)沿径向 z 向及切向的"位移"幅值向 量; k<sup>R</sup>, k<sup>L</sup>称为波数。

#### 4 阳尼边界条件

图 2给出了在  $(r, \theta, h_t)$ 处的阻尼边界,  $C_D, C_D$ ,  $C_{b}^{2}$ 分别为沿  $r, \theta, z$ 方向的阻尼器的阻尼系数。对这 样的模型当场地作自由振动时可以写出以下的边界 条件:



图 2 阻尼边界模型 Fig. 2 Model of damping boundary

$$\begin{cases} \begin{bmatrix} \mathbf{f}_z & \mathbf{e}_z & \mathbf{f}_z \end{bmatrix}^{\mathrm{T}} = \mathbf{0} & z = 0 \\ \begin{bmatrix} \mathbf{f}_z & \mathbf{e}_z & \mathbf{f}_z \end{bmatrix}^{\mathrm{T}} = & (3) \\ \begin{bmatrix} \mathbf{f}_z & \mathbf{f}_z & \mathbf{f}_z \end{bmatrix}^{\mathrm{T}} = & \mathbf{f}_z \end{bmatrix}$$

 $\begin{bmatrix} -F_{\rm D}^{\epsilon} & -F_{\rm D}^{\epsilon} & F_{\rm D}^{\theta} \end{bmatrix} = -F_{\rm D} \quad z = h_1$ 

式中:  $F_{\rm D}$ ,  $F_{\rm D}$ 及  $F_{\rm D}$ 分别为沿 r,  $\theta$ 及 z方向的阻尼力。 它们可写为

$$\boldsymbol{F}_{\mathbf{D}} = \begin{bmatrix} C_{\mathbf{D}} & & \\ & C_{\mathbf{D}} & & \\ & & C_{\mathbf{D}} \end{bmatrix}$$
(4)

式中:  $\vec{C}_{\rm b}$ ,  $\vec{C}_{\rm b}$ 及  $\vec{C}_{\rm b}$ 分别为沿 r, z及  $\theta$ 方向的阻尼系 数。

为了方便、将坐标原点选在底部边界上、按上 所述,反射波的幅值 B1应当等于零,才能完全吸收 入射波。按照文 [4],并将场地下部半空间中划出

土层作为场地地第 m 层, 可得

$$\begin{cases} C_{\rm D}^{m} = C_{\rm D}^{m} = d_{\rm n}C_{\rm SV}^{m} \\ C_{\rm D}^{m} = d_{\rm n}C_{\rm PV}^{m} \end{cases}$$
(5)

式中: C<sub>sv</sub>, C<sub>v</sub>v 分别为半空间中垂直传播的 S. P波 波速.干是有

$$F_{\rm D} = C u = i^{\rm k} C u \qquad (6)$$

$$\boldsymbol{C} = \begin{bmatrix} C_{\mathrm{D}}^{m} & & \\ & C_{\mathrm{D}}^{m} & \\ & & C_{\mathrm{D}}^{\theta m} \end{bmatrix} = \begin{bmatrix} d_{m} C_{\mathrm{SV}}^{n} & & \\ & & d_{n} C_{\mathrm{PV}}^{m} & \\ & & & d_{m} C_{\mathrm{SV}}^{m} \end{bmatrix}$$
(7)

当底部采用阻尼边界时,  $A_{\mathbb{R}}$ ,  $B_{\mathbb{R}}$ ,  $C_{\mathbb{R}}$  均为 2m× 2m 阶矩阵,  $A_L$ ,  $B_L$  均为  $m \times m$  阶矩阵。且应在  $C_R$ 的(m, m), (2m, 2m)项上分别加上 d<sub>n</sub> $C_{SV}^{n}$ , d<sub>n</sub> $C_{PV}^{n}$ ; 在  $C_L$  的 (m, m)项上加上  $d_{\alpha}C_{SV}$ , 固定边界与阻尼边 界条件在公式中的差别即体现于此

#### 5 横观各向同性弹性半空间边界条件

这里只考虑关于 x 轴对称的情形 TI 弹性半空 间表面受到一对称于 x 轴的简谐环形荷载的作用。 由于关于 x 轴对称, 故其运动方程及求解的过程与 文[1]中介绍的相类似

由文 [1] 可知,  $f = [f_r \ f_z \ f_{\theta}]^T$  为 z 的函数, 将坐标原点取在半空间表面,由于在 z→∞ 时位移应 当趋向零,故可设它们均具有  $e^{-\mathfrak{T}}$ 的形式 又因为  $f_r$ 及 舟 分别表示径向及切向"位移",故它们沿 z方向 的变化规律可假设相同。而 f<sub>z</sub> 表示沿 z 方向的"位 移",它的变化规律与  $f_r$ ,  $f_{\theta}$  不同。因此可设

$$\boldsymbol{f} = \begin{cases} f_r \\ f_z \\ f_\theta \end{cases} = \begin{cases} A e^{Y_z} \\ B e^{Y_z} \\ C e^{Y_z} \end{cases} = \begin{bmatrix} e^{Y_z} \\ e^{Y_z} \\ e^{Y_z} \\ e^{Y_z} \end{bmatrix} \begin{cases} A \\ B \\ C \\ C \end{cases}$$
(8)

u = Hf = H  $e^{Y_z}$ 

所以:

$$\begin{array}{c} A \\ B \\ C \end{array}$$
 (9)

$$H = -HL_{b}f = \begin{bmatrix} C_{44}^{n} \frac{d}{dz} & C_{44}^{n}k & 0 \\ -kC_{13}^{n} & C_{33}^{n} \frac{d}{dz} & 0 \\ 0 & 0 & C_{44}^{n} \frac{d}{dz} \end{bmatrix} \begin{bmatrix} e^{\frac{y}{\xi}} & e^{\frac{y}{\xi}} \\ e^{\frac{y}{\xi}} & e^{\frac{y}{\xi}} \end{bmatrix} \begin{cases} A \\ B \\ C \end{cases} = \begin{bmatrix} -C_{44}^{n}Y & C_{44}^{n}k & 0 \\ -kC_{13}^{n} & -C_{33}^{n}a & 0 \\ 0 & 0 & -C_{44}^{n}Y \end{bmatrix} f = HC^{*}f \qquad (10)$$

式中: 上标 m表示半空间的参数; Ci 为 TI 土层的弹 性常数; H,  $L_b$ 的详细表达式见文 [1]; 其表达式见 文 [5] 上面的式子均略去了时间因子 e<sup>nd</sup> 因此应力

边界条件应当为 <sup>hg</sup>House. All rights reserved. http://www.cnki.net

$$\sigma = [t_z, e_z, t_z]^{I} = -HL_b f = HC f$$

$$L_b f = -C f \qquad z = 0$$

$$\Re f H O f (t \Lambda f E (L - dk^2 I_3) f = 0^{11}, A$$

$$V = \frac{12C_{66}^{m} - d_n k^2}{12C_{66}^{m} - d_n k^2}$$
(11)

$$I = k \frac{\overline{C_{44}^{m}} - \overline{C_{44}^{m}}}{\overline{C_{44}^{m}}}$$
(12a)

$$Y = k \frac{C_{44}}{C_{44}^m} = 0$$
(12b)

$${}^{a} = A \quad k^{2} \frac{\underline{C}_{00}}{\underline{C}_{44}^{n}} - \frac{\underline{C}_{m}}{\underline{C}_{44}^{m}} \pm \frac{1}{A^{2} \left[ k^{2} \frac{\underline{C}_{66}^{n}}{\underline{C}_{44}^{n}} - \frac{\underline{d}_{m} k^{2}}{\underline{C}_{44}^{n}} + k^{2} \frac{\underline{C}_{44}^{n}}{\underline{C}_{33}^{n}} - \frac{\underline{d}_{m} k^{2}}{\underline{C}_{33}^{n}} \right] + k^{2} \frac{\underline{C}_{44}}{\underline{C}_{33}^{n}} - \frac{\underline{d}_{m} k^{2}}{\underline{C}_{33}^{n}} \quad (13a)$$

式中:  $A = \frac{(C_{13} + C_{44})}{2C_{33}^{m}(C_{11}^{m} - C_{66}^{m})}$ 为了保证 e<sup>-a</sup>2 在  $z \to \infty$  时为零,故应取"+"号。当 k = 0时,有

<sup>a</sup> = 
$$Ak \quad \overline{\frac{C_{66}^n}{C_{44}^n}} + k \quad \overline{A^2} = \frac{C_{66}^m}{C_{44}^m} + \frac{C_{44}^m}{C_{33}^m}$$
 (13b)

由式 (12), (13)可知, <sup>Y</sup>与 <sup>4</sup>均为 *k*的函数 *k*为波数, *k* =  $k/V^{m}$ ,  $V^{m}$  为半空间中剪切波或 *P* 波波速 在实际工程中,它们在 500 m /s以上 在考虑高层建筑的动力响应 (地震 风振等)时均以低频为主,高层建筑的基频一般在 0.5~2 Hz 左右。若考虑土 结构相互作用时,基频还会降低。所以起控制作用的 *k* 值在 0. 01~0.02左右。因此,可以将 Y与 <sup>a</sup>在 *k* = 0附近展开成泰勒级数,取其前 2阶, 令 *C*<sup>SV</sup> 为垂直向上传播的剪切波速,则有

$$Y \approx i \left( \frac{k}{C_{SV}^{n}} \right) + \frac{1}{2} \left( -i \frac{C_{SV}^{n}}{k} \frac{C_{66}^{n}}{C_{44}^{n}} \right) k^{2}$$
(14)  
$$a \approx i \left( \frac{k}{C_{SV}^{m}} \right) U_{+} \frac{1}{2} \left( -i \frac{C_{SV}^{n}}{L} \right) k^{2}$$
(15)

$$a \approx i \left[ \frac{1}{C_{SV}^{m}} \right] \cup_{+} \frac{1}{2} \left[ -i \frac{\cos x}{k} \right] k^{2} \qquad (15)$$
$$U = A + \frac{A^{2} + \frac{C_{66}^{m}}{2}}{A^{2} + \frac{C_{66}^{m}}{2}}.$$

$$Z = A \frac{C_{66}^{m}}{C_{44}^{m}} + \frac{A^2 \frac{C_{66}^{m}}{C_{44}^{m}} + \frac{C_{44}^{m}}{C_{33}^{m}}}{A^2 + \frac{C_{44}^{m}}{C_{33}^{m}}}$$

式中:

$$\begin{aligned} \frac{1}{2} \sum_{k=1}^{n} \frac{1}{2} \begin{bmatrix} C_{44}^{m}Y - C_{44}^{m}k & 0\\ C_{13}^{m}k & C_{33}^{m}a & 0\\ 0 & 0 & C_{44}^{m}Y \end{bmatrix} \begin{bmatrix} f_{m}\\ f_{2m}\\ f_{0m} \end{bmatrix} = \\ \begin{bmatrix} \frac{1}{2} \left( -i\frac{C_{8V}^{m}}{k} \right) C_{66}^{m} & 0 & 0\\ 0 & \frac{-1}{2} \left( -i\frac{C_{8V}^{m}}{k} \right) C_{66}^{m} & 0\\ 0 & 0 & \frac{-1}{2} \left( -i\frac{C_{8V}^{m}}{k} \right) C_{66}^{m} \end{bmatrix} k^{2} + \\ \begin{bmatrix} 0 & -C_{44}^{m} & 0\\ C_{13}^{m} & 0 & 0\\ 0 & 0 & k^{2} \end{bmatrix} k^{2} \end{aligned}$$

| $i \frac{k}{C_{SV}^n} C_{44}^n$ | 0                                 | 0                               | (f)                                                    |      |
|---------------------------------|-----------------------------------|---------------------------------|--------------------------------------------------------|------|
| 0                               | $i \frac{k}{C_{SV}^m} U C_{33}^m$ | 0                               | $\begin{cases} f_{zm} \\ f_{zm} \\ f_{zm} \end{cases}$ | (16) |
| 0                               | 0                                 | $i \frac{k}{C_{SV}^m} C_{44}^m$ | $\int f \theta_m$                                      |      |

当 k = 0时,可用式(12b),(13b)代入式(10), 得到相应的公式,这里不再列出。

于是,若 *TI* 层状弹性场地的下部边界处理成 *TI*弹性半空间时,只须在 *C* 阵的第 (*m*, *m*)元素上 加上  $i \frac{k}{C_{SV}^{sv}} C_{44}^{a}$ ; *A*<sup>*k*</sup> 阵的第 (*m*, *m*)元素上加上 $\frac{1}{2}$  $\left[-i \frac{C_{SV}^{sv}}{k}\right] C_{66}^{a}$ ; 在 *A*<sup>*k*</sup> 的第 (*m*, *m*)元素上加上 $\frac{1}{2}$  $\left[-i \frac{C_{SV}^{sv}}{k}\right] C_{66}^{a}$ , 第 (*2m*, *2m*)元素上加上 $\frac{1}{2}$  $\left[-i \frac{C_{SV}^{sv}}{k}\right] C_{66}^{a}$ , 第 (*2m*, *2m*)元素上加上 $\frac{1}{2}$  $\left[-i \frac{C_{SV}^{sv}}{k}\right] C_{53}^{a}$ ; 在 *C*<sup>*k*</sup> 的第 (*m*, *m*)元素上加上 $i \frac{k}{C_{SV}^{sv}}$  $C_{44}^{a}$ , 第 (*2m*, *2m*)元素上加上 $i \frac{k}{C_{SV}^{sv}}$  $C_{44}^{a}$ , 第 (*2m*, *2m*)元素上加上 $i \frac{k}{C_{SV}^{sv}}$ 时,则应当按相应的公式取值

注意式 (16) 中 *k*的系数矩阵为非对称矩阵。许 多学者 (如 Novak, Baranov, Veletsos及 Verbic等) 在处理半空间表面的垂直位移与水平、扭转等位移 的关系时,均假设它们互不耦合,即略去其刚度 (或 柔度)矩阵中的非对角项。这里将式 (16) 中 *k*的系数 矩阵左上角的子矩阵分解成对称阵与反对称阵之和:

$$\begin{bmatrix} -C_{44}^{m} \\ -C_{13}^{m} \end{bmatrix} = \frac{-1}{2} \begin{bmatrix} -C_{44}^{m} \\ (C_{13}^{m} + C_{44}^{m}) \end{bmatrix} + \frac{-1}{2} \begin{bmatrix} -C_{44}^{m} \\ (C_{13}^{m} - C_{44}^{m}) \end{bmatrix}$$
(17)

略去非对称项后将它们并入  $B_R$ 中,即在特征方程  $B_R$ 的第(m, 2m)及(2m, m)元素中仅须加上  $1/2(C_{13}^m)$  $- C_{44}^m$ )即可。这样处理比上述研究者进了一步,仅略 去非对角项中的非对称部分。

## 6 几种边界条件的比较

阻尼边界 半空间边界及固定边界,这三种边 界孰优孰劣,本应与理论解进行比较才能知道。但 迄今为止,横观各向同性层状场地格林函数理论解 尚未得出,只有利用各向同性弹性半空间理论解<sup>[6]</sup>。 为了有可比性,这里将层状场地退化为各向同性层 状弹性场地 场地的所有弹性常数与弹性半空间相 同,即  $d = 1 t/m^3$ ,  $v_s = 100 m/s$ ,  $_ = 1/3$ 所有的 层厚均取为 1.0 m 这里分别计算了固定边界、阻尼 边界及半空间边界的层状场地在表面垂直集中简谐 荷载及水平集中简谐荷载作用时场地的位移响应。

9,1994-2018 China Academic Journal Electronic Publishing House. All rights reserved. http://www.citki.net

简谐荷载时 r = 1.0 m及 r = 2.0 m处的竖向位移响 应与理论解的比较。图中的水平坐标表示频率 (Hz), 竖直坐标为竖向位移。其值用  $\frac{1}{2r} \frac{1-\nu}{r}$  无量刚化 (*G* 为场地的剪切模量,  $G = dv_s^2$ )。

作者还计算了半空间之上 19层、29层、39层场 地响应与理论解的比较,图 4为半空间之上 39层场 地的情形 图中纵横坐标同图 3

从上述图可以看出,当下部边界固定时,其表

面的位移解与理论解的差别最大,而弹性半空间边 界的解较固定边界的结果接近理论解,阻尼边界的 结果最接近理论解。这种差别随着场地的厚度增加 而逐渐减少,至半空间之上39层的场地时,这三种 边界的场地在表面处的位移响应已基本上一致。从 这一现象可以说明,阻尼边界及半空间边界比较符 合实际情形,固定边界由于它完全不能传递、吸收 上部土层的振动能量,所以与理论解差别较大,尤



图 4 39层场地表面的垂直位移响应

Fig. 4 Virtical displacement response of 39 layer medium

?1994-2018 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

其在场地土较薄时这种差别更大。

在场地土较厚的情况下,虽然三种边界条件表面的位移几乎相同,但由于边界的反射情况不同,在 土层的内部它们的响应还是有区别的。作者计算了 39层场地三种边界条件时第 30层 r = 1.0 m及 r = 2.0 m处的垂直位移 计算表明,阻尼边界及半空间 边界的结果几乎完全相同,但固定边界的结果与它 们有明显的差异 尤其是实部,无论是在 r = 1.0 m 及 r = 2.0 m处,固定边界最大的响应几乎为其余两种边界的 2倍,这即表明波的反射产生了作用。

半空间表面处受水平集中简谐荷载时几种场地 表面及内部在 r= 1.0m, r= 2.0m处的水平位移响 应与图 3,4有相似的趋势,限于篇幅,不详述。

从以上算例的比较可以看出,无论场地的厚度 如何,阻尼边界及半空间边界算得的结果均比固定 边界接近理论解。根据计算对比,可以得出如下一 些有用的结论:在场地土较薄时,用阻尼边界较好, 当场地土较厚时,用阻尼边界及半空间边界均可, 它们的结果几乎完全相同。在场地土较厚且只考虑 浅基础时可采用固定边界,因为固定边界处理比较 方便,且土层较深时,边界条件对上部土层的影响 较小、但深基础不宜采用固定边界。

7 结 论

(1)对于固定边界 阻尼边界、半空间边界的情形,其边界条件可按本文中的公式及方法代入

Layleigh波及 Love波的代数特征方程。

(2) 边界条件不同,对场的响应有明显的影响, 不容忽视。

(3) 对各种场地均可采用阻尼边界条件; 对场 地土较厚的情形亦可采用半空间边界条件; 对较厚 的场地, 当基础较浅时可采用固定边界条件, 但深 基础不宜采用固定边界。

#### 参考文献

- Waas G, Riggs H R Werkle H. Displacement solution for dynamic loads in transversely isotropic media [J]. EESD, 1985, 13(2): 173~193
- 2 Liu W, Novak M. Dynamic response of single piles embedded in transversely isotropic layered media [J]. EESD, 1994, 23(6): 1 239-1 257
- 3 Wolf J P. Dynamic soil-structure interaction [M]. Englewood Cliffs Prentice-Hall, Inc., 1985
- 4 陈 镕,陈竹昌,薛松涛等.横观各向同性层状场地对入射 SH 波的响应分析 [J].上海力学,1998,19(3):213~220
- 5 长谷川正幸.弾性波动论に基づいに群抗の动的举动に关する基 础的研究[R].日本:清水建设株式会社,1993
- 6 陈密,陈竹昌,薛松涛等.横观各向同性层状场地对环形筒谐荷载的位移响应[J].上海力学,1999,20(2): 139~147
- 7 李肇胤,周 锋,陈 镕等.横观各向同性层状场地受垂直圆盘 状简谐荷时的响应分析 [J]. 岩石力学与工程学报,2000,19(5): 608~612
- 8 丁皓江. 横观各向同性弹性力学 [M]. 杭州:浙江大学出版社, 1997

# THE DYNAMIC BOUN DARY CONDITION S OF TRAN SVERSELY ISOTROPIC STRATIFIED MEDIA

 $Xue \ Songtao^{1, 2, 3}, \quad Chen \ Rong^{1, 3}, \quad Qing \ Ling^{1}, \quad Chen \ Zhuchang^{1}$ 

(<sup>1</sup> Department of Engineering Mechanics & Technology, Tojgji University, Shanghai 200092 China)

(<sup>2</sup> School of Science and Engineering, Kinki University, Japan)

(3 Key Laboratory of Solid Mechanics of MOE, Tongji University, Shanghai 200092 China)

**Abstract** The formulas of three dynamic boundary conditions of transversely isotropic stratified media are derived. And the methods how to combine them with the discretized algebraic eigenvalue equation for generalized Rayleigh and Love waves are also given. The dynamic responses of the media with these different boundary conditions to concentrative harmonic loads are evaluated and compared with the theoretical results.

Through the comparison, it can be found that the responses of the media with damping and half space boundary conditions when the media are thick, are close to the theoretical ones. But for the fixed boundary condition, only the responses of upper soil layers are close to theoretical ones. The results near the bottom of soil layers are much different from those for damping and half space boundary conditions. According to the evaluation, the applicable ranges for these boundary conditions are suggested.

Key words transversely isotropic stratified media, fixed, damping and half space boundary condition