
PROCEEDINGS OF SPIE

SPIEDigitalLibrary.org/conference-proceedings-of-spie

Structural damage detection using
neural network and H(infinity symbol)
filter algorithm

Hesheng  Tang, Tadanobu  Sato

Hesheng  Tang, Tadanobu  Sato, "Structural damage detection using neural
network and H(infinity symbol) filter algorithm," Proc. SPIE 5394, Health
Monitoring and Smart Nondestructive Evaluation of Structural and Biological
Systems III,  (21 July 2004); doi: 10.1117/12.539511

Event: NDE for Health Monitoring and Diagnostics, 2004, San Diego, CA,
United States

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 12/8/2018  Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Structural Damage Detection Using 
Neural Network and H

∞
 Filter Algorithm 

 

Hesheng Tang*a and Tadanobu Satob 

a. Visiting Researcher, Dr., Disaster Prevention Research Institute, 
Kyoto University, Uji, Kyoto 611-0011, Japan 

b. Prof., Disaster Prevention Research Institute, Kyoto University, 
Uji, Kyoto 611-0011, Japan 

 

ABSTRACT 

In this paper we propose a neural network -based approach for damage detection of unknown structure systems. Newly 
developed global H

∞
 Filter optimal learning algorithm for the neural network to simulate a structural response is 

developed. This algorithm is based on the worst-case disturbances design criterion, and is therefore robust with respect 
to model uncertainties and lack of statistical information to the exogenous signals. Simulation results are presented to 
identify dynamic response characteristics of nonlinear structural systems corresponding to different degrees of 
parameters changes, which indicate that damage occurred in the structure. It is shown that the proposed method is 
highly robust and more appropriate in practical early structural damage detection. 
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1. INTRODUCTION 

Nondestructive damage identification problems have been the focus of research studies for many years; numerous 
researchers have studied a variety of analytical and experimental techniques. Neural networks have been viewed as 
potential saviors for the solution of the difficult problems in damage identification typically encountered in the 
structural dynamics field 1. Neural networks were originally developed to simulate the function of the human brain or 
neural system. Subsequently, they have been widely applied to diverse fields ranging from biology to many engineering 
fields. Currently, NNs are studied vigorously as non-parametric system identification techniques. No prior knowledge 
about the model is the major advantage of using neural network in system identification. Neural networks are able to 
treat implicit damage mechanisms, so that it is not necessary to model the structure in detail. In recent years, research on 
vibration and neural networks based damage identification has been expanding rapidly 1-3.  

Although the neural network methods that have been developed are applicable in concept to most simple structural 
models, with the number of the degrees-of-freedom of the structural models increasing, excessive computation time and 
computer memory are necessary for the network training, and it may not be practically possible online processing. Due 
to these reasons, a substructure identification method for the large-scale structure systems was proposed 2-5. In the case 
of polynomial-type nonlinear or linear system that is memoryless model, the approach yields virtually exact results. For 
other types of nonlinear systems, such as the memory-type models, the approach is invalidity. Consequently, we cannot 
just use the interstory displacement and interstory velocity as the inputs of the neural network to mapping the restoring 
force function, and the past restoring force should be included in the inputs. Hence, the substructure interstory force 
identification schemes have been investigated 2-5, which are limited by the chosen parametric model to identifying 
certain classes of nonlinearities.  

A concern in neural network training is in the hope of finding a ‘fast’ and ‘robust’ learning method. Error back-
propagation (BP) algorithm is commonly used to evaluate connection weights in conventional neural network 6. 
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However, some disadvantages of this algorithm were found for structural system identification: learning process is 
unstable when the teaching signals contaminated by measurement noise, and the identified weights sometimes fall into 
the local minimum solution because the connection weights are adjusted based on the first-order stochastic gradient 
descent method. For this case, some researchers have put forward extended Kalman filter (EKF) training methods that 
use higher-order information more efficiently 7-9. They showed that EKF algorithm converged in fewer iterations than 
the standard back-propagation algorithm using a few artificial examples. They also showed that in some case when the 
back-propagation algorithm failed, the EKF converged a good solution. But it should be noted that the EKF method 
requires the knowledge of the noise covariance metrics, convergence of the algorithm as well as the final values are 
depend, to great extent, on this initial guess, which is unrealistic in modeling identification. The EKF algorithm might 

thus diverge, whereas the H
∞

 filtering method will always provide the robust predictor of a given arbitrary structure. 

The H
∞

 filtering problem is a state estimation problem of minimizing the maximum energy in the estimation error over 
all the disturbance trajectories and make no assumptions on the statistics or distributions of the disturbance signals 10. 

The H
∞

 filter was confirmed to be more efficient and robust than the Kalman filter for the identification of structural 
system 11.  

In this paper, a newly developed learning algorithm for training the neural network method for the structural 
damage detection has been proposed, the hysteretic nonlinearity system (memory-type model) will be used and the 
restoring force with one step time lag will be selected as the input. The date sets consisting of interstory displacement, 
interstory velocity, and the interstory restoring force of the each substructure are used to train neural networks for the 
purpose of the damage detection corresponding substructures. The approach proposed in this paper relies on the use of 
vibration measurements from a “healthy” system to train a neural network for identification and prediction purposes. 
Subsequently, the trained network is fed comparable vibration measurements from the same structure under different 
episodes of response in order to monitor the health of the structure. The robust and efficiency of such approach for the 
early structural damage detection will be demonstrated by the simulation results. 

 

2. BACKGROUND OF NEURAL NETWORKS 

In this study, the most widely used technique, the feedforward neural network (FNN), is adapted for the damage 

identification shown in Fig.1. Fig.1 shows a typical three-layer FNN: the input layer )n,,1i(u i L=  with n nodes, 

the two hidden layers with p and q nodes and the output layer )m,,1i(yi L= with m nodes. Between layers, there are 

weights 1
ijw , 2

ijw and 3
ijw  representing the strength of connections of the nodes in the network. In Fig.1 we can assign 

a different activation function of (*)γ , (*)β and (*)α  with corresponding bias terms, 1b , 2b and 3b , for each layer. 
In this paper, the hyperbolic tangent function  
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Figure 1. Feedforward Neural Network Model 

∑ ∑ ∑ 

∑ ∑ ∑ 

∑ ∑ ∑ 

1b 2b 3b

Proc. of SPIE Vol. 5394     455

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 12/8/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



During this operation, the output vector y  is calculated by feeding the input vector u through the hidden layer of 

the neural network are given as 

( )( )( )123321 bbbuwww +++= γβαy                            (2) 

with ]w[ 1
ij

1 =w ,  ]w[ 2
ij

2 =w , ]w[ 3
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q
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2 }b,b{ L=b , T3
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3
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3 }b,b{ L=b  and 

T
n1 }u,u{ L=u . 

The capabilities of the FNN stem from the non-linearities used within nodes. If nodes are linear elements, a single-
layer net with appropriately chosen weights can duplicate the results obtained with any multi-layer net. 

 

3. LEARNING ALGORITHM USING THE H
∞ FILTER 

Without loss of generality, a typical FNN model (Eq.2) can be defined as the following nonlinear discrete state-
space model: 

k1k ww =+                                        (3) 

kkkk ),( vuwhy +=                                   (4) 

where the vector ky  is the vector of output values of units in the net at time k, )(∗h denotes the overall state transition 

mapping performed by the network as a function of unit activities, weights, and input, kw is the network’s weight 

matrix at time k, but here we treat kw  as a single dimensional vector rather than a matrix, and kv  is the 
measurement noise.  

The task of the H
∞ filter learning for the FNN is to estimate the weights from the noise patterns data. The design of 

discrete H
∞ filter is discussed in 10. The following linear discrete system is considered 

kkkk1k nBxAx +=+  (State equation)                       (5) 

kkkk vxCy +=  (Measurement equation)                     (6) 

where the kx is the state vector of system at the time k, ky  is the vector of measurement at time k, kn  is the process 

noise, and kv  is the measurement noise, we make no assumption on the nature of unknown quantities kn  and kv , and 

),,( kkk CBA are the system matrices. The suboptimal H
∞
 estimation problem is interested not necessarily in the 

estimation of kx but in the estimation of some arbitrary linear combination of using the noise-corrupted 

observations }1N,2,1,0k,{ k −=y  i.e.,  

kkk xLz =                                          (7) 

where nq
k R ×∈L . Different from that of the modified Wiener/Kalman filter which minimizes the variance of the 

estimation error, the design criterion of the H
∞
 filter is to provide a uniformly small estimation error, kk ẑz − , for 

any 2kk l, ∈vn  and n
0 R∈x . Let the estimation performance measure be  
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where ,0),),ˆ(( kk00 ≠− vnxx 0x̂ is an a priori estimate of 0x and 00 x̂x −  represents unknown initial condition 

error, 01
0 >−p , is the weighting matrices. 01

0 >−p denotes a positive definite matrix that reflects a priori knowledge 

on how close the initial guess 0x̂ is to 0x . The notation
2

k Q
z  is defined as the square of the weighted (by Q ) 

2l norm of kz , i.e., k
T
k

2

k Qzzz
Q

= . The H
∞

 filter will search kẑ such that the optimal estimate of kz among all 

possible kẑ in the sense that the supremum of the performance measure should be less than a positive prechosen noise 

attenuation factor 2γ , i.e., the worse-case performance measure 

2

}{},{,

Jsup
kk0

γ<
vnx

                                    (9) 

The above problem formulation shows that H
∞
 optimal estimators guarantee the smallest estimation error energy 

over all possible disturbances of finite energy. They are, therefore, overly conservative, which results in a better robust 
behavior to disturbance variations. 

To apply the H
∞
, the linearization of the nonlinear model (Eqs.3-4) should be required. Then the optimal H

∞
 state 

filter-learning algorithm for estimation of the neural network weights is given by (herein the state kx  will be replaced 

by the neural network weights vector kw ) 

1kk ˆˆ −
− = ww                                       (10) 
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where 
−=∂

∂=
kŵw

k w
h

C   , and the attenuation factor γ must be tuned so as to satisfy the kP positive definite. 

 

4. NEURAL NETWORK FOR DAMAGE DETECTION 

4.1 Basic Idea 

The expression of the equation of motion for a generic multi-degree-of-freedom non-linear system can be written in the 
form 

)t())t(),t(),t(()t( urxxrxm =+ &&&                         (15) 

where m is the mass matrix, )t(x&& , )t(x& and )t(x are the relative acceleration, velocity and displacement, )t(u is 

the system’s external excitation, and )t(r the non-linear restoring force. 

    The reduced-order equation of motion for ith active degree of freedom for a shear-type structure (Fig.2) subjected 

to earthquake-induced ground excitations ( gx&& ) can be written as: 

gi1iiniii xmr)1(rxm &&&& −=−−+ +δ                         (16) 
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where if ni ≠ then 0in =δ  else 1in =δ . 

    In this paper, one of the more widely used models for hysteretic nonlinearities is studied, because it can capture 
many commonly observed types of hysteretic behavior, is the Bouc– Wen model12. In this case, the ith component of 
interstory restoring force vector is expressed by 

iiiiiii zuc)r,u,u(r += &&                                  (17) 

and hysteretic force iz  is satisfied by 

ii n

iiii

1n

iiiiii zuzzuukz &&&& βα −−= −
                        (18) 

where iu&  is the relative velocity between the i-1th and ith mass point, ic is the damping, ik the stiffness, iα , iβ and 

in  are the nonlinear parameters. 

 

 

 

 

 

 

 

 
Figure 2.  Model of 3 DOF structural system 

 
Table 1. Parameters of structural model 

 
 
 

                     (Note: i=1,2,3) 

Because in reality the hysteresis restoring force is not simply a function of the states x and x& but also of the past 
restoring force r . (This was written generically as ))t(),t(),t(( rxxr & in Eq. (15).) In other words, for hysteresis there 

is not a unique surface in the x and x&  space 13. Ref. 14 also demonstrated that using the “memoryless” non-parametric 
method for identification of nonlinear system with general hysteretic properties leads to a “drift” effects in hysteretic 
systems, because the hysteretic system is a memory-type model. For the polynomial-type nonlinearity system that is 
memoryless model, the approach yields virtually exact results, which will be proven in detail later for substructure 
modeling. In this paper, consider the hysteretic nonlinearity system is a memory-type model; the restoring force with 
one step time lag will be selected as the input. This approach can cope with a much broader family of unknown 
nonlinear response behaviors. 

Assume that the mass are known and the experimental measurements for x&&  and gx&&  are available and that the 

corresponding x& and x can be found by direct measurements or through integration of x&& . Hence, the interstory 

restoring force values ir can be calculated using the Eq.16. Eq.16 also tells us that i-th interstory restoring force 

function )r,u,u(r iiii &  is determined just by the properties of the i-th substructure, and which shown the proposed 
method is localization damage detection method. 

In this paper, a shear-type structure subjected to earthquake-induced ground excitations is studied in this study 
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(Fig.2). Based on the concept of the substructure damage detection, the structure will be divided into several 
substructures (simplified, one active DOF is a substructure), and using the neural network to model the dynamic 
behaviors of the substructures, namely that the neural network is trained to identify a substructure model of 

)r,u,u(r iiii & . We compose a three layers feed-forward neural network, in which the input signals are iu& and iu  at 

time step k, and ir  at the time step k –1 and the outputs are the calculated values of ir  at the time step k. Hence, the 

network has 3 input nodes, 1 output node, and one hidden layer with 20 nodes and a hyperbolic tangent function like 
Eq.1 was used as the node nonlinearity. The size of the network become very small, computation cost decreasing 
correspondently. 

If the network has been well trained, and if the substructure system characteristics have not changed, both the 
substructure system and the network will have matching outputs. On the other hand, if the substructure system has 
changed, the output from the substructure system will not correspond any more to the output of the trained network, 
consequently, the network will yield an output ‘error’. Therefore, the deviation between the output from the substructure 
system and the output from the network provides a quantitative measure of the changes in the physical substructure 
relative to its ‘healthy’ condition. The detection procedure is that we will get the reference configuration through the 
“health” dynamic substructure system training at first, then, the well-trained network is employed to predict the 
responses of the “damage” system. The output of this prediction will differ from the system observed output, given the 
same input. One standard, overall performance measure was used for different case, namely the normalized mean-
square-error or NMSE defined by 

∑
=

−=
N

1i

2
ii2

r

)r̂r(
N

100
NMSE

σ
                                (19) 

where ir  is actual value, 2
rσ is its variance and ir̂ is the neural network output. 

4.2 Structural Identification 
To verify the effectiveness of the proposed algorithm, a shear-type structure subjected to earthquake-induced ground 
excitations is studied. We use system’s parameters, as shown in Table 1.  

In order to verify the generalization of the H∞–learning neural network, two load cases are used in this paper, El-
Centro earthquake (May. 18, 1940, Imperial Valley) and Takochi-oki earthquake (May, 16, 1968, Hachinohe). Both of 
these two earthquakes with modified maximum amplitude of 25 cm/sec2 and 30s time histories were selected. The 
sampling interval of the structural responses to be used for identification is 0.02s. 

 
 
 

 
 
 
 

 
 
 

 
 
 
 

 
 
 

Figure 3. Time History of actual (solid curve) and estimated (dashed curve) 
restoring forces (using this paper method). 
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The structure subjected to El-Centro earthquake-induced ground excitations, excellent restoring force estimation 
results using the proposed approach shown in Fig. 3. (Corresponding, NMSE=0.7550, 0.7532, 0.2221) It is shown that 
the network is performing extremely well in matching the system. When the interstory force with one step time delay 
not included in the input of network, the estimation results shown in Fig. 4 (Corresponding, NMSE=17.9907,43.2239, 
7.9225). We have tried to increase the number of the weights, but the estimation errors existing almost the same with 
shown in the fig.4, which further verify that there is not a unique surface in the interstory displacement, interstory 
velocity space, which defines the interstory restoring force for the hysteretic nonlinearity system. 

 
 

 
 
 

 
 
 
 

 
 
 

 
 
 
 

 
 
 

 
To verify the effects of measurement noise on the proposed algorithm, random white noise signals have been added 

to both the simulated structural response and the ground-induced accelerations. The level SNR (signal-to-noise ratio) of 
the noise is defined as 

dBlog10SNR
noise

signal
10 σ

σ
=                                   (20) 

where noiseσ and signalσ are the standard deviations of the added noise and the structural responses. 

To study these effects, three noise levels simulations were carried out for the interstory restoring force 
identification of the 1st story (1st substructure), noise was added to the data in the training stage, the network output 
NMSEs are shown in Table 2. As shown in the Table 2, the performance of the networks is not significantly affected by 
the additive noise in the training data. 
 

Table 2. Network output NMSE for different level added 
(1st story or substructure identification) 

SNR no noise 46 30 24 
NMSE 0.7550 0.7932 0.8258 0.8301 

 

In the following, we discuss about the nonuniqueness for the H∞–learning neural network, which has been 
described in Ref. 3. The time histories of partial network weights are shown in Fig. 5 with different four sets of initial 

Figure 4. Time History of actual (solid curve) and estimated (dashed curve) 
restoring forces (which not adopted as network input). 
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weights values, Fig.5 shows the identified values of weights are converged to the different values. Although having a 
different set of weights after the well trained, the neural network models the nonlinear substructure system successfully. 
The nonuniqueness of the weighting matrices for successful solutions of the same system has been demonstrated by Ref. 
3, the proposed H∞–learning neural network with the same property, which precludes the use of this neural network 
approach for health monitoring by comparing individual weighting terms for damaged and undamaged systems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

To check the generalization ability of the H∞–learning neural network, the trained well network is used to predict 
responses to different external excitation. The time histories of predicted interstory restoring forces shown in Fig.6 are 
in very good agreement with the true results for the Hachinohe earthquake, Which shows that the network performs 
extremely well in the reference unknown system when given the random inputs, on which it has never been trained. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Time histories of a subset neural network weights 
with a different sets of initial weight values 

Figure 6. Time History of actual (solid curve) and predicted 
(dashed curve) restoring forces with well-trained network 
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4.3 Damage Detection 
As described in above, the same structure subjected to El-Centro earthquake-induced ground excitations is presented for 
the purpose of damage detection. An individual network is prepared for each story or substructure, the training and 
detection are done for each individual story described in the previous section.  

Without loss of generality, the structural damage is simulated with decreasing in stiffness at every story, a set of 
damaged cases and corresponding NMSEs of the prediction output error are presented. The results for the different 
damaged stories with different damage degrees of the structure are shown in the Figures 7,8,and 9. Fig. 7 shows the 
NMSEs of all the three stories network output errors that normalized by undamaged case when damages have occurred 
in the 1st story with different levels; correspondingly, Fig.8 and Fig.9 show the results when damages have occurred in 
the 2nd story and 3rd story, respectively. All of three figures show that increases as the damage level of considered story 
increases NMSE value of certain story, and also show when the damage has occurred in one story, corresponding the 
network prediction output NMSEs for this story become significantly larger than that of the other without damage story 
networks. This indicates that the proposed substructure damage detection method works well for localized damage 
detection.  

Due to its nonparametric nature, the network prediction output errors magnitude don’t have directive relationship 
with the degree of the damages, it is to say, the proposed method cannot quantify the level of the damage. 
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Figure 9. Network output NMSEs (damaged in the 3rd story 
case) for system normalized by undamaged case 
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Figure8. Network output NMSEs (damaged in the 2nd 
story case) for system normalized by undamaged case 
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Figure 7. Network output NMSEs (damaged in the 1st 
story case) for system normalized by undamaged case  
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CONCLUTION 

In this paper, we a presented neural network with H
∞
 filter training algorithm for nonlinear structural dynamic model 

identification and damage detection. Because the hysteretic nonlinearity system is considered a memory-type model, the 
restoring force with one step time lag as one of the inputs to the network. Since the design criterion of the H

∞
 filtering 

algorithm is based on the worst case disturbances, the method is less sensitive to uncertainty in the exogenous signal 
statistics and system model dynamics, the proposed algorithm is more robust than EKF training based neural network. 
Remarkable success has been achieved in training the networks to learn the nonlinear structural responses, and thereby 
to make accurate responses predictions identify dynamic response characteristics of nonlinear structural systems 
corresponding to different degrees of parameters changes, which indicate that damage occurred in the structure. It is 
shown that the proposed method is highly robust and more appropriate for practical structural damage detection. 
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