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Abstract

The identification of structural damage is an important objective of health monitoring for civil infrastructures. Frequently, damage to a structure
may be reflected by a change of some system parameters, such as a degradation of the stiffness. In this paper, we propose an online sequential
weighted Least Squares Support Vector Machine (LS-SVM) technique to identify the structural parameters and their changes when vibration
data involve damage events. It efficiently updates a trained LS-SVM by means of incremental updating and decremental pruning algorithms
whenever a sample is added to, or removed from, the training set, and robustness is improved by the use of an additional weighted LS-SVM step.
This method overcomes the drawback of sparseness lost within the LS-SVM and makes LS-SVM for online system identification possible. The
proposed method is capable of tracking abrupt or slow time changes of the system parameters from which the damage event and the severity of
the structural damage can be detected and evaluated. Simulation results for tracking the parametric non-stationary changes of non-linear hysteretic
structures are presented to demonstrate the application and effectiveness of the proposed technique in detecting the structural damage.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In the field of civil engineering, real-time structural
identification of dynamic systems subjected to earthquake
motion has been focused on accurate prediction as well
as structural health monitoring and damage assessment.
System identification and damage detection based on measured
vibration data have received intensive studies recently. As
an online identification method, the Kalman filter (KF) has
received much attention and has been successful in the
parameter estimation problems over the past years [1–4].
Similar methods such as the least squares estimation method
(LSE) [5–9], suboptimal H∞ filter method [10], unscented
Kalman filter [11], and particle filter [12] have been developed
in some useful forms for solving many practical problems in
civil engineering. To date, the online detection of the changes
of structural parameters due to structural damage during a
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severe event, such as an earthquake, is still a challenging
problem.

Recently, a least squares version of the SVM (LS-SVM)
technique has received some attention for system estimation,
function estimation, and non-linear system optimal control
problems [13–16]. In the LS-SVM, Vapnik’s ε-insensitive loss
function has been replaced by a sum-squared error (SSE)
cost function. Moreover, the LS-SVM considers equality type
constraints instead of inequalities as in the classic SVM
approach [17–19]. This reformulation greatly simplifies a
problem such that the LS-SVM solution follows directly from
solving a set of linear equations rather than from a convex
quadratic program (QP).

Most existing algorithms for the SVM and LS-SVM
require that training samples be delivered in a single batch;
i.e., they are offline algorithms. Offline training algorithms,
however, do not fit practical applications such as online system
identification and control problems, in which the data are
entered sequentially. The standard SVM (also called QP-based
SVM, or QP-SVM for short) method generally has been
used only for static problems, such as those of classification,
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regression, and function estimation. As an application to
such dynamic problems as online system identification and
online control problems, the method is inefficient because each
time the training set is modified, it must be retrained from
scratch. A new online training model therefore is required
each time a new sample is added to, or an existing sample is
removed from, the training set. Approximate online training
algorithms previously proposed for the SVM are incremental
training algorithms [20] and sequential gradient methods [21],
the main drawback of which is that the training process
converges slowly. An improved iterative block training method
for support vector classifiers based on weighted LSE (WLS-
SVC for short) has been presented by Navia-Vázquez et al. [22]
and Engel [23]. In [24], the author implemented an online
adaptive selective Kernel learning algorithm for SVM using
a window where training samples are selectively added and
deleted.

Despite the computationally attractive features of LS-SVM
algorithms, their solutions have potential drawbacks [15].
One is that sparseness is lost in the LS-SVM solutions.
Another is that Vapnik’s ε-insensitive loss function, instead
of an SSE cost function, without regularization might lead
to estimates that are less robust in the LS-SVM algorithms.
Actually, a common assumption underlying most process
modeling methods, including linear and non-linear least squares
regression, is that variance is constant throughout the range of
the measured variables. If this is not so, then using weighted
least squares may yield the most precise parameter estimates
possible. This is done by attempting to give each data point its
proper amount of influence in parameter estimates.

In this paper, we propose a robust tracking technique,
based on the online sequential weighted least squares support
vector machine (SWLS-SVM for short) regression, to track
the system parameters and their changes due to damage. The
tracking algorithm is based on the adaptation of incremental
and decremental pruning algorithms and an additional weighted
LS-SVM step for the standard LS-SVM to update the parameter
variations whenever a sample is added to, or removed from,
the training set. The decremental pruning algorithm is based
on sorted support values (SVs), by omitting a relative, small
amount of the least meaningful support values. Such an
adaptive tracking technique yields a sparse approximation and
gives a larger importance to more recent data in order to cope
with the system parameter’s variations. The proposed technique
is capable of tracking the non-stationary changes of system
parameters from which the event and severity of structural
damage may be detected online. In particular, the proposed
method has an excellent capability to identify the abrupt or slow
time change of system parameters relating to structural damage.
Simulation results demonstrate that the proposed method is
suitable for tracking the changes of system parameters for
hysteretic structures.

The paper is organized as follows: Section 2 considers
the weighted LS-SVM for function estimation. In Section 3
the SWLS-SVM is formulated. Section 4 discusses the
identification of non-linear hysteric structural systems by the
SWLS-SVM technique and some illustrative examples are
presented. A conclusion is given in Section 5.

2. The batch weighted LS-SVM algorithm

Before presenting the weighted LS-SVM, basic formulation
of the standard LS-SVM [19] for function estimation is briefly
reviewed. Consider a given training set of N data points
{(xk, yk)}Nk=1 with the input xk ∈ Rn and output yk ∈ R. The
following regression model is used;

y(x) = wT · ϕ(x)+ b (1)

where ϕ(∗) maps the input data to a higher dimensional feature
space, w is a weight vector, and b the bias. In the LS-SVM for
function estimation, the objective function of the optimization
problem, is defined as

min
w,b,e

J (w, e) = C

2

N∑
k=1

e2
k +

1

2
‖w‖2 (2)

subject to the constraints

yk = wTϕ(xk)+ b + ek, k = 1, 2, . . . , N (3)

where C is the user-defined regularization constant which
balances the model’s complexity and approximation accuracy,
and ek the approximation error.

Estimation of support values in the LS-SVM is optimal
only when there is a Gaussian distribution of error variables.
When, however, a Gaussian assumption for error variables is
not realistic, it may lead to less robust estimates. This is because
the SSE cost function of the LS-SVM, which assigns an equal
weight to error at all times, treating all data equally, gives
less precisely measured points more influence than they should
have and highly precise points too little influence [15,19]. To
obtain a robust estimate when the distribution is not a normal
Gaussian one, a correction must be made by defining weights
based on the error distribution; the so-called weighted LS-SVM
method.

To modify these weights to obtain a robust estimate based on
the previous LS-SVM solution, one weights the error variables,
ek , from the condition αk = Cek by the weighting factors υk .
This leads to a new optimization problem;

min
w,b,e

J ∗(w, e) = C

2

N∑
k=1

υke2
k +

1

2
‖w‖2. (4)

The corresponding Lagrangian is given by

L(w, b, e, α) = J ∗(w, e)−
N∑

k=1

αk

[
wTϕ(xk)+ b

+ ek − yk

]
(5)

with Lagrange multipliers αk . The Karush–Kuhn–Tucker
(KKT) conditions for optimality [19] are given by
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∂L

∂w
= 0→ w =

N∑
k=1

αkϕ(xk)

∂L

∂ek
= 0→ αk = Cek

∂L

∂b
= 0→

N∑
k=1

αk = 0

∂L

∂αk
= 0→ wTϕ(xk)+ b + ek − yk = 0

(6)

for k = 1, . . . , N . After elimination of ek and w, the solution is
given by the set of linear equations

AN αN = YN (7)

where AN =
[

0 �1T

�1 �+ VC

]
, VC = diag

{
1

Cυ1
, . . . , 1

CυN

}
, αN =[

b
α

]
, YN =

[
0
Y

]
, Y = [y1; y2; . . . ; yN ], �1 = [1; 1; . . . ; 1],

α = [α1; α2; . . . ; αN ], I is an N × N identity matrix, and �

follows Mercer’s condition,

Ωkl = K (xk, xl) = ϕ(xk)
Tϕ(xl), k, l = 1, 2, . . . , N (8)

where Ωkl stands for the item at the k-th row and l-th column
of �.

Eqs. (1) and (6) provide the final result of the LS-SVM
model for function estimation;

y(x) =
N∑

k=1

αk K (xk, x)+ b (9)

where α and b are solutions of Eq. (7) and Φ(·, ·) is the
kernel function. As choices of kernel function, there are several
possibilities. The kernel selected in this paper is a linear one
based on the system identification procedure detailed in the next
section.

The weighted LS reflects the behavior of the random errors
in the model. Optimizing the weighted fitting criterion to
obtain parameter estimates allows the weights to determine
the contribution of each observation to the final parameter
estimates. One common choice for υk has been given by
David [25] and Suykens et al. [15]:

υk =

⎧⎪⎪⎨
⎪⎪⎩

1 if |ek/ŝ| ≤ c1
c2 − |ek/ŝ|

c2 − c1
if c1 ≤ |ek/ŝ| ≤ c2

10−4 otherwise

(10)

where ŝ = IQR
2×0.6745 is a robust estimate of the standard

deviation of the LS-SVM error variable ek , which denotes how
much the estimated error distribution deviates from a Gaussian
distribution. The IQR (interquartile range) is the difference
between the 75th and 25th percentiles. The constants c1, c2
typically are chosen to be c1 = 2.5 and c2 = 3 [26]. Because
the SSE cost function in the unweighted LS-SVR is optimal
under the assumption of a normal Gaussian distribution for
ek , the weights-selecting criterion given by Eq. (10) provides
corrections when the distribution is not normal, leading to a
robust estimate.
3. The sequential weighted LS-SVM algorithm

The LSE-based WLS-SVC method [22,23] is the use of a
constant-forgetting factor. This leads to online and adaptive
implementations of SVC. The drawback of the LSE with
constant-forgetting factor method for tracking time-varying
parameters is that if the constant forgetting factor is small, it
has a better capability of tracking the parametric variation, but
it is very sensitive to measurement noise. On the other hand, if
the constant forgetting factor used is large (approaches 1.0), its
tracking capability is compromised although it is less sensitive
to noise [9]. The variable forgetting factor approach [27]
replaces the constant forgetting factor that depends on the time
k. This approach improves over that of the constant forgetting
factor. However, both approaches above can only recognize the
time instant of parametric variation without knowing which
parameter varies [8,9]. Consequently, when a parameter varies,
the predicted results for all parameters exhibit significant
oscillations. Hence, this approach works well for some cases
but not for all, in particular when the parameters of the structure
have an abrupt change. Here, a decremental pruning algorithm
is adopted to select the “old” samples based on a sorted support
vector (SV)-based criterion, and an incremental algorithm to
update the trained LS-SVM whenever a new sample is added
to the training set. The incremental updating and decremental
pruning algorithms for sequential adaptive tracking technique
are described in the following.

3.1. Incremental algorithm

The incremental algorithm updates the trained LS-SVM
whenever a new sample, (xN+1 , y N+1), is added to the training

set
{
(xk , yk)

}N
k=1. In this section, sequential updating of LS-

SVR is derived from the incremental updating algorithm.
Let (xN+1 , yN+1) be a new training sample added to the

first N data pairs
{
(xk , yk)

}N
k=1. From Eq. (7), the incremental

relation between the current model (N data pairs) and the next
new model (new N + 1 data pairs) is given by

AN+1αN+1 = YN+1 (11)

where

AN+1 =
[

AN a
aT c

]
, YN+1 =

[
YN

yN+1

]
,

αN+1 =
[

αN

αN+1

]
, AN =

[
0 �1T

�1 �+ C−1I

]
,

YN =
[

0
Y

]
, a = [1;Φ(x1, xN+1); . . . ;Φ(xN , xN+1)]

and c = C−1 + Φ(xN+1, xN+1).

The online incremental training algorithm aims to efficiently
update A−1

N+1 whenever a new sample is added without explicit
computation of the matrix inverse. Following Golub and Van
Loan [28] A−1

N+1 is obtained as;
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A−1
N+1 =

[
A−1

N
�0T

�0 0

]
+

[
c − aTA−1

N a
]−1

[
A−1

N a
−1

]

× [
aTA−1

N −1
]
. (12)

A detailed derivation description of this incremental
algorithm is provided in the Appendix. It is clear that updating
A−1

N+1 in an incremental algorithm avoids an expensive
inversion operation. The corresponding coefficients and bias
therefore are obtained by Eq. (11).

3.2. Decremental algorithm

The incremental updating algorithm presented above can
achieve a better steady-state performance in a stationary
environment. However, the approach is not efficient for tracking
non-stationary dynamics, because all the data in this algorithm
are weighted equally, and the algorithm has an infinite memory
length. Additionally, due to the condition αk = Cek for
optimality, the sparseness property in the LS-SVM is lost [15].
This method is inefficient when dealing with online problems
with exceedingly large amounts of data because it is costly and
there is not enough space to store the many coefficients.

Hence, we proposed a pruning procedure after the
incremental updating step which is based on sorted SVs, by
omitting a relatively small amount of the least meaningful
support values [19,29]. By the adaptive pruning step, the
SWLS-SVM is able to adapt to new scenarios, not only
by incorporating new data, but also forgetting useless or
out-of-date information. The proposed algorithm yields a sparse
approximation and online implementation of incremental LS-
SVM for non-stationary dynamics.

A decremental algorithm means that a SV is removed when
a pair of training data is removed. Similar to the case of an
incremental algorithm, to avoid computing the matrix inverse,
A−1

N must be updated from A−1
N+1. Here A−1

N is the matrix
without the k-th row and the k-th column. For the decremental
way, when the k-th sample is pruned from the N + 1 pairs of
the data set, the update rule was obtained [30]

ai j ← ai j − a−1
kk aikakj (13)

where i, j = 1, . . . , N; i, j �= k, ai j stands for the item at the
i -th row and j -th column of A−1

N+1, and k stands for the k-th SV

to be removed. According to Eq. (13), A−1
N can be efficiently

updated from A−1
N+1 without explicitly computing the matrix

inverse. Then the coefficients of LS-SVM can be updated with
Eq. (7).

The incremental and decremental algorithms for updating
the LS-SVM, presented above, make online learning for the
LS-SVM possible. Furthermore, a sparse LS-SVM solution is
obtained by gradual decremental pruning of the sorted support
vectors. The outline of the SWLS-SVM algorithm for online
parameter estimation is as follows:

Algorithm: sequential weighted LS-SVM

1. Initialize. Set constant C . Set a threshold number of
training data Nthre, N = Nthre.
Fig. 1. Updating and pruning data for the on-line SWLS-SVM.

2. Given the training data {(xk, yk)}Nk=1. Compute ek = αk/C
by solving the linear systems (Eq. (7)).

3. Compute ŝ from the distribution ek .
4. Determine the weights υk based on ŝ, ek .
5. Solve the weighted LS-SVR (Eq. (12)). Store A−1

N .
6. Input new training data (xN+1, yN+1). Compute a and c.
7. Update A−1

N+1. Update coefficients αN+1.
8. Process the weighted LS-SVR (steps 2 to 4). Solving the

weighted LS-SVM yields αN+1. Store A−1
N+1.

9. Compute coefficients w (Eq. (6)).
10. If N < Nthre go to step 6, otherwise go to step 11.
11. Sort the values |αN+1|.
12. Process decremental LS-SVM (Eq. (17)). Remove some of

the smallest M values in the sorted |αN+1|. Retain the N-M
points data, and set N := N − M (see Fig. 1).

13. Return to step 6.

4. Numerical examples

Consider an m degree of freedom (DOF) non-linear
hysteretic shear-type structure subject to ground excitation ẍg;
the equation of motion is

Mẍ + f(ẋ, x) = −M{I}ẍg (14)

where M is the m ×m mass matrix; x, ẋ , and ẍ are the relative
displacement, velocity, and acceleration vector to the ground;
{I} is the identity of the m×1 column matrix; and f the restoring
force vector expressed by the Bouc–Wen model [31]. In this
case, the i -th component of the vector is

ḟi = ci üi + ki u̇i − αi |u̇i || fi |ni−1 fi − βi u̇i | fi |ni

i = 1, . . . , m (15)

where u̇i = ẋi − ẋi−1 and üi = ẍi − ẍi−1 are the relative
velocity and acceleration between the (i − 1)-th and i -th mass
point; and ci , ki , αi , βi and ni are the damping, stiffness and the
non-linear parameters of the i -th mass point.

In this study, it is assumed that only the ground
and structural accelerations are available for identification.
Structural displacements and velocities are obtained by
integration of the corresponding accelerations by means of an
integration scheme.
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For notational simplicity, terms are labeled subscript ‘k’ to
indicate the time step. Subscript ‘i ’, which presents the i -th
DOF, is omitted hereafter; e.g., fk presents the value of the
i -th DOF’s restoring force at time k. The unknown parametric
vector, w, is defined as w = [c, k, α, β]T. To identify
unknown parameters, the hysteretic equations of motion in Eqs.
(14) and (15) must be discretized. Based on the third-order
Predictor–Corrector method of Lin et al. [8], the incremental
component of the restoring force relative to the i -th DOF at
time k is

fk = fk−1 + (�t/12)(5 ḟk + 8 ḟk−1 − ḟk−2) (16)

where �t represents the sampling time.
Following Eqs. (14)–(16), it is then possible to define the

measurement yk ;

yk = fk − fk−1 (17)

and the observation matrix Hk ;

Hk = �thc

⎡
⎣ ük u̇k u̇k | fk |ni−1 fk u̇k | fk |ni

ük−1 u̇k−1 u̇k−1 | fk−1|ni−1 fk−1 u̇k−1| fk−1 |ni

ük−2 u̇k−2 u̇k−2 | fk−2|ni−1 fk−2 u̇k−2| fk−2 |ni

⎤
⎦ (18)

where hc = 1
12 [5, 8,−1].

The system equation of the i -th DOF for the identification
therefore is given by

yk = wTHT
k + ek (19)

where ek is the measurement noise.
Without loss of generality, consider the case of the i -th DOF

for identification. The mass is assumed to be known, given a

training set of data point pairs,
{

yk, HT
k

}N
k=1, where yk ∈ R is

the output data and HT
k ∈ R4 the input data. The support vector

method aims at constructing a function (Eq. (9)) to simulate the
system function (Eq. (19)).

For simplicity, Eq. (19) is expressed in vector form;

HT
k = [h1

k, h2
k, h3

k , h4
k]T. (20)

The feature map selected for the weighted LS-SVM is

ϕ(xk) = [h1
k, h2

k , h3
k, h4

k ]T. (21)

Mercer’s condition is applied to the matrix �, with Ωkl

= ϕ(xk)
Tϕ(xl).

Hence, the function (Eq. (9)) is found by solving the linear
set of Eqs. (7) and (21). Based on the KKT conditions,

w =
N∑

k=1

αkϕ(xk) (22)

and from the support values αk , one obtains the parameters of
the structural system.

First, we consider a single DOF (SDOF) non-linear
hysteretic structure subjected to ground excitation. The
following parametric values are used in a simulation study:
m = 12.5 kg, c = 7 kN s/m, k = 25 kN/m, and α = 3,
β = 2, n = 2. The Niigata, Japan (NS, 2004) earthquake record
with the modified maximum amplitude of 25 cm/s2 is the input
excitation. The structural responses sampling interval is 0.01 s.
Fig. 2. Identified parameters c, k, α and β for an SDOF hysteretic structure
with linearly changed stiffness and damping, and abruptly reduced α and β; k
in kN/m and c in kN s/m.

In this study, the effectiveness of the noise injection training
is also investigated; noises are artificially added to structural
responses in generating the training data. The noise level is
defined as the value of the standard deviation. The Gaussian
noise level is defined as

υ = σnoise

σobser
× 100% (23)

where σnoise and σobser are the standard deviations of the added
noise and the observation.

Throughout, the best parameter values (for C, ε) were found
by using a cross-validation procedure in which we looked for
the minimum average root-mean-squared error (RMSE) over a
range of parameter values. The best values for each parameter
were found for a single learning scenario in which the training
set consisted of 1000 training samples corrupted by Gaussian
noise with a level of 1%. This set of parameters was then
used throughout the examples. Here, the best parameter values
are C = 15 and ε = 0.03. Usually, it is convenient to use
two samples for the starting data set. The end training set of
data points given in this paper is N = 200, and the pruning
parameters are Nthre = 100, M = 10. All examples (coded in
Matlab) were run on a 256-MB, 2.4-GHz Pentium 4 Windows
workstation.

To verify the time-varying tracking ability of the proposed
technique, suppose stuffiness k and damping c are linearly
changed with time. Namely, the k reduces from 25 kN/m to
20 kN/m, and the c increases from 7 kN s/m to 12 kN s/m.
Abrupt changes also considered in this case are that both the α

and β reduce abruptly from α = 3 and the β = 2 to α = 2
and β = 1 at time t = 2 s, respectively. Based on the proposed
tracking technique, the identified results are shown in Fig. 1.
Also shown in Fig. 2 as dot curves are estimation results with
3% noise level for comparison. It is observed from Fig. 2 that
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(a) Time (sec).

(b) Boxplot.

Fig. 3. Zero mean Gaussian noise and 3 outliers (denoted by ‘+’).

the proposed method tracks the structural parameters and their
change online very well. As it can also be observed, when a
parameter varies, the predicted results for all parameters don’t
exhibit significant oscillations.

We now compare the SWLS-SVM algorithm with the
other various algorithms. One of them is the unweighted
sequential LS-SVM (SLS-SVM), the second is QP-SVM and
the third is the sequential minimal optimal optimization (SMO)
algorithm [32]. We have used the proposed algorithm and we
compare the results with those found by the other various
algorithms for the above SDOF structure online estimation
with different noise cases. To further verify the robustness of
the weighted LS-SVM algorithm, a non-Gaussian noise case
(Gaussian noise plus 3 outliers) is also considered. Given are
1000 training data points corrupted by zero mean Gaussian
noise and 3 outliers (denoted by ‘+’) (Fig. 3). The long, lower
tail and plus signs in the box-plot of Fig. 3(b) denote the strong
outliers in the sample values. Results have been collected in
Table 1.

It can be observed in Table 1 that QP-SVM and SMO
achieve the best estimation error (EE) on the system estimation.
SWLS-SVM yields EE larger than QP-SVM, but with a
computational cost dramatically smaller than QP-SVM. The
results in Table 1 also show that both SWLS-SVM and SLS-
SVM algorithms perform similarly at the Gaussian noise case.
However, the SWLS-SVM yields to a slight improvement in
training EE compared with the SLS-SVM when the injection
noise is a non-Gaussian case.

To further explore the effectiveness of the SWLS-SVM
algorithm, we consider a 3-story shear-beam building (m = 3)

subject to the Niigata earthquake excitation identical to that
given in the above SDOF example. In this building, all story
units are the Bouc–Wen model in Eq. (34) is used for all
storys. The properties of each story unit are: m1 = 18 kg,
k1 = 25 kN/m, c1 = 7 kN s/m, α1 = 3, β1 = 2, n1 = 2,
Table 1
Results of SDOF estimation

QP-SVM SMO SLS-SVM SWLS-SVM

CPU time (s) 675.37 283.62 9.48 13.85
EE (%) 0.32 0.44 1.2 1.2
υ = 0%

EE (%) 0.75 0.97 3.2 3.1
υ = 1%

EE (%) 1.33 1.34 4.7 4.5
υ = 2%

EE (%) 1.72 2.15 5.6 5.2
υ = 3%

EE (%) 2.31 2.79 8.3 6.5
υ = 3%+ outliers

Fig. 4. Identified parameters c, k, α and β for a 3-story non-linear hysteretic
structure (1st story); k in kN/m and c in kN s/m.

m2 = 12.5, k2 = 2k1/3, c2 = 5 kN s/m, α2 = 3, β2 = 2,
n2 = 2, m3 = 12.5 kg, k3 = 1k1/3, c3 = 4 kN s/m, α3 = 3,
β3 = 2, n3 = 2. In a similar manner as the SDOF cases, the
hysteretic equations of motion can be established and the data
matrix can be constructed. Unknown parametric vectors will
consist of ci , ki , αi , and βi (i = 1; 2; 3). Suppose a damage just
occurs in the 1st story unit at t = 2 s, at which time the stiffness
in the first story unit k1 reduces abruptly from 25 to 20 kN/m,
and the damping c1 increases abruptly from 7 to 10 kN s/m.

Based on the proposed tracking technique, the identified
results with different noise levels for comparison are presented
in Figs. 4–6. It is observed from Figs. 4–6 that the proposed
method tracks the structural parameters and their variations
very well. Also shown in these figures, when a parameter varies,
the estimated results for the other parameters don’t exhibit
significant oscillations It should be mentioned that the results
based on the constant-forgetting factor and other approaches
are not satisfactory.
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Fig. 5. Identified parameters c, k, α and β for a 3-story non-linear hysteretic
structure (2nd story); k in kN/m and c in kN s/m.

Fig. 6. Identified parameters c, k, α and β for a 3-story non-linear hysteretic
structure (3rd story); k in kN/m and c in kN s/m.

5. Conclusions

Based on the incremental updating and decremental pruning
algorithms, a sequential least squares support vector machine
regression tracking technique has been proposed to identify
online the structural parameters and their variations due to
damage for non-linear hysteretic structures. A more robust
estimate is obtained when the weighted LS-SVM is used. The
effectiveness of the proposed technique has been demonstrated
using the simulation results for SDOF and multi-DOF non-
linear hysteretic structures. Numerical results indicate that the
proposed approach is particularly suitable for tracking the
abrupt or slow time changes of system parameters from which
the structural damage can be determined. Results also show the
low computation cost of this method.

Appendix. Derivation of the incremental updating

After sub-matrices computations [28], data matrix A is
partitioned into the following sub-matrices;

A =
[

A11 A12
A21 A22

]
. (A1)

If A−1
11 and A−1

22 exist, then the matrix A inverse is

A−1 =
⎡
⎢⎣

[
A11 − A12A−1

22 A21

]−1
A−1

11 A12

[
A21A−1

22 A12 − A22

]−1

[
A−1

22 A12 −A22

]−1
A21A−1

21

[
A22 − A21A−1

11 A12

]−1

⎤
⎥⎦ . (A2)

From Eqs. (A1) and (A2), matrix AN+1 =
[

AN a
aT c

]
inverse

leads to

A−1
N+1 =

⎡
⎢⎣

[
AN − c−1aaT

]−1
A−1

N a
[
aTA−1

N a− c
]−1

[
aTA−1

N a− c
]−1

aTA−1
N

[
c − aTA−1

N a
]−1

⎤
⎥⎦
−1

.(A3)

A matrix inverse lemma (A+ BCD)−1 = A−1 − A−1B(C +
DA−1B)−1DA−1, gives
[
AN − c−1aaT

]−1 = A−1
N −A−1

N a
[
−c+ aTA−1

N a
]−1

aTA−1
N . (A4)

From Eqs. (A3) and (A4) Eq. (12) is obtained.
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[22] Navia-Vázquez A, Pérez-Cruz F, Artés-Rodrı́guez A, Figueiras-Vidal AR.
Weighted least squares training of support vector classifiers leading to
compact and adaptive schemes. IEEE Trans Neural Netw 2001;12(5):
1047–59.

[23] Engel Y, Mannor S. The kernel recursive least-squares algorithm. IEEE
Trans Signal Process 2004;52(8):2275–85.

[24] Kuh A. Adaptive Kernel Methods for CDMA Systems. In: Proc. of the
international joint conference on neural networks. 2001. p. 1404–9.

[25] David HA. Early sample measures of variability. Statist Sci 1998;13(4):
368–77.

[26] Rousseeuw PJ, Leroy A. Robust regression and outlier detection. New
York: Wiley; 1987.

[27] Astrom KJ. Self-tunning regulators-design principles and applications.
In: Narendra KS, Monopoli RV, editors. Applications of adaptive control.
New York: Academic Press; 1980.

[28] Golub GH, Van Loan CF. Matrix computations. Baltimore (MD): Johns
Hopkins University Press; 1989.

[29] Suykens JAK, Lukas L, Vandewalle J. Sparse approximation using least
squares support vector machines. In: Proc. of the IEEE international
symposium on circuits and systems. 2000. p. 757–60.

[30] Cauwenberghs G, Poggio T. Incremental and decremental support vector
machine learning. In: Leen TK, Dietterich TG, Tresp V, editors. Advances
in neural information processing systems, vol. 13. Cambridge (MA): MIT
Press; 2001. p. 409–15.

[31] Wen YK. Method for random vibration of inelastic structures. App Mech
Rev 1989;42(2):39–52.

[32] Platt J. Fast training of support vector machines using sequential minimal
optimization. In: Scholkopf B, Burges CJC, Smola AJ, editors. Advances
in kernel methods: support vector learning. Cambridge (MA): MIT Press;
1999. p. 185–208.


	Online weighted LS-SVM for hysteretic structural system identification
	Introduction
	The batch weighted LS-SVM algorithm
	The sequential weighted LS-SVM algorithm
	Incremental algorithm
	Decremental algorithm

	Numerical examples
	Conclusions
	Derivation of the incremental updating
	References


