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ABSTRACT: 
 

The identification of structural damage is an important objective of health monitoring 
for civil infrastructures. Frequently, damage to a structure may be reflected by a change of 
some system parameters, such as a degradation of the stiffness. In this paper, an auxiliary 
particle filter (APF) method is proposed to identify a non-stationary dynamic system with 
abrupt change of system parameters. In the APF, the importance density is proposed as a 
mixture density that depends upon the past state and the most recent observations, thus 
which has a good time tracking ability. It is more suitable for tracking the non-stationary 
system than the conventional particle filters. Simulation results for tracking the parametric 
non-stationary changes of non-linear hysteretic structures are presented to demonstrate the 
application and effectiveness of the proposed technique in detecting the structural damages.  
 
 
INTRODUCTION  
 

In the field of civil engineering, real-time structural identification of dynamic system 
subjected to earthquake motion has been focused on the accurate prediction as well as 
structural health monitoring and damage assessment. System identification and damage 
detection based on measured vibration data have received intensive studies recently. As 
an online identification method, the Kalman filter (KF) has received much attention and 
has successfully in the parameter estimation problems over the past years [1]-[4]. Similar 
methods such as least-square estimation method (LSE) [5]-[9], suboptimal H∞ filter 
method [10], and unscented Kalman filter method [11] have been developed in some 
useful forms for solving many practical problems in civil engineering. To date, the online 
detection of the changes of structural parameters due to structural damages during a 
severe event, such as the earthquake, is still a challenging problem. 

A filtering method, called particle filter (PF), also called bootstrap filter, based on 
Bayesian state estimation and Monte-Carlo method was proposed by Gordon [12], which 
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has the great advantage of being able to handle any functional non-linearity and system 
and/or measurement noise of any distribution. Another similar method is the 
Monte-Carlo filter proposed by Kitagawa [13]. Because the particle filter offers a general 
numerical tool to approximate the state a posterior density in nonlinear and non-Gaussian 
filtering problems with arbitrary accuracy, it has quickly become a popular tool in signal 
processing applications[14]-[16]. This filter has been successfully used in radar tracking 
[17], structural parameters estimation [18] [19]. However, some of its problems, in 
particular those related to optimal sampling from the posterior distribution, which leads to 
choice of sampling importance distribution, efficiency of implementation and choice of 
an observation model, still remain. The most common choice of importance density is the 
transition prior density function for particle filter, since it is intuitive and simple to 
implement, but using the prior as the importance density suffers from drawback of 
without any knowledge of the observations, and hence the state space is explored without 
direct knowledge of the observations. Therefore, many particles are either wasted in low 
likelihood area, resulting in a low efficiency of the sampling, resulting in estimating 
failures. The particle filter may be not preferable for damage detection, because structural 
damage must be non-stationary phenomenon. 

To accomplish this, it is necessary to incorporate the current observation in the 
importance density. A very elegant solution to this problem of optimally sampling from 
the posterior has been given by the so-called auxiliary particle filter (APF)[20] . The APF 
can be regarded as a one-look-ahead procedure. The main idea is to increase the influence 
of particles with a large predictive likelihood by choosing an importance density that 
takes the information from the current measurement into account. 

In this paper, a Bayesian filtering method for structural damage identification based 
on the APF is developed. The APF has the great advantage is that it naturally generates 
the particles from the samples at the previous time step, which conditioned on the current 
measurement, become much dependent on the data observed nearest time, are most likely 
to be close to the true state. Such an adaptive tracking technique yields a sparse 
approximation and gives a larger importance to more recent data in order to cope with the 
system parameter’s variations. The proposed technique is capable of tracking the 
non-stationary changes of system parameters from which the event and severity of 
structural damage may be detected online. Simulation results demonstrate that the 
proposed method is suitable for tracking the changes of system parameters for hysteretic 
structures. 
 
 
BAYESIAN FILTERING 
 

The nonlinear non-Gaussian filtering problem we consider consists of computing 
the a posteriori density of the state vector, given the observed measurements. In a 
general discrete-time stochastic system model, the evolution of the state sequence 
{ }N, ∈kkx  of the system given by  

),( 11 −−= kkk vxfx                          (1) 
where xnvnxn RRR: →×f is a possibly nonlinear function of the state 1−kx ,{ }Nkk ∈− ,1v  is 
an i.i.d. process noise sequence, vx nn , are dimensions of the state and process noise 
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vectors, respectively, and N is the set of natural numbers. The objective of system is to 
recursively estimate form measurement 

),( kkk nxhz =                            (2) 

where znnnxn RRR: →×h  is a possibly nonlinear function, { }N, ∈kkn  is an i.i.d. 
measurement noise sequence, and nz n,n are dimensions of the measurement and 
measurement noise vectors, respectively. In particular, we seek filtered estimates of 

kx based on the set of al available measurements { }k

iik 1:1 == zz  up to time k. 
The Bayesian filtering is to recursively calculate some degree of belief in the state kx  

at time k, given the data k:1z up to time k. Thus, it is required to construct the pdf )|( :1 kkp zx . 
Our aim is to estimate recursively in time the pdf )|( :1 kkp zx , which are given by two 
stages: prediction and update. 

Assumed that kx  as system model (1) is a Markov process of initial distribution 
)()|( 000 xzx pp =  and )|(),|( 1:11 −− = kkkkk pp xxzxx . Supposed that the required pdf 

)|( 1:11 −− kkp zx at time k-1 is available, the prediction stage involves system model (1) to 
obtain the prior pdf of the state at time k via the Chapman-Kolmogorov equation 

11:1111:1 )|()|()|( −−−−− ∫= kkkkkkk dppp xzxxxzx                  (3)  
where the probabilistic model of the state evolution )|( 1−kkp xx  is defined by the system 
model (1) and he known statistic of 1−kv . 

At time step k, a measurement kz  that is conditionally independent given the state 
kx become available, and this may be used to update the prior density to obtain the 

required posterior density of the recurrent state via Bayes’ rule 

)|(
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where  
∫= −− kkkkkkk dppp xzxxzzz )|()|()|( 1:11:1                   (5) 

depends on the likelihood )|( kkp xz defined by the measurement model (2) and the 
known statistics of kn .  

For linear Gaussian models, the integral of the recursion can be solved analytically with 
a finite dimensional representation leading to the Kalman filter recursion, where the mean 
and covariance matrix of the state are propagated. Generally, this recursive propagation of 
the posterior density is only a conceptual solution, and it cannot be determined analytically. 
Therefore, numerical approximations of the integral have been proposed. A recent 
important contribution is to apply simulation based methods from mathematical statistics, 
the sequential Monte Carlo methods, commonly referred to as particle filters.  
 
 
PARTICLE FILTERING METHODS  
 

The particle filter is an attractive approach for implementing a recursive Bayesian 
filtering to the problem of computing intractable posterior densities by Monte Carlo (MC) 
simulations. The key idea is to represent the required posterior density function by a set of 
random samples with associated weights and to compute estimates based on these samples 
and weights. As the number of samples becomes very large, this MC characterization 
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becomes an equivalent representation to the usual functional description of the posterior 
densities, and the particle filter approaches the optimal Bayesian estimate.  

Let us introduce an arbitrary importance distribution 0)( :1:0 >kk z|xπ  
whenever 0)( :1:0 >kkp z|x , from which it is easy to get samples called importance sampling. 
Given N i.i.d. random particles ( ){ }N

i
i
k 1
)(

:0 =x  distributed according to )( :1:0 kk z|xπ , an 
approximation Monte Carlo estimate of the posterior density at k )( :1:0 kkp z|x  is given by 

∑ −≈
=

N
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i
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i
kkk wp
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)(
:1:0 )(~)|( xxzx δ                           (6) 

where the normalized importance weights are defined 
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where the importance weights are defined by 
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The choice of importance distribution (proposal function) is one of the most critical 
design issues in importance sampling algorithms. The preference for proposal functions 
that minimize the variance of the importance weights is advocated by Doucet et al. (2001) 
[21]. When the proposal distribution ),|()( 1:1:0 kkkkkopt p zxxz|x −=π  minimizes the 
conditional variance of the importance weights ( 0],|[var )(

1
)( =− k

i
k

i
kopt

w zxπ ). Hence, with the 
assumptions of the states correspond to a Markov process and the observations are 
conditionally independent given the states, the weight update equation leads to  

)( )(
1

)(
1

)( i
kk

i
k

i
k pww −−= x|z                                 (9) 

However, this proposal distribution suffers from certain drawbacks: first, it requires 
sampling from ),|( )(

1 k
i

kkp zxx − , that may be difficulty, the other is calculation of the 
importance weights as specified in Eq.(9) that require evaluating the integral 

k
i

kkkk
i

kk dppp xx|xx|zx|z ∫= −− )()()( )(
1

)(
1  that may be analytically intractable.  

It should be pointed out that there is no universal choice for proposal distribution, 
which is usually problem dependent. A popular choice among practitioners is so-called 
prior transition distribution )|()( 1:1 −= kkkk p xxz|xπ for its easy implement, although it may 
be far from optimal, this choice of proposal distribution has been advocated by many 
researchers[12][13][22]-[25]. For this particular choice of importance distribution, it 
evident that the weights are given by 

)( )()(
1

)( i
kk

i
k

i
k pww x|z−∝                               (10) 

The transition prior sampling method does have the advantage that the importance 
weights are easily evaluated and easy to sample from. However, using the transition prior 
as the importance sampling density is independent of measurement, the state space is 
explored without any knowledge of the observations kz . Therefore, this filter may be 
inefficient and is sensitive to outliers and lead to poor performance. It results in higher 
Monte Carlo variation than the optimal proposal importance distribution.  

Fig. 1 demonstrates why using )|( 1−kkp xx as the proposal distribution lead to poor 
performance. Sampling only from the prior can lead to imprecise estimates because the 
variability of the weights values )(i

kw increases rapidly with time. In the figure, the 
likelihood )|( kkp xz is much more peaked than )|( 1−kkp xx or has little overlap with the 
prior. Thus, if we were to use the prior as the proposal distribution for this case, Eq.(10) 
indicates that many of the resulting samples )(i

kx could have negligible weights. In cases 
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where the variance of the system noise is significantly greater than the variance of the 
measurement noise, the prior tends to be poor choice for the proposal distribution.  

As illustrated in the Fig.1, if we fail to use the latest available information to prose new 
values from the states, only a few particles might survive. It is therefore of paramount 
importance to move the particles towards to the regions of high likelihood. To achieve this, 
the proposed importance density should be included the information of the observations.  

 
 
 
 
 
 
 

Fig.1:  The APF proposal density allows us to move the particles in the prior to regions of high 
likelihood. 
 

 
AUXILIARY PARTICLE FILTERING  
 

The APF was originally introduced by Pitt and Shephard [20] that operates by 
obtaining a sample from the joint density )|,( :1 kk i zxπ , where i is the auxiliary variable 
that represents the index of the particle at k-1 from which kx is predicted. The APF can 
be understood as a one-step ahead filtering: the particle )(

1
i

k−x is propagated to )( ji in the 
next time step in order to assist the sampling from the posterior.  

Using Bayes’ rule, )|,( :1 kk ip zx  can be expressed as  
)|,(),|()|,( 1:1:1 −∝ kkkkkk ipipip zxxzzx  

)|(),|()|( 1:11:1 −−= kkkkk ipipp zzxxz            (11) 
The APF operates by obtaining a sample from the joint density )|,( :1 kk ip zx and 

then omitting the indices i in the pair ),( ikx to produce a sample N
j

j
k 1

)( }{ =x from the 
marginalized density )|( :1 kkp zx . Corresponding to (Eq.11), the importance density is 
chosen as a factorized form 

),|()|()|,( :1:1:1 kkkkk iii zxzzx πππ =                      (12) 
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EXAMPLES 
 

)|( 1−kkp xx )|( kkp xz

kx
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Consider an m degree of freedom (DOF) non-linear hysteretic shear-type structure 
subject to ground excitation gu&& , the equation of motion is  

gu}{x),x(x &&&&&& IMfCM −=++ x                       (16) 
where M, C are the mass and damping matrices;  x, x& , and x&&  are the relative 
displacement, velocity, and acceleration vector to the ground; {I} is the identity of the 
m×1 column matrix; and f the restoring force vector expressed by the Bouc-Wen model 
[26]. In this case, the i-th component of the vector is  

in

iiii

1in

iiiiii fuβffuαukf &&&& −−=
−   i=1,…m                (17) 

where 1iii xxu −−= &&&  is the relative velocity between the i-1-th and i-th mass point; and 
ic , ik , iα , iβ and in  are the damping, stiffness and the non-linear parameters of the i-th 

mass point.  
Regarding the unknown parameters as state variables, one can define an augmenting 

state vector X as 
{ }Tin

10iiiiii ,log,β,α,k,c,f,u, L&L=X  , i=1,…m              (18) 
in this state, to ensure positivity of the parameter ni, in

10log  rather than ni is included in 
the augmented state vector. Eqs.(16) and (17) can then be rewritten in the form of 
non-linear state equations 

vXX += )(F&                                (19) 

where 
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F X  , )(0δ im mi ≠= , )(1δ im mi ==  and v 

is the process noise vector. 
   The observation equation here is expressed as 

nHXZ +=                            (20) 
where n is the observation noise vector , in which Y is the observation defined by 

T},u,{ i L&L=Z , i=1,…m                        (21) 
and H  measurement matrix given by 

⎥
⎥
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=

O

O

0

0

ihH , i=1,…m                      (22) 

where 
[ ]0000001=ih                    (23) 

Utilising the auxiliary particle filtering technique in Eqs. (19) and (20), the state 
vector Xk can be estimated from the input gu&&  and the observed output Zk. Hence, the 
unknown parameters are estimated simultaneously. 
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TABLE 2. Initial conditions (X~ N (X0, σ2)) 

X 
1u&  f1 c1 k1 α1 β1 1

10log n
2u& f2 c2 k2 α2 β2 2

10log n

X0 

σ2 

0 

0.012 

0 

0.012 

1.05

0.072

36.75 

2.452 

0.86 

0.152 

0.65

0.152

0.2 

0.022

0 

0.012

0 

0.012

0.85

0.072

29.4

2.452

0.55 

0.152 

0.65 

0.152 

0.2 

0.022

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Identified parameters k, c, α, β and log10

n for a 2-DOF hysteretic structure with 
abruptly changed parameters (1st story): (A) auxiliary particle filter method, (B) particle filter 
method. 
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Fig. 2. Identified parameters k, c, α, β and log10
n for a 2-DOF hysteretic structure with 

abruptly changed parameters (2nd story): (A) auxiliary particle filter method, (B) particle filter 
method. 
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analysis. The process and observation noises are defined by kv ~ ),0( QN and kn ~ ),0( RN , 
where Q=diag (0.0012,0.0012,0.0072, 0.32, 0.022, 0.012, 0.0012,0.0012,0.0072, 0.32, 0.022, 0.012) and 
R= diag (0.0025,0.0025). 

Based on the proposed tracking technique, the identified results with the total number of 
particle realizations N=600 are presented in Fig. 2 (A) and Fig. 3 (A). Also shown in Fig. 2 
(B) Fig. 3 (B) are estimation results by particle filter for comparison. It is observed from Fig. 
2 and Fig.3 that the proposed method tracks the structural parameters and their variations 
very well. Also shown in these figures, the APF has a good time tracking ability is more 
suitable for tracking the non-stationary system than the conventional particle filters.  
 
 
CONCLUSIONS 
 

The auxiliary particle filter algorithm offers the ability to incorporate the current 
measurement into the proposal distribution, which essentially performs resampling 
before state prediction and weight update, as opposed to the traditional particle filter 
that uses the transition prior as proposal distribution, which samples from the prior 
without any knowledge of the current measurements. The auxiliary particle filter 
technique has been proposed to identify online the structural parameters and their 
variations due to damages for non-linear hysteretic structures. It is shown that the 
proposed method consistently achieves a better level of accuracy for estimating and 
tracking the parameters and their abrupt changes than the traditional particle filter 
method. Numerical results indicate that the proposed approach is particularly suitable for 
tracking the abrupt changes of system parameters from which the structural damage can 
be determined. 
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