
J. Wang et al. (Eds.): ISNN 2006, LNCS 3971, pp. 515 – 523, 2006.
© Springer-Verlag Berlin Heidelberg 2006

On H∞ Filtering in Feedforward Neural Networks
Training and Pruning

He-Sheng Tang1, Song-Tao Xue2, and Rong Chen1

1 Research Institute of Structural Engineering and Disaster Reduction,
Tongji University, Shanghai, 200092, China

thstj@mail.tongji.edu.cn
2 Department of Architecture, School of Science

and Engineering, Kinki University,
Kowakae3-4-1, Higashi Osaka City, 577-0056, Japan

Abstract. An efficient training and pruning method based on H∞ filtering algo-
rithm is proposed for Feedforward neural networks (FNNs). A FNNs’ weight
importance measure linking up prediction error sensitivity obtained from H∞ fil-
tering training and a weight salience based pruning technique are derived. The
results of extensive experimentation indicate that the proposed method provides
better pruning results during the training process of the network without losing
its generalization capacity, also provides a robust global optimization training
algorithm for given arbitrary network structures.

1 Introduction

For neural networks (NNs) design, there are two crucial problems: one is the choice
of a ‘fast’ and ‘robust’ training algorithm, and the other is the choice of a suitable or,
ideally, minimal NNs topology to be adopted. In neural network training, the most
well-known online training method is the backpropagation algorithm (BPA) [1],
which is virtually a first-order stochastic gradient descent method and shows slow
learning speed [2]. To overcome the slowness, many modified schemes based on the
classical nonlinear programming technique have been suggested to speed up the train-
ing [3][4]. Recently, a class of second-order descent methods inspired by the theory of
system identification and nonlinear filtering [5] has been introduced to estimate the
weights of a neural network. Extended Kalman filter (EKF) [6][7][8] and Recursive
least square (RLS) method have been applied to multilayer perceptron [9][10][11]. In
the above mentioned EKF algorithm, although the learning speed is improved, the
method requires the knowledge of the noise statistics. Convergence of this algorithm
as well as the final values depends, to great extent, on this initial guess. The authors
have presented suboptimal H∞ filtering to train feedforward multilayer network which
is independent on noise statistics [12].

Besides the training algorithms, another concern encountered in the practical appli-
cation of the NNs is the choice of suitable model architecture. Since an unsuitable
topology will increase the training time or even cause non-convergence, it usually
decrease the generalization capability of the network. If there are too few weights, the
network may not be trained to learn the training data for the system mapping. On the

516 H.-S. Tang, S.-T. Xue, and R. Chen

other hand, if the network size is too large, weights overfitting problems may usually
occur and thus lead to worse generalization capacity[13][14]. Thus, in order to elimi-
nate unnecessary weights, the pruning algorithm is applied. There are different prun-
ing or model selection methods, such as Akaike Information Criterion (AIC) and
cross-validation techniques [15][16] which require tens of networks to be exhaus-
tively trained before the correct network size is determined, or simple weight decay
method [17[18], or error sensitivity-based Optimal Brain Damage (OBD) [19] and
Optimal Brain Surgeon (OBS) [20] methods, or OBD-like pruning methods [21][22],
or growing methods [4] which may be sensitive to initial conditions and become
trapped in local minima[23] .

As the H∞ filtering was shown to be more efficient and robust than the Kalman fil-
ter[24][25], it would be interesting to inquire if there is any possibility of applying H∞
filtering training method together with network pruning. The objective of the present
study is to develop a FNNs training and pruning method based on H∞ filtering algo-
rithm for identification of nonlinear systems. The presented new method is able to
reduce the complexity of the network during the training without diminishing the
network’s estimation capacity. Also, independent of the statistics of the disturbances
of the network’s inputs and outputs, the presented method provides a natural global
optimization training algorithm for given arbitrary network structures. Examples of
nonlinear system identification are given to verify the usefulness and effectiveness of
the proposed method.

2 H∞ Filtering Algorithm in Neural Network Training

Let),(kkk uwfy = be the transfer function of a single-layer FNNs where ky is the

output, ku is the input and kw is its parameter vector that is combined by the weight

matrices w1, w2 and w3. Given a set of training data, the training of a neural network
can be formulated as a filtering problem [6][8]. In this case, a discrete-time FNNs’
behavior can be described by the following nonlinear state-space model:

kkk vww +=+1 (1)

kkkk nuwfy +=),((2)

Eq. (1) is known as process equation, where kv is process noise, the state of system

is given by the network’s weight parameters values kw . Eq. (2) is the observation or

measurement equation, represents the desired network response vector ky as a

nonlinear function)(•f of the input vector ku and the weight parameter vector kw ;

this equation is augmented by random measurement noise kn .
To apply the optimal H∞ filtering algorithm, linear Taylor approximation of the

),(kk uwf at −
−1

ˆ
kw (prediction of kw), ku is considered here, that is

)ˆ(),ˆ(),(11
−

−
−

− −+≈ kkkkkkk wwCuwfuwf (3)

where −
−==∂∂=

1ˆ,|
kkk wwuuwfC . A new quantity is introduced as follows:

 On H∞ Filtering in Feedforward Neural Networks Training and Pruning 517

−
−

−
− +−= 11

ˆ),ˆ(kkkkkk wCuwfyη (4)

The entries in the term kη are all known at time k, and, therefore, kη can be re-

garded as an observation vector at time k. Hence, the nonlinear model (Eq. (2)) is
approximated by the linear model

kkkk nwCη += (5)

The problem addressed by the H∞ filtering is to find an estimate kŵ of kw given

),1,0(, kjjj L=ηu . The suboptimal H∞ estimation [25][26] is interested not necessarily

in the estimation of kw but in the estimation of some arbitrary linear combination of

kw using the noise-corrupted observations),1,0(kjj L=η i.e.,

kkk wLz = (6)

where nq
k R ×∈L . Different from that of the modified Wiener/Kalman filter which

minimizes the variance of the estimation error, the design criterion of the H∞ filter is
to provide a uniformly small estimation error, kk zz ˆ− , for any 2lk ∈n and nR∈0w .

The H∞ filtering will search kẑ such that the optimal estimate of kz among all possi-

ble kẑ in the sense that the supremum of the performance measure should be less than

a positive pre-chosen noise attenuation factor 2γ , i.e., the worse-case performance
measure

},{,0

sup
kk vnx { }∑

∑
−

=

−

=

++−

−

−

1

0

222

00

1

0

2

1
0

ˆ

ˆ
N

k kk

N

k kk

vnww

zz

P

2γ<
(7)

where 0ŵ is an a priori estimate of 0w and 00 ŵw − represents unknown initial condi-

tion error, 01
0 >−P is weighting matrix. 01

0 >−P denotes a positive definite matrix that

reflects a priori knowledge on how the initial guess 0ŵ close to 0w is.

Let 0>γ be a prescribed level of noise attenuation. If this is the case, an optimized
H∞ filtering algorithm for neural network training can be derived:

)ˆ(ˆˆ
11

−
−

−
− −+= kkkkkk wCηKww

)),ˆ((ˆ
11 kkkkk uwfyKw −

−
−

− −+= , kk ww ˆˆ =− , 01
ˆˆ ww =−

− (8)

where kŵ is an a posteriori estimate of the state at step k , the gain kK of the filter is

given by

1)(−+= T
kkk

T
kkk CPCICPK (9)

12
1)(−−

+ −+= kk
T
kkk

T
kkk PLLPCCIPP γ (10)

where the attenuation factor γ must be tuned so as to satisfy the kP positive definite.

518 H.-S. Tang, S.-T. Xue, and R. Chen

3 H∞ Filtering in Neural Network Pruning

In this section, the conjunction of network training and pruning with the H∞ filtering
algorithm will be illustrated. Without loss of generality, the network employed here is
considered as a feedforward architecture with In input units, Hn hidden sigmoid

unites and a single linear output unit. The initial network is fully connected between
layers and implements a nonlinear mapping from input space ku to target output

space),(ˆ
kkkk fy wu= , where)(•f is the actual output mapping function, w is the

network parameters and kŷ is the prediction of the target output ky . Then, for a given

training set, the cost function can be expressed as:

()∑
=

−=Ε
N

k
kk fy

N 1

2

2

1
)(w (11)

where N is the number of training examples.
Under the assumption that the network is fully trained, that is, the cost function Ε

has adjusted to a local or global minimum on the error surface, the second derivative
of Ε with respect to w or the Hessian matrix [19] can be approximated as:

∑
=

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂≈

N

k

T

kk ff

N
N

1

1
)(

ww
Η (12)

To illustrate the connection between the matrix kP and the Hessian matrix Η of

the cost function, the Riccati Eq. (10) can be rewritten in an alternative form that will
be more convenient for analysis. By employing the following matrix inversion lemma
(MIL), the following update for 1−

kP is obtained

k
T
kk

T
kkk LLCCPP 211

1
−−−

+ −+= γ (13)

Suppose that the weight parameter and the ‘error covariance matrix’ kP are both

converge. Without loss of generality, it is convenient to select the matrix kL equal to

kC . The Riccati recursion Eq. (13) with initial condition 0P can be rewritten in the

form of a recursion as:

∑
=

−−−
+ −+=

k

i
i

T
ik

0

21
0

1
1)1(CCPP γ (14)

From Eq. (12) and Eq. (14), the inversion of Hessian matrix of the cost function is
approximately expressed as:

[]1
1

011
21)()1(+

−
++

−− −−−≈ kkkN PPPIPΗ γ (15)

The pruning procedure simplifies the computations by making a further assumption
of the Hessian matrix Η being a diagonal matrix [19]. Thus the saliencies for each
parameter are as follows:

 On H∞ Filtering in Feedforward Neural Networks Training and Pruning 519

[] 2
][,

2

1
iiiiS wΗ= (16)

where [] ii ,Η is the i-th diagonal element of the Η and][iw is the i-th weight.

The pruning strategy is to find the low-saliency or smallest saliency parameters
which are then selected for deletion. The weights are pruned according to this pruning
order until the change in the estimated training error is greater than the tolerance limit.

4 Illustrative Numerical Examples

A non-linear hysteretic system [27] is selected for example analysis to illustrate the
applicability of the proposed method. The non-linear system is described by the fol-
lowing second order difference equation:

)())(),(,
)(

(
)(

2

2

tptztu
dt

tdu
z

dt

tud =+ (17)

32
)(

)(
5.0)()(

)(
2

)(
5.24

)(
tz

dt

tdu
tztz

dt

tdu

dt

tdu

dt

tdz −−= (18)

where)(tu and)(tp are system’s output and input, respectively.
The FNNs is taken into account to model the dynamic behaviors of the system,

namely, the FNNs is trained to identify)(tz . An FNNs with 3 input neurons (dttdu)(

,)(tu and)1(−tz), 30 hidden neurons (with hyperbolic tangent activation function),

and one output neuron ()(tz ,with linear activation function) is trained to capture the
unknown system. In this case, the total number of weights is 120.

In this study, the effectiveness of the noise injection training is also investigated;
noises are artificially added to the training data. The noise level is defined as the value
of the standard deviation. For instance, if the standard deviation is 0.05, the noise
level in the data can be referred as 5% in the root-mean-square (RMS) level.

Training and test samples for the non-linear system identification problem are
shown in Fig.1. The training set contains 1000 samples with 3% noise in RMS level
and test set contains 500 samples. Numbers of training iterations of some parts of
estimated network’s weights are shown in Fig.2. Some weights converge to stable
values very quickly in first 500 iterations. This fast convergence demonstrated that the
H∞ filtering is a very fast training algorithm. Last step values of the kP (120×120

matrix, Fig. 3) of the Riccati recursion show that the matrix kP is almost diagonal

dominant. Fig.4 shows the estimated training error against the number of weights in
the pruned network. It is clear that nearly only 70 weights are enough to capture the
unknown system without increasing the training error dramatically. After training,
another 500 pairs of testing data are passed to the pruned network. Fig. 5 depicts a
segment of the actual and the desired network output for the test set. It shows that
output of the pruned network is quite close to the desired output.

520 H.-S. Tang, S.-T. Xue, and R. Chen

0 500 1000 1500
-20

0
20

0 500 1000 1500
-2
-1
0
1

0 500 1000 1500
-4
-2
0
2
4

0 500 1000 1500
-5

0

5 Training set Test set

p(t)

u(t)

du(t)/dt

z(t)

(d)

Discrete time

(c)

(b)

(a)

Fig. 1. Training and test samples for the system identification problem

Training iteration

-0.2
0

0.2

-0.5
0

0.5

-0.5
0

0.5

-0.5
0

0.5

0 100 200 300 400 500 600 700 800 900 1000
-0.2

0
0.2

w 1

w 2

w 3

w 4

w 5

Fig. 2. Convergence of the estimate weights

Pk

M
ea

n
sq

ua
re

tra

in
in

g

No. of weights in the pruned network
0 20 40 60 80 100 120

0

1

2

3

Fig. 3. Values of the Pk after trained H∞-network Fig. 4. Number of weights in the pru-
ned network versus training errors

 On H∞ Filtering in Feedforward Neural Networks Training and Pruning 521

1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500
-2
0
2 z(t)

(a)

1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500
-2
0
2 z(t)

(b)

Discrete time

Fig. 5. A segment of the actual and the desired network output for the test set in the system
identification example. Solid line represents the desired output; the dotted line corresponds to
the actual output of: (a) the unpruned network; (b) the network pruned by our approach

To demonstrate that the generalization capability is not affected much if some
weights in the network are pruned, another set of input signal (the test set) is fed for
the pruned network. A system input)(tp (Fig.6 (a)) is selected for the validation set.
According to this input, corresponding desired output for this validation set are ob-
tained. Fig. 6(b) depicts a segment of the actual and the desired network output corre-
sponding to the test input. The instantaneous error is shown in Fig. 6 (c). The figure
shows that the generalization capability of the pruned networks does not change
much.

0 200 400 600 800 1000
-20

0
20

0 200 400 600 800 1000
-4
-2
0
2
4

0 200 400 600 800 1000
-2

0

2

p(t)

z(t)

instantaneous error

(a)

(b)

(c)

Discrete time
Fig. 6. A segment of the actual and the desired network output for the validation set in the
system identification example. (a) Validation input of system; (b) comparison between actual
output (solid line) and the pruned H∞-network output (dashed line); (c) instantaneous error

5 Conclusions

In this paper, we have derived an efficient FNNs training and pruning method using
the H∞ filtering algorithm. FNNs model pruned with H∞ filtering provides a good
architecture design for generalization capacity and requires a smaller number of con-
nection weights than a totally connected net. Examples of nonlinear system identifica-

522 H.-S. Tang, S.-T. Xue, and R. Chen

tion are carried out to evaluate the performance of the network. The results show the
effectiveness of the neural network pruning and training by H∞ filtering algorithm.

References

1. Rumelhart, D., Hinton, G., and Williams, G.: Learning Internal Representations by Error
Propagation. Parallel Distributed Processing, Vol.1, Cambridge, MA: MIT Press (1986)
318-362

2. Robbins, H. and Monro, S.: A Stochastic Approximation Method. Ann. Math. Stat. 22
(1951) 400-407

3. Bojarczak, O. S. P., and Stodolski, M.: Fast Second-order Learning Algorithm for Feed-
forward Multilayer Neural Networks and Its Application. Neural Networks 9(9) (1996)
1583–1596

4. Haykin, S.: Neural Networks: A Comprehensive Foundation, Prentice Hall, Inc. (1999)
5. Anderson, B. D. O., and Moore, J. B.: Optimal Filtering. Englewood Cliffs, NJ: Prentice-

Hall (1979)
6. Singhal, S., and Wu, L.: Training Multiplayer Perceptrons with the Extended Kalman Al-

gorithm. In: Touretzky,D.S.(eds.): Advances in Neural Information Processing Systems,
Vol.1, Morgan Kaufmann, San Mateo, CA (1989) 133-140

7. Fukuda, W. K. T., and Tzafestas, S. G.: Learning Algorithms of Layered Neural Networks
via Extended Kalman Filters. Int. J. Syst. Sci. 22(4) (1991) 753–768

8. Iiguni, Y., Sakai, H., and Tokumaru, H.: A Real-time Learning Algorithm for a Multilay-
ered Neural Network Based on the Extended Kalman Filter. IEEE Trans. Signal Process-
ing 40(4) (1992) 959–966

9. Chen, S., Cowan, C. F. N., Billings, S. A., and Grant, P. M.: Parallel Recursive Prediction
Error Algorithm for Training Layered Neural Network. Int. J. Contr. 51(6) (1990)
1215–1228

10. Kollias, S., and Anastassiou, D.: An Adaptive Least Squares Algorithm for the Efficient
Training of Artificial Neural Networks. IEEE Trans. Circuits Syst. 36(8) (1989)
1092–1101

11. Leung, C. S., Wong, K. W., Sum, J., and Chan., L. W.: On-line Training and Pruning for
RLS Algorithms. Electron. Lett. 32(23) (1996) 2152–2153

12. Tang, H., and Sato, T.: Structural Damage Detection Using the Neural Network and H∞
Algorithm. In: Kundu, T. (eds.): Health Monitoring and Smart Nondestructive Evaluation
of Structural and Biological Systems III, Proceedings of SPIE, Vol. 5394, San Diego, CA
(2004) 454-463

13. Abrahart, R.J., See, L., and Kneal, P.E.: Investigating the Role of Saliency Analysis with
Neural Network Rainfall-runoff Model. Computer & Geosciences 27(8) (2001) 921-928

14. Makarynskyy, O., Pires-Silva, A.A., Makarynska, D., and Ventura-Soares, C.: Artificial
Neural Networks in Wave Predictions at the West Coast of Portual. Computers & Geo-
sciences 31(4) (2005) 415-424

15. Akaike, H.: A New Look at the Statistical Model Identification. IEEE Trans. Automat.
Control AC-19 (6) (1974) 716-723

16. Stone, M.: An Asymptotic Equivalence of Choice of Model by Cross-validation and
Akaike's criterion. Roy. Stat. Soc. Ser. 39(1) (1977) 44-47

17. Krogh, A., and Hertz, J.: A Simple Weight Decay Can Improve Generalization. In:
Touretzky, D.S. (ed.): Advances in Neural Information-Processing Systems, Vol.4, Mor-
gan Kaufmann, San Mateo, CA (1992) 950–957

 On H∞ Filtering in Feedforward Neural Networks Training and Pruning 523

18. William, P.M.: Bayesian Regularization and Pruning Use a Laplace Prior, Neural Comput.
7(1) (1995) 117– 143

19. LeCun, Y., Denker, J. S., and Solla, S. A.: Optimal Brain Damage. In: Touretzky, D. S.
(ed.): Advances in neural information processing, Vol.1, Morgan Kaufman, San Mateo,
CA (1990) 396–404

20. Hassibi, B., and Stork, D. G.: Second-order Derivatives for Network Pruning: Optimal
Brain Surgeon. In: Hanson, S. J., Cowan, J. D., and Lee Giles, C. (eds.): Advances in neu-
ral information processing, Vol.4, Morgan Kaufman, CA (1993) 164-171

21. Sum, J., Leung, C., Young, G. H., and Kan, W.: On the Kalman Filtering Method in Neu-
ral-Network Training and Pruning. IEEE Trans. on Neural Networks 10(1) (1999)161-166

22. Leung, C., Wong, K., Sum, P., and Chan, L., A Pruning Method for the Recursive Least
Squared Algorithm. Neural Networks 14(2) (2001) 147-174

23. Prechelt, L.: A quantitative Study of Experimental Evaluations of Neural Network Learn-
ing Algorithms: Current Research Practice. Neural Networks 9 (3) (1996)457-462

24. Sato, T., and Qi, K.: Adaptive H∞ fillter: Its Application to Structural Identification. Jour-
nal of Engineering Mechanics 124(11) (1998) 1233-1240

25. Hassibi, B., Sayed, A.H., and Kailath, T.: Indefinite-Quadratic Estimation and Control: A
Unified Approach to H2 and H∞Theories, SIAM (1998).

26. Didinsky, G., Pan, Z., and Basar, T.: Parameter Identification of Uncertain Plants Using
H∞ Methods. Automatica 31(9) (1995) 1227-1250

27. Wen, Yi-K.: Method for Random Vibration of Hysteretic Systems. Journal of Engineering
Mechanics 102(EM2) (1976) 249-263

	Introduction
	H∞ Filtering Algorithm in Neural Network Training
	H∞ Filtering in Neural Network Pruning
	Illustrative Numerical Examples
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

