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Abstract. An efficient training and pruning method based on H∞ filtering algo-
rithm is proposed for Feedforward neural networks (FNNs). A FNNs’ weight 
importance measure linking up prediction error sensitivity obtained from H∞ fil-
tering training and a weight salience based pruning technique are derived. The 
results of extensive experimentation indicate that the proposed method provides 
better pruning results during the training process of the network without losing 
its generalization capacity, also provides a robust global optimization training 
algorithm for given arbitrary network structures. 

1   Introduction 

For neural networks (NNs) design, there are two crucial problems: one is the choice 
of a ‘fast’ and ‘robust’ training algorithm, and the other is the choice of a suitable or, 
ideally, minimal NNs topology to be adopted. In neural network training, the most 
well-known online training method is the backpropagation algorithm (BPA) [1], 
which is virtually a first-order stochastic gradient descent method and shows slow 
learning speed [2]. To overcome the slowness, many modified schemes based on the 
classical nonlinear programming technique have been suggested to speed up the train-
ing [3][4]. Recently, a class of second-order descent methods inspired by the theory of 
system identification and nonlinear filtering [5] has been introduced to estimate the 
weights of a neural network. Extended Kalman filter (EKF) [6][7][8] and Recursive 
least square (RLS) method have been applied to multilayer perceptron [9][10][11]. In 
the above mentioned EKF algorithm, although the learning speed is improved, the 
method requires the knowledge of the noise statistics. Convergence of this algorithm 
as well as the final values depends, to great extent, on this initial guess. The authors 
have presented suboptimal H∞ filtering to train feedforward multilayer network which 
is independent on noise statistics [12].  

Besides the training algorithms, another concern encountered in the practical appli-
cation of the NNs is the choice of suitable model architecture. Since an unsuitable 
topology will increase the training time or even cause non-convergence, it usually 
decrease the generalization capability of the network. If there are too few weights, the 
network may not be trained to learn the training data for the system mapping. On the 



516 H.-S. Tang, S.-T. Xue, and R. Chen 

other hand, if the network size is too large, weights overfitting problems may usually 
occur and thus lead to worse generalization capacity[13][14]. Thus, in order to elimi-
nate unnecessary weights, the pruning algorithm is applied. There are different prun-
ing or model selection methods, such as Akaike Information Criterion (AIC) and 
cross-validation techniques [15][16] which require tens of networks to be exhaus-
tively trained before the correct network size is determined, or simple weight decay 
method [17[18], or error sensitivity-based Optimal Brain Damage (OBD) [19] and 
Optimal Brain Surgeon (OBS) [20] methods, or  OBD-like pruning methods [21][22], 
or growing methods [4] which may be sensitive to initial conditions and become 
trapped in local minima[23] .  

As the H∞ filtering was shown to be more efficient and robust than the Kalman fil-
ter[24][25], it would be interesting to inquire if there is any possibility of applying H∞ 
filtering training method together with network pruning. The objective of the present 
study is to develop a FNNs training and pruning method based on H∞ filtering algo-
rithm for identification of nonlinear systems. The presented new method is able to 
reduce the complexity of the network during the training without diminishing the 
network’s estimation capacity. Also, independent of the statistics of the disturbances 
of the network’s inputs and outputs, the presented method provides a natural global 
optimization training algorithm for given arbitrary network structures. Examples of 
nonlinear system identification are given to verify the usefulness and effectiveness of 
the proposed method. 

2   H∞ Filtering Algorithm in Neural Network Training 

Let ),( kkk uwfy =  be the transfer function of a single-layer FNNs where ky  is the 

output, ku  is the input and kw  is its parameter vector that is combined by the weight 

matrices w1, w2 and w3. Given a set of training data, the training of a neural network 
can be formulated as a filtering problem [6][8]. In this case, a discrete-time FNNs’ 
behavior can be described by the following nonlinear state-space model: 

kkk vww +=+1  (1) 

kkkk nuwfy += ),(  (2) 

Eq. (1) is known as process equation, where kv is process noise, the state of system 

is given by the network’s weight parameters values kw . Eq. (2) is the observation or 

measurement equation, represents the desired network response vector ky  as a 

nonlinear function )(•f  of the input vector ku  and the weight parameter vector kw ; 

this equation is augmented by random measurement noise kn . 
To apply the optimal H∞ filtering algorithm, linear Taylor approximation of the 

),( kk uwf  at −
−1

ˆ
kw (prediction of kw ), ku  is considered here, that is 

)ˆ(),ˆ(),( 11
−

−
−

− −+≈ kkkkkkk wwCuwfuwf  (3) 

where −
−==∂∂=

1ˆ,|
kkk wwuuwfC . A new quantity is introduced as follows: 
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The entries in the term kη  are all known at time k, and, therefore, kη  can be re-

garded as an observation vector at time k. Hence, the nonlinear model (Eq. (2)) is 
approximated by the linear model 

kkkk nwCη +=  (5) 

The problem addressed by the H∞ filtering is to find an estimate kŵ  of kw  given 

),1,0(, kjjj L=ηu . The suboptimal H∞ estimation [25][26] is interested not necessarily 

in the estimation of kw but in the estimation of some arbitrary linear combination of 

kw using the noise-corrupted observations ),1,0( kjj L=η  i.e., 

kkk wLz =  (6) 

where nq
k R ×∈L . Different from that of the modified Wiener/Kalman filter which 

minimizes the variance of the estimation error, the design criterion of the H∞ filter is 
to provide a uniformly small estimation error, kk zz ˆ− , for any 2lk ∈n   and nR∈0w . 

The H∞ filtering will search kẑ  such that the optimal estimate of kz  among all possi-

ble kẑ  in the sense that the supremum of the performance measure should be less than 

a positive pre-chosen noise attenuation factor 2γ , i.e., the worse-case performance 
measure  
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where 0ŵ is an a priori estimate of 0w  and 00 ŵw −   represents unknown initial condi-

tion error, 01
0 >−P  is weighting matrix. 01

0 >−P denotes a positive definite matrix that 

reflects a priori knowledge on how the initial guess  0ŵ close to 0w  is.  

Let 0>γ  be a prescribed level of noise attenuation. If this is the case, an optimized 
H∞ filtering algorithm for neural network training can be derived: 

)ˆ(ˆˆ
11
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− −+= kkkkkk wCηKww   

                    )),ˆ((ˆ
11 kkkkk uwfyKw −

−
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ˆˆ ww =−

−  (8) 

where kŵ  is an a posteriori estimate of the state at step k , the gain kK of the filter is 

given by 

1)( −+= T
kkk

T
kkk CPCICPK  (9) 

12
1 )( −−

+ −+= kk
T
kkk

T
kkk PLLPCCIPP γ  (10) 

where the attenuation factor γ must be tuned so as to satisfy the kP  positive definite. 
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3   H∞ Filtering in Neural Network Pruning 

In this section, the conjunction of network training and pruning with the H∞ filtering 
algorithm will be illustrated. Without loss of generality, the network employed here is 
considered as a feedforward architecture with In  input units, Hn  hidden sigmoid 

unites and a single linear output unit. The initial network is fully connected between 
layers and implements a nonlinear mapping from input space ku  to target output 

space ),(ˆ
kkkk fy wu= , where )(•f  is the actual output mapping function, w  is the 

network parameters and kŷ is the prediction of the target output ky . Then, for a given 

training set, the cost function can be expressed as: 

( )∑
=

−=Ε
N

k
kk fy

N 1

2

2

1
)(w  (11) 

where N is the number of training examples. 
Under the assumption that the network is fully trained, that is, the cost function Ε  

has adjusted to a local or global minimum on the error surface, the second derivative 
of Ε  with respect to w  or the Hessian matrix [19] can be approximated as: 
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To illustrate the connection between the matrix kP  and the Hessian matrix Η  of 

the cost function, the Riccati Eq. (10) can be rewritten in an alternative form that will 
be more convenient for analysis. By employing the following matrix inversion lemma 
(MIL), the following update for 1−

kP  is obtained 

k
T
kk

T
kkk LLCCPP 211

1
−−−

+ −+= γ  (13) 

Suppose that the weight parameter and the ‘error covariance matrix’ kP  are both 

converge. Without loss of generality, it is convenient to select the matrix kL  equal to 

kC  . The Riccati recursion Eq. (13) with initial condition 0P  can be rewritten in the 

form of a recursion as:  
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From Eq. (12) and Eq. (14), the inversion of Hessian matrix of the cost function is 
approximately expressed as:  

[ ]1
1

011
21 )()1( +

−
++

−− −−−≈ kkkN PPPIPΗ γ  (15) 

The pruning procedure simplifies the computations by making a further assumption 
of the Hessian matrix Η  being a diagonal matrix [19]. Thus the saliencies for each 
parameter are as follows: 
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2
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iiiiS wΗ=  (16) 

where [ ] ii ,Η  is the i-th diagonal element of the Η  and ][iw  is the i-th weight.  

The pruning strategy is to find the low-saliency or smallest saliency parameters 
which are then selected for deletion. The weights are pruned according to this pruning 
order until the change in the estimated training error is greater than the tolerance limit. 

4   Illustrative Numerical Examples 

A non-linear hysteretic system [27] is selected for example analysis to illustrate the 
applicability of the proposed method. The non-linear system is described by the fol-
lowing second order difference equation: 
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where )(tu  and )(tp are system’s output and input, respectively.  
The FNNs is taken into account to model the dynamic behaviors of the system, 

namely, the FNNs is trained to identify )(tz . An FNNs with 3 input neurons ( dttdu )(  

, )(tu and )1( −tz ), 30 hidden neurons (with hyperbolic tangent activation function), 

and one output neuron ( )(tz ,with linear activation function) is trained to capture the 
unknown system. In this case, the total number of weights is 120. 

In this study, the effectiveness of the noise injection training is also investigated; 
noises are artificially added to the training data. The noise level is defined as the value 
of the standard deviation. For instance, if the standard deviation is 0.05, the noise 
level in the data can be referred as 5% in the root-mean-square (RMS) level. 

Training and test samples for the non-linear system identification problem are 
shown in Fig.1. The training set contains 1000 samples with 3% noise in RMS level 
and test set contains 500 samples. Numbers of training iterations of some parts of 
estimated network’s weights are shown in Fig.2. Some weights converge to stable 
values very quickly in first 500 iterations. This fast convergence demonstrated that the 
H∞ filtering is a very fast training algorithm. Last step values of the kP  (120×120 

matrix, Fig. 3) of the Riccati recursion show that the matrix kP  is almost diagonal 

dominant. Fig.4 shows the estimated training error against the number of weights in 
the pruned network. It is clear that nearly only 70 weights are enough to capture the 
unknown system without increasing the training error dramatically.  After training, 
another 500 pairs of testing data are passed to the pruned network. Fig. 5 depicts a 
segment of the actual and the desired network output for the test set. It shows that 
output of the pruned network is quite close to the desired output. 
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Fig. 1. Training and test samples for the system identification problem 
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Fig. 2. Convergence of the estimate weights 
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Fig. 3. Values of the Pk after trained H∞-network Fig. 4. Number of weights in the pru- 
ned network versus training errors 

 



 On H∞ Filtering in Feedforward Neural Networks Training and Pruning 521 

1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500
-2
0
2 z(t) 

(a) 

1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500
-2
0
2 z(t) 

(b) 

Discrete time  

Fig. 5. A segment of the actual and the desired network output for the test set in the system 
identification example. Solid line represents the desired output; the dotted line corresponds to 
the actual output of: (a) the unpruned network; (b) the network pruned by our approach 

 

To demonstrate that the generalization capability is not affected much if some 
weights in the network are pruned, another set of input signal (the test set) is fed for 
the pruned network. A system input )(tp  (Fig.6 (a)) is selected for the validation set. 
According to this input, corresponding desired output for this validation set are ob-
tained. Fig. 6(b) depicts a segment of the actual and the desired network output corre-
sponding to the test input. The instantaneous error is shown in Fig. 6 (c). The figure 
shows that the generalization capability of the pruned networks does not change 
much. 
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Fig. 6. A segment of the actual and the desired network output for the validation set in the 
system identification example. (a) Validation input of system; (b) comparison between actual 
output (solid line) and the pruned H∞-network output (dashed line); (c) instantaneous error 

5   Conclusions 

In this paper, we have derived an efficient FNNs training and pruning method using 
the H∞ filtering algorithm. FNNs model pruned with H∞ filtering provides a good 
architecture design for generalization capacity and requires a smaller number of con-
nection weights than a totally connected net. Examples of nonlinear system identifica-
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tion are carried out to evaluate the performance of the network. The results show the 
effectiveness of the neural network pruning and training by H∞ filtering algorithm. 
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