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Abstract 

 
A novel Artificial Immune Algorithm, namely 

Adaptive Immune Clone Selection Algorithm is 
proposed in this paper for parameter estimation which 
can be formulated as a multi-modal optimization 
problem with high dimension. In this method the 
secondary response, adaptive mutation regulation and 
vaccination operator are introduced in the generic 
Clone Selection Algorithm to improve the convergence 
speed and global optimum searching ability. 
Simulation results for identifying the parameters of a 
dynamic system are presented to demonstrate the 
effectiveness of the proposed method. 

 
1. Introduction 
 

System identification plays a key role in health 
monitoring, non-destructive evaluation, and active 
control of civil infrastructures. Because of its wide 
applicability, considerable efforts have been devoted to 
develop methods for identification of system models 
and their parameters.  

Currently, a wide range of analytical techniques 
exists for linear and non-linear systems, such as the 
recursive least square methods [1]-[3], extended 
Kalman filter [4], unscented Kalman [5][6] and Monte 
Carlo filter [7][8]. However, for civil engineering 
system these methods’ applicability and success are 
limited for complexity and incomplete prior 
information. Instead, some successes have been 
achieved with various intelligent optimization 
algorithms. Evolution strategy algorithms have been 
presented for the identification of multiple degree of 
freedom (DOF) systems [9]. Perry et al.[10] have 
presented a modified Genetic Algorithm (GA) to 
identify structural systems. GAs have been used to 
solve the global system identification problem in 
shear-type building structures [11]-[13]. Tang et al. 
[14][15] and Ye and Wang [16] introduced the PSO to 
the structural systems identification. 

A recently developed computational intelligence 
technique, inspired by biology, has emerged: the 
Artificial Immune Algorithm (IA) [17], which can be 
used for solving computational problems. Although 
still relatively young, the IA is emerging as an active 
and attractive field involving models, techniques and 
applications of greater diversity [18]. Over the last 
years, there has been increasing interest in the area of 
IA and their applications for solving complex 
optimization problems, such as IIR Filter design [19], 
truss structure optimal design [20], anti-spam filter 
design [21]. Compared with GA, IA has affinity 
calculation function, which could explain the 
relationship not only between the antigen and the 
antibody but also between antibodies. That makes IA 
has the unique characteristic to guarantee the survival 
of the variant offspring that could match the antigen 
better. Related papers [19] show that the algorithms 
based on IA have much better performance than 
conventional probabilistic optimization algorithms.  

Nevertheless, when solving complex multi-model 
problems the simple IAs are also hard to get out of the 
local optimum and the convergence speed is slow. 
Besides, the simple IAs just simulate a part of the 
immune system’s mechanism, such as the memory, 
oblivion, and self-adaptive mechanisms are still need 
to further explore. For improving the IAs’ 
effectiveness to solve complex problems, in this paper 
by introducing the secondary response, adaptive 
mutation regulation and vaccination operator these 
three strategies into the generic Clone Selection 
Algorithm (CSA) [22], we proposed a novel Artificial 
Immune Algorithm, namely Adaptive Immune Clone 
Selection Algorithm (AICSA). Some numerical 
examples are presented from which the effectiveness 
and efficiency of the AICSA are investigated. 

 
2. Problem Formulation 
 

The basic idea in system identification is to 
compare the time dependent response of the system 
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and a parameterized model by a norm or some 
performance criterion giving a measure to how well the 
model response fits the system response. Hence, the 
objective is to find a set of parameters that minimize 
the prediction error between system output ( )y t , i.e., 
the measured data, and model output ˆ( , )y tθ  at each 
time-step t . 

Therefore, our interest lies in minimization the 
predefined error norm of the outputs, e.g., the 
following mean square error  function. 
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where ⋅ represents the Euclidean norm of vectors. 
Formally, the optimization problem requires finding a 
vector nRθ ∗ ∈ , so that a certain quality criterion is 
satisfied, namely that the error norm ( )f ∗  is 
minimized. The function ( )f ∗  is commonly called a 
fitness function or objective function. In IA, typically 
an objective function is used which reflects the 
goodness of solution. The identification problem thus 
is treated as a linearly constrained multi-dimensional 
optimization problem, namely    
minimize           1 2( ), ( , , , )T

nf θ θ θ θ θ= "  

{ }min, max,. , : , 1,2, ,i i ist S S i nθ θ θ θ θ∈ = ≤ ≤ ∀ = "       (2) 
where ( )f θ = objective function which maps decision 

variable θ  into objective space nf R R= → , S is the 

n-dimensional feasible search space, maxθ and minθ  
denote the upper bounds and the lower bounds of the n 
parameters respectively. 
 
3. Algorithm 
 
3.1. Improved Clone Selection Operator 
 

Just as the Evolutionary Algorithms (EAs)[23], the 
Artificial Immune Algorithms work on the encoding of 
the parameter set rather than the parameter set itself 
(except where the real-valued individuals are used).  
For an optimization task we consider minimizing the 
objective function 1 2( ), ( , , , )T

nf θ θ θ θ θ= " . For the 

binary code antibody { }, 0,1 ll lA H H∈ =  denotes 
all binary cluster set with same 
length l . { }1 2, , , mA A A A= " is the antibody 

population, and { }1 2, , ,i i i ilA a a a= " . The binary 
cluster is divided into n segments with the 

length il ,
1

n

i
i

l l
=

=∑ , where each segment is expressed as 

max min[ , ] 1, 2, ,i i i i nθ θ θ∈ = "  respectively. 
Set the estimation parameters as antigen. The 

antibody-antigen affinity function is chosen as 1( )f θ − . 
The antibody-antibody affinity function is defined as 
the following equation: 

, 1, 2, ,ij i jD X X i j m= − = "             (3) 

where ⋅  is an arbitrary norm, generally taking 
Euclidean Distance for real-valued coding and 
Hamming Distance for binary coding. 

( ) , 1, 2, ,ij m mD D i j m×= = " is the affinity matrix of 
antibody-antibody. D  is a symmetrical matrix, which 
indicates the diversity of the antibody population. 

A vaccination operator is introduced in the generic 
clone operator [22]. It simulates vaccine injection and 
adaptively extracts antigen’s pre-knowledge from the 
antibody population. It can inhibit the antibody 
generation’s retrogression and enhance the propagation 
speed of good gene in the antibody population. 

The improved clone operator can be described as 
follows: 
CloneΘ : The clone operator Θ  is defined as: 

1 2( ) [ ( ), ( ), , ( )]T

mA A A AΘ Θ Θ Θ= "            (4) 

where ( ) 1, 2 ,i i iA I A i mΘ = × = " , and iI  is iq  
dimension row vectors. 
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where cM > m is the expected clone scale, and Int( )⋅  

is the integral function up. Besides, iΩ is given by: 

min{exp( )} ; , 1, 2, ,i ijD i j i j mΩ = ≠ = "       (6) 
After cloning the antibody population is like this: 

 { }1 2, , , mB B B B= "                       (7) 
where: 

{ }1 2, , , 1, 2, ,i i i im ij i iB A A A A A j q= = =" "    (8) 

Clone Mutation C

mT : 
d( , ) 1 d( , )( ) (1 )ij ij ij ijA A A A

ij ij m mp A A p p
′ ′−′→ = −           (9) 

Where, d( )⋅ is the Hamming Distance, mp is the 
mutation possibility. 
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Vaccination Operator C

vT : Randomly select a 
segment of the best antibody’s gene as a vaccine. Then 
randomly select vm  antibodies and embed the vaccine 
into their genes, so they will have the same gene as the 
best antibody at this segment. Perform this operator 
when the global antibody-antigen affinity improves 
every v times. 
Clone Selection C

sT :  

1, 2, ,i m∀ = " if { }max ( ), 1, 2, ,ij ib aff A j q′= = "  

and ( )iaff A b<  then ijA′  replaces the antibody iA  in 
the aboriginal population. 
 
3.2. Adaptive Immune Clone Selection 
Algorithm 
 

 Although compared to GAs, CSA represents many 
advantages, however it is still difficult to solve 
complex problems. For satisfying the requirement of 
solving complex problems, in AICSA we design three 
strategies which are secondary response, adaptive 
mutation regulation and vaccination operator to 
improve the generic CSA’s convergence speed and 
global optimum searching ability. 

The AICSA is summarized as follows: 
Step1: Initiate the antibody population (0)A , enact 
algorithm parameters. 
Step2: Calculate the antibody-antigen affinity 

( ( ))aff A k . 
Step3: Record each K  generations’ best searching 
results, and compute these K  results’ deviation to the 
K-th result, the equation is like this: 

2

1

1 ˆ ˆ( ) 1, 2, ,
K

i ij ik
j

std i n
K

θ θ
=

= − =∑ "        (10) 

where îjθ  is the i-th parameter’s best searching result of 
the j-th generation in these K generations. The 
algorithm only “remembers” the last K generations’ 
information while “forgets” the former generations’ 
information, since the last generations’ information 
already contains the former generations’ information 
theoretically. Generally K should be selected such that 
it is sufficient to get a good estimation of the searching 
direction but not so large that it includes very old 
results that will slow the convergence. In this paper we 
choose K to contain h iterations in which the global 
antibody-antigen affinity improves.  
Step4: Regulate the mutation probability: according to 
the following equation, the corresponding mutation 
probability of each antibody can be calculated. 

1

( ( ))
exp max( )

( ( ))

i
i m

j
j

aff A k
t l

aff A k
=

= ×
∑

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

           (11) 

[ ] 11
( ) 1, 2, ,i

mp k c k t i m
l

−′= + + + = "      (12) 

where k ′ is the number of iterations in which the global 
optimum antibody-antigen affinity improves or 
improves a certain percentage, and 0c ≥  is a constant 
to control the beginning mutation probability, 

generally 1c = . The item 

1

( ( ))

( ( ))

i
m

j
j

aff A k

aff A k
=

∑
 is used to 

ensure that the antibody who has higher antibody-
antigen affinity will have smaller mutation probability, 
and k ′ is used to make the mutation probability become 
smaller and smaller along the searching process but 
isn’t change when the searching process get trapped in 
a local optimum therefore keep the algorithm’s ability 

to get out of the region, and 
1

l
 is used to ensure at least 

there will be one gene to mutate in the latter searching 
process. 
Step5: Adapt the antibody population.  

If there are 1( ) , 1, 2, , ,ijD k c i j n i j≤ = ≠" , where 

1c  is the threshed of the antibody-antibody affinity and 

generally 1

1
0 c

l
≤ ≤  , then randomly select two 

different antibodies to perform one-point crossover 
according to a probability cp  set before, and use the 

generated new antibodies to replace iA  or jA  equally, 
but don’t change the antibody-antigen affinity .  
Step6: According to the affinity and the clone scale, 
perform the improved clone operator and get the new 
antibody population ( )C k ; 
Step7: Secondary immune response 

Kill the last R bad antibodies whose antibody-
antigen affinities are smaller than the others, and 
regenerate R new antibodies randomly in a reduced 
search space according to the former information 
extracted from the searching process, if k > K , then 
get the next generation ( 1)A k + . The reduced 
searching space is defined as: 

max

min

ˆ

ˆ
i ik i

i ik i

std

std

θ θ

θ θ

′ = +

′ = −

⎧
⎨
⎩

                         (13) 
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and  

max max max max

min min min min

1, 2, ,i i i i

i i i i

if
i n

if

θ θ θ θ

θ θ θ θ

′ ′= >
=

′ ′= <

⎧
⎨
⎩

"   (14) 

where max iθ  and min iθ  is the up and low bound of the 

original search space, and max iθ′  and min iθ′  is the up and 
low bound of the new reduced search space, but note 
that the whole generation’s search space is not change.  
Step8: 1k = k + ; if satisfied the halt condition, end, or 
else return to step2. 

By using clone selection, the algorithm can 
integrate the global searching and local searching, and 
by using the vaccination operator AICSA enhances the 
propagation speed of good genes. In AICSA the 
mutation probability is regulated adaptively according 
to antibody-antigen affinity and along with the 
searching process to make sure that the good 
antibody’s mutation probability is smaller and the bad 
antibody’s mutation probability is bigger, and the 
mutation probability is bigger in the former searching 
phase for a large-scale search and smaller in the latter 
searching phase for a fine search. By simulating the 
memory and oblivion mechanism of immune system, 
AICSA uses the secondary response strategy to extract 
knowledge from the antigen generations through the 
last searching process, and using this knowledge to 
direct the new antibodies’ generation for enhancing the 
convergence speed. Therefore AICSA is a self-
adaptive learning system which can accumulate 
knowledge from the searching process and regulate its 
population adaptively, and furthermore it is easy to 
stable. 

 
4. Simulation Results 
 

In order to assess the effectiveness of the parameter 
estimation technique with the AICSA presented above, 
numerical simulations of a five DOF dynamic system 
is carried out. The properties of the dynamic system 
are given in Table 1. It is assumed that the system is 
excited by known forces and that the response of the 
system, in terms of accelerations, is recorded at all 
points.  

Table 1. System parameters 
Stiffness(N/m)  
k1  k2  k3-k5  
5e6 4e6 3.5e6 
Mass(kg)  
m1-m2  m3-m5  
4e3  3e3  

The dynamic equation of motion of a dynamic 
system can be written as  

M ( ) C K ( ) ( )x t x x t u t+ + =�� �                (15) 

where M , C and K are the mass 1 5( , , )m m" , 

damping 1 5( , , )c c"  and stiffness 1 5( , , )k k"  matrices, 
x is the displacement vector and u is the input force 
vector. The damping matrix C is given by: 

C M K,
2 2

r
r

r

α βω
α β ξ

ω
= + = +            (16) 

In simulation test it is assume that 0.7510α = and 
0.0026β =  are known. 

Therefore, the system is fully described by the set of 
parameters  

1 5 1 5( , , , , , )m m k kθ = " "                (17) 
In simulation test, parameters are set as follows:  
For AICSA and CSA, the searching range is half to 

twice of the parameters’ true value, and the code length 
of each parameter is 25, therefore the resolution of 

each estimated parameter is 8

25

1
1.5 4.47 10

2 1
−× = ×

−
. 

The number of population 60m = , the maximum 
evolutionary generation is 500, and the expected clone 
scale c 5M m= . Otherwise: 

• AICSA: 1c =0 , 1cp = , =20R , 0.7vm m= , v=5, 
and for K , =15h . 

• CSA: 0.07mp = . 
The statistical simulation results of 20 independent 

runs for the example with the usage of the AICSA and 
generic CSA methods are shown in Tables 2-3. In 
addition, we present typical simulation results 
(including the convergent processes of objective value 
and all parameters) for the example with Figs 1-5.  

Table 2. Estimated results of AICSA 

Par. True 
value 

Estimation Results Estimation Errors 
Mean Var. Mean Var. 

k1 5e6 5.000e6 1.783 3.058e-7 2.302e-7 
k2 4e6 4.000e6 0.952 2.157e-7 1.841e-7 

k3-k5 3.5e6 3.500e6 0.619 1.613e-7 1.268e-7 
m1-m2 4e3 4.000e3 7.519e-4 1.688e-7 1.124e-7 
m3-m5 3e3 3.000e3 4.305e-4 1.448e-7 1.223e-7 

Note: Par.=parameter, Var.=variance 
Table 3. Estimated results of CSA 

Par. True 
value 

Estimation Results Estimation Errors 
Mean Var. Mean Var. 

k1 5e6 5.031e6 4.399e5 0.0643 0.0586 
k2 4e6 4.051e6 1.627e5 0.0331 0.0260 

k3-k5 3.5e6 3.568e6 1.499e5 0.0363 0.0290 
m1-m2 4e3 4.047 e3 1.646e2 0.0294 0.0307 
m3-m5 3e3 3.056e3 1.042e2 0.0281 0.0269 

Note: Par.=parameter, Var.=variance 
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Fig 5. One typical convergence estimation 

characteristics  
From Tables 2-3, it can be seen that the results 

obtained by AICSA are very close to the true values. 

The average and variance results obtained by AICSA 
greatly outperform those obtained by the CSA. The 
AICSA seems to be more powerful in escaping local 
optimum and in searching for the global optimum.  

From Figs 1-4, we observe that CSA seemed to 
have more difficulty locating the solution than AICSA. 
It can be seen in Fig 5 that the objective function value 
reached in AICSA is very low, whereas in CSA a 
somewhat higher value has been reached (further away 
from the global optimum). This implies that the 
AICSA is more effective. And in the latter searching 
phase CSA improves the estimation results hardly, it 
needs more time to get out of the local optimum, but 
AICSA can get out of the local optimum easily and 
improves the results almost through the whole 
searching process until close to the resolution 
according to the length of the binary code. This 
property is due to AICSA reduces the mutation 
probability in the latter searching phase to make a fine 
searching while keeps the bad antibodies’ mutation 
probability bigger to help get out of the local optimum. 
However, CSA keeps the same mutation through the 
whole searching process and depend on the high 
frequent mutation to aimlessly search better antibodies, 
hence it will waste much time. Instead, AICSA 
regenerates antibodies whose affinities are low in a 
reduced space closing to the estimation objective, and 
because these new antibodies are generated randomly 
in the reduced searching space so their distribution is 
even, hence the diversity of the antibody population 
doesn’t decrease in fact. Therefore this strategy will 
greatly increase the chance to find new better 
antibodies while avoid the premature of the antibody 
population. Besides, AICSA also utilizes the 
vaccination operator to enhance good genes’ 
propagation speed. Because of these, the AICSA 
performs significantly better than original CSA on 
estimation dynamic system’s parameters in this paper.  

 
5. Conclusion 
 

This paper presents an AICSA strategy for 
parameter estimation of dynamic system. This novel 
strategy ensures that in the former searching phase the 
algorithm can search a relative large-scale space while 
undertakes a fine search in the latter searching phase 
through adaptively regulating mutation probability, 
therefore enhance the algorithm’s ability to locate the 
global optimum. It also greatly improves the searching 
effectiveness through using the vaccination operator 
which simulates vaccine injection and the secondary 
response strategy which simulates the memory and 
oblivion mechanism of immune system. Consequently, 
AICSA can direct the searching process using the 
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former extracted information, thereby avoids an 
aimless and ineffective search such as CSA. 
Comparative studies have been investigated to assess 
the applicability of the AICSA for parameter 
estimation of dynamic system. From the analysis 
results, we observe that the AICSA significantly 
improves the estimation results compared to CSA . 
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