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Abstract—A novel optimization method based on a Differential 
Evolution (DE) strategy for designing low-weight truss structures 
is presented for both continuous and discrete variables. 
Applications of this technique on the optimization of a 
benchmark-type truss structure with continuous and discrete 
variables are given to evaluate its effectiveness. Results are 
compared with various classical and evolutionary optimization 
methods which show that the proposed procedure based on DE 
outperforms other methods and can effectively be applied to the 
optimization problems of truss structures with both continuous 
and discrete design variables. 
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Structures  

I. INTRODUCTION 

In general, the optimization design is a non-convex and 
multi-peak problem. Thus, some traditional techniques, such as 
optimality criteria (OC) and mathematical programming (MP) 
methods will meet great challenges when handling such 
problem. In recent years heuristic computational intelligence 
methods belonging to the global optimization category have 
proven to be promising tools to solve the complex optimization 
problems of skeletal structures with both continuous and 
discrete variables. These have been found to be powerful 
methods in domains where traditional methods have not been 
proved to be effective. Among the most important heuristic 
optimization methods, such as genetic algorithm (GA), big 
bang-big crunch (BB-BC) optimization, ant colony 
optimization (ACO) and particle swarm optimization (PSO) 
have been successfully applied to a variety of optimization 
problems. Goldberg et al. used GA to optimize skeletal 
structure with continuous variables[1]. Rajeev et al. optimized 
structures with discrete variables based on GA[2]. Li et al. 
applied PSO in steel structures with continuous variables[3] 
and later in truss structures with discrete variables[4]. Camp 
designed a procedure based on the BB-BC optimization for 
both discrete and continuous variable optimization [5]. 

Differential Evolution (DE) is one of the recent- developed 
evolutionary optimization algorithm invented in 1995 for 
global optimization over continuous spaces[6]. Recently, the 
DE method has also been applied to the discrete 
optimization[7]. A comparative study of DE and other 
algorithms was made showing that DE algorithm outperforms 
very significantly other methods such as GA and PSO[8]. In 
the following years much attention were paid and efforts were 

made to improve the performance of DE as well as explore its 
application areas. The application fields of DE were enlarged. 
It’s been successfully used in such fields as engineering 
design[9], reliability analysis[10] and system identification[11]. 

In this study, a DE-based method of low-weight design of 
the truss structure is developed. In addition, the continuous and 
discrete design variable models are investigated. 

II. PROBLEM FORMULATION

In the optimization of a structure, the objective of a truss 
design is to minimize the total cost while satisfying design 
constraints. Typically, an optimal truss design is one whose 
total weight is minimized while not exceeding allowable 
values for compressive and/or tensile stress in each member 
and deflection of any connection. In these terms, a truss 
optimization problem can be described as to obtain the values 
for design variables X=[ X1,X2,…,XD]T, minimizing an objective 
function f (X1,X2,…,XD), satisfying at the same time, the design 
constraints gi (X1,X2,…,XD) 0 i  =1,…,m. 

A. Design Variables
When the topology of a truss is fixed, the cost is directly 

related to the cross-sectional area of each member of the truss. 
Therefore, the discrete and/or continuous design variables are 
chosen as: X=[ X1,X2,…,XD]T ,where Xi=the value of cross-
sectional area of i-th member group. For continuous variables, 
Xi ∈  [Al, Au], while for discrete variables, Xi∈{A1, A2

,…, AN}.

B. Design Constraints
Design constraints vary depending on the situation or the 

level of analysis, but typically truss designs are limited by 
allowable material stresses, structural displacements and cross-
section range: l u

i i iσ σ σ≤ ≤ ; l u
c c cδ δ δ≤ ≤ ; l u

i i iA X A≤ ≤ . Where 
iσ  is 

the stress of i-th member group bounded by an upper and lower 
limit: cδ is the deflection of connection c bounded by an upper 
and lower limit; Xi is the cross-section area of i-th member 
group bounded by an upper and lower limit. 

C. Objective Function
The objective function is used to evaluate the design of 

structures, which could for instance be the weight, the cost or 
any other relevant objectives. Here we choose the total weight 
as the objective function. For each truss design candidate, 
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stresses, deflections constraints are evaluated to determine 
whether the design is feasible. If a design is infeasible, a 
penalty function is applied to the structural weight reflecting 
the degree of constraint violation. The penalized weight helps 
depart from the infeasible designs and focus on feasible ones. 
As for cross-sectional constraints, we handle it in a different 
manner. Once a candidate solution violates the area bounded 
limits, it will be reset randomly within the search space. Thus, 
the formulation of the objective function is:

1
i i

n

i
i

f X L Mλρ
=

= + ,  Where f =objective function; 

iρ ,
iX ,

iL =material density, cross-sectional area and length of i-
th member respectively; M is a very large number(10E+30); 
λ =factor of penalty function, λ =0, if all constraints are 
satisfied; otherwise, λ =1. 

III. DE ALGORITHM

The DE algorithm is a population-based algorithm similar 
to genetic algorithms using such operators as crossover, 
mutation and selection. In DE, a population of NP (population 
size) solution vectors is initialized randomly at the start, which 
is evolved to find optimal solutions through the repeated 
procedures of mutation, crossover, and selecting operation. In 
its canonical form, the DE algorithm is only capable of 
handling continuous variables. Later Lampinen and Zelinka 
(1999) discussed the way to modify DE for mixed variable and 
discrete optimization, in which only a couple of simple 
modifications are required[7].  

Here we first describe the DE algorithm for continuous 
optimization, and in the end of this section we will present a 
few modifications to suit DE to discrete optimization. 

An optimization task consisting of D parameters can be 
represented by a D-dimensional vector. Let S ∈ RD be the 
search space of the problem under consideration. Then, the DE 
algorithm utilizes NP, D-dimensional vectors
xi=(xi1,xi2,…,xiD)T∈S, i=1,2,3…,NP as a population for each 
iteration, called a generation of the algorithm. 

A. Mutation 
The objective of mutation is to ensure search diversity in 

the parameter space as well as to direct the existing object 
vectors with suitable amount of parameter variation in a way 
which will lead to better results at a suitable time. It keeps the 
search robust and explores new areas in the search domain. 

According to the mutation operator, for each individual, 
xi

(G) i=1 NP, at generation G, a mutation vector
vi

(G+1),=(vi1
(G+1), vi2

(G+1),…, viD
(G+1))T is determined by the 

following equation[6]:  
( 1) ( ) ( ) ( ) ( ) ( )

1 1 2( ) ( )G G G G G G
i i best i r rv x F x x F x x+ = + − + −                            (1) 

where xbest
(G) = best individual of the population at generation 

G; F and 1 > 0 = real parameters, called mutation constants, 
which control the amplification of difference between two 
individuals so as to avoid search stagnation; and r1, r2 are 
mutually different integers, randomly selected from the set {1, 
2, ..., i -1, i +1, ..., NP} 

B. Crossover 
In DE the crossover operator is applied on the population 

after the mutation phase. For each mutant vector, vi
(G+1), a trial 

vector uij
(G+1)=(ui1

(G+1), ui2
(G+1),…, uiD

(G+1))T is generated, with
( 1)

( 1)
( 1)

if ( ( ) ) or ( ( ))

if ( ( ) ) or ( ( ))

G
ijG

ij G
ij

v rand j CR j randn i
u

x rand j CR j randn i

+
+

+

≤ =
=

> ≠
            (2)       

where j =1,2, ..., D; rand(j) is the j-th independent random 
number uniformly distributed in the range of [0, 1]. randn(i) is 
a randomly chosen index from the set {1, 2, ..., D}, and CR is 
user defined crossover constant ∈  [0, 1] that controls the 
diversity of the population. 

C. Selection 
After producing the offspring trial vector , the 

performance of each offspring vector ui
 (G+1) and its parent 

xi
(G)is compared. DE employs a greedy selection process that 

the better one of new offspring and its parent wins the 
competition and is retained in the population and passed to the 
next generation. Thus, if f denotes the objective function under 
consideration, then 

( 1) ( 1) ( )
( 1)

( )

         if    ( ) ( )
,

            if            

G G G
i i iG

i G
i

u f u f x
x

x otherwise

+ +
+ <

=                  (3) 

These A,B,C steps are repeated until specified termination 
criterion is reached. 

D. Operational parameter
DE has three key parameters: scaling factor of the 

difference vector – F, crossover control parameter – CR and 
population size – NP. An additional control variable, F1, is 
introduced to provide a means to enhance the greediness of the 
scheme by incorporating the current best vector xbest

(G). The 
operational parameters control the balance between 
exploitation and exploration, so as to increase the convergence 
velocity and robustness of the search process. Depending on 
the problem and available computational resources, the 
population size can be in the range from 2D (D is the problem 
dimension) to 100D [12]. In our experiments, with a population 
size of 20D, F1 = 0.95 and F = 0.8 appear to be reasonably 
good value to generate satisfactory results. The test results [6] 
show that a satisfactory range of CR appears to be within 0.8–
1.0.   In this study, we set DE parameters as NP=50, F1=0.95, 
F= 0.8, CR=0.85, Max_it =300 and 250 respectively. 

E. Modifications made to suit for discrete variables 
  For discrete optimization, the design variables are chosen 

from a list of discrete cross-sections, i.e. Xi∈S ={A1, A2
,…, AN}.

The optimization problem with discrete variables is a 
combination optimization problem which obtains its best 
solution from all possible variable combinations. 

According to Lampinen and Zelinka[7], the basic idea for 
handling discrete problems is: Instead of optimizing the value 
of the discrete variable directly, optimize the value of its index 
i, only during evaluation is the indicated discrete value used. 
The details are as follows: First, number the discrete variables. 



The scalar S includes all permissive discrete variables arranged 
in ascending sequence. Each element of the scalar S is given a 
sequence number to represent the value of the discrete variable 
correspondingly. It can be expressed as: S={A1, A2

,…Aj
…, AN}, 

1 j N. where N is the number of all permissive discrete 
variables. Second, a mapped function h(j) is selected to index 
the sequence number of the elements in set S and represents the 
value of Aj of discrete variables correspondingly: h(j)= Aj

.
Thus, the sequence numbers of the elements will substitute for 
the discrete values in the scalar S. This method is used to 
search the optimum solution, and makes the variables to be 
searched in a continuous space. 

The DE algorithm starts with NP solution vectors 
initialized randomly in the search space. The position of the i-
th solution in the space can be described by a vector xi,

xi=(xi1,xi2,…, xid, …, xiD)T,    1 d D , i=1,2,3…,NP 

The scalar xid ∈ {1, 2,…j…, N} corresponds to the discrete 
variable set {A1, A2

,…Aj
…, AN} by the mapped function h(j). 

Therefore, the solution vectors updates through the continuous 
space, but only stays at the integer space. In other words, all the 
components of the vector xi are integer numbers. The solution 
is updated by Eqs (1), (2) and (4). 
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IV. TEN-BAR TRUSS DESIGN EXAMPLES

The ten-bar truss has been widely employed by researchers 
and has effectively become a benchmark problem in the field 
of structural optimization. The ten-bar truss has been designed 
by many researchers using various approaches and techniques, 
such as the gradient search technique[13], OC[14] , 
GAs[15,16], PSO[17,18], ACO [19] and BB-BC [5]. This paper 
utilized the DE method to solve the low-weight designs of the 
general 10-bar truss with continuous and discrete design 
variable models. 

The configuration of ten-bar cantilevered truss is shown in 
Fig. 2.  The material has a modulus of elasticity of 107 psi and a 
mass density of 0.1 lb/in3. The maximum allowable stress in 
any member of the truss is ±25 ksi; and the maximum 
deflection of any node (in both the vertical and horizontal 
direction) is ±2.0 in. In this study, the program is coded with 
MATLAB. For the convenience of comparison with results 
from other literatures, the English unit is adopted. 

A. Ten-Bar Truss Design Using Continuous Variables  
For the first ten-bar truss design example, the design 

variables are continuous. Cross-sectional areas may vary from 

0.1 in2 to 35.0 in2. Formulate the optimization problem in a 
standard form as below: 

1 2 3 10
10

1

2 2

[ , , ...... ]

min

| | 25 ( 1, 2, ,10)
. 2.0 (c 1, 2, , 6)
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0 1

T

i i i
i

i

c

i

X X X X X

F X L M

ksi i
s t in

in X in
or

ρ λ

σ
δ

λ

=

=

= +

≤ =
≤ =

≤ ≤
=                   

 (5) 

To evaluate the effectiveness of DE algorithm in the 
optimization of truss structure, run this optimization program 
randomly for 5 times. The typical convergence history of 
objective function is drawn in Fig.2. The best and worst results 
are listed to be compared with results listed in other existing 
literatures (see Table 1). 

Table1. Design for 10-bar truss using continuous variables 

Note: 1 in.
2=6.452 cm2; 1 lb=4.45 N.

Table 1 lists the best and worst design developed by the DE 
algorithm. The best weight value obtained of feasible truss in 
300 runs is 5,022.486 lbs, the worst value is 5,022.866 lbs. The 
average weight 5022.658 lbs developed by DE is at least 
0.89%, 0.38%, 0.07% lighter than the results developed by GA, 
PSO and BB-BC respectively. In addition, the standard 
deviation of the results based on DE is 0.163, which is much 
smaller than that of other literature listed. The results of Table 1 
indicate that the proposed design procedure based on DE 
strategy exhibits a significant improvement in computational 
efficiency and robustness over those using GA, PSO and BB-
BC. 

Cross-sectional areas (in2)
Members DE best DE worst GA[15] PSO[17] BB-BC[5]

1 22.261 22.680 24.07 23.268 22.344 
2 15.305 15.423 13.96 15.129 15.437 
3 0.938 0.899 0.56 0.554 0.967 
4 0.100 0.101 0.10 0.100 0.100 
5 31.070 30.871 28.92 29.999 30.804 
6 0.100 0.100 0.10 0.100 0.100 
7 21.854 21.792 21.95 21.232 21.890 
8 5.811 5.795 7.69 7.454 5.801 
9 0.100 0.101 0.10 0.100 0.100 

10 21.548 21.421 22.09 21.670 21.532 
Weight(lb) 5,022.486 5,022.866 5,076.31 5,059.85 5,022.65 

Wavg(lb) 5022.658 5,067.51 5,041.92 5,025.97 
Wstdev(lb) 0.163 -- 17.509 2.746 

Fig. 1 Configuration of 10-bar truss  
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Fig 3. Convergence history of 10-bar truss using continuous variables



B. Ten-Bar Truss Design Using Discrete Variable
In the second ten-bar truss design example, the following 

list of 41 discrete cross-sectional areas are available for each 
member 1.62, 1.80, 1.99, 2.13, 2.38, 2.62, 2.88, 2.93, 3.09, 
3.13, 3.38, 3.47, 3.55, 3.63, 3.84, 3.87, 3.88, 4.18, 4.22, 4.49, 
4.59, 4.80, 4.97, 5.12, 5.74, 7.22, 7.97, 11.5, 13.5, 13.9, 14.2, 
15.5, 16.0, 16.9, 18.8, 19.9, 22.0, 22.9, 26.5, 30.0, 33.5 in2 .

For such combination optimization problem with 41 
discrete variables for every one of the 10 bars, the approximate 
size of the resulting search space is 1.34 ×  1016 designs. 5 
random searches are performed in this example. DE strategy is 
proved to be excellent in handling such problems. 

The convergence history for design of the ten-bar truss is 
shown in Fig. 3. Table 2 lists the best design developed by the 
DE algorithm, a truss weighing 5,490.74 lbs, which is identical 
to that found by GA, ACO and BB-BC listed. 
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Fig 3. Convergence history of 10-bar truss using discrete variables  

Table2. Designs for Ten-Bar Truss Using Discrete Variables 

In the 5 runs of the DE algorithm, the average weight of the 
best feasible truss from every run is 5,490.74 lbs with a stan-
dard deviation of 0 lbs, which means every search got the same 
solution. These values show a significant improvement of the 
DE approach as compared to GA, ACO and BB-BC listed in 
the table 2. 

V. CONCLUSIONS

This paper has presented a novel differential evolution (DE) 
strategy for the problem of low-weight design of truss 
structures with both continuous and discrete variables. DE has 
the advantage of incorporating a relatively simple and efficient 
form of self-adapting mutation, crossover selection operation. 
Through a benchmark-type truss optimization problem, the DE 

algorithm demonstrated that it can routinely minimize the 
overall weight of truss structures while satisfying material and 
performance constraints. The results from our study based on 
DE is clearly and consistently superior compared to those 
based on GA, PSO, BB-BC for continuous optimization 
problems. For discrete design variables, the results are same 
but with a standard deviation of 0. All the above demonstrate 
the consistency and computational efficiency of the application 
of a DE strategy in the optimization problems of truss 
structures. 
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