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Abstract: A moving rigid-body and an unrestrained Timoshenko beam, which is subjected 

to the transverse impact of  the rigid-body, are treated as a contact-impact system. The 

generalized Fourier-series method was used to derive the characteristic equation and the 

characteristic function of  the system. The analytical solutions of  the impact responses for  the 

system were presented. The responses can be divided into two parts : elastic responses and 

rigid responses. The momentum sum of  elastic responses of  the contact-impact system is 

demonstrated to be zero, which makes the rigid responses o f  the system easy to evaluate 

according to the principle of  momentum conservation. 
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Introduction 

As a classical problem, the study on elastic impact problem of structures dates as far back as 

the early years of the 20th century. Recently, the research on dynamics and control of space 

structures has revived interest in the propagation of waves in a beam [1] . Large and flexible lattice- 

type space structures, which are situated in the airless and zero gravity environment, are often 

constructed by lightweight bars .  Because of its length-width ratio being large, the structure can be 

approximated by a beam. So the study on transient responses ( i .  e . ,  the impact responses) of a 
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Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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beam to impact loadings is very useful for dynamic control of the space structures. 

In this paper, the Timoshenko beam is analyzed for the reason that the effects of shear 

deformation are not neglectful factors for the impact problems of structures. Especially for high- 

order modes, the effects are very evident. The vibration and wave motion in the Timoshko beam 

have been studied by many researchers: Boley and Chao investigated solutions for four types of 

loadings applied to a semi-infinite beam by using the method of Laplace transformationE2]; 

Miklowitz also used the Laplace transform to obtain the transient responses for infinite length 

beams and finite length beams E33 . Anderson and Calif gave the general series solution for the 

flexural vibrations of a finite length beam E41 . Huang discussed the normal solutions for six 

common types of beams by using the method of variables separation ES] . XING Yu-feng presented 

the semi-analytical solutions of transverse elastic impact and contact between a mass point and a 

beam with finite length Er] . 

A space structure moving freely in the orbit without any supports, if its length-width ratio is 

large, can be approximately seen as an unrestrained Timoshenko beam. The differences between 

impact problems of unrestrained and restrained structures lie in that there are rigid responses for 

the former, e . g . ,  a transverse impact on an unrestrained Timoshenko beam by a moving rigid 

body may cause rigid responses and elastic responses of the beam. In this paper, the analytical 

solutions of an unrestrained Timoshenko beam which is subjected'to a transverse impact of a 

moving rigid body are derived by using the generalized Fourier-series method. This method 

separates the rigid responses of the beam from its total responses, and the momentum sum of 

elastic responses in the system is demonstrated to be zero, which makes the evaluation of rigid 

response for the system very simple. 

Basic Equations and General Solutions 

The motion equations for a Timoshenko beam are 

3x 2 + 3t 2 

3t2 - 8x 2 

= 0,  (1)  

1 

(2) 

Where y ( x ,  t ) is the transverse displacement of the beam; ~b ( x ,  t ) is the bending rotation 

angle of the beam' s cross-section; E ,  G, l ,  A and p are the elastic modulus, shear modulus, 

inertia moment of the cross-section, cross-sectional area and mass density of the beam, 

respectively; k is the shape factor of the cross-section. 

Let 

After rearranging, Eqs. ( 1 ) and (2) can be written as 

[ ~E//~_.~_..._ /o2I ~4)r E1 34y + pA 32y ~ pl  + + : O, 
3X 4 3t 2 -- kG ! 3x23t 2 kG 9 t  4 

{ pEII  ~ p2I a4~ 
E1 ~ + pa ~ ~ p I +  + : O. 

3X 4 3t 2 " kG ] oacZ3t 2 kG 3 t  4 

(3) 

(4) 

y ( $ , t )  = Y ( ~ , p ) s i n p t ,  

~b(~, t )  = a t r ($ ,p ) s inp t ,  

= x / L .  

(5) 
(6) 
(7) 
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
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In which, ~ is dimensionless coordinate along the axis of the beam; p is the angular 

frequency; L is the length of the beam. 
SubstitutingEqs. ( 5 )  ~ ( 7 )  into Eqs. ( 1 )  ~ ( 2 ) ,  and eliminating the term sinpt,  the 

following expressions can be obtained: 

s2 a 2 ~  1 3 Y 
0~:2 - (1 - b2r2s2)aF + L O~ - O, (8) 

O2Y b2s 2 31T2r 3~ 2 + Y -  L-ff~- = 0, (9) 

where 

In which, 

b = = p A L 4 p Z / ( E 1 ) ,  (10) 

r 2 = I / A L  2, (11 )  

s Z =  E I / ( k A G L 2 ) .  (12) 

From Eqs. (8) and ( 9 ) ,  the following expressions can be derived: 

04 y 02 y 
a~ 4 + b2( r  2 + s 2) ~-~ - b2(1 - b 2 r 2 s 2 ) y  = O, (13) 

04"t~ 02~ b 2 3~ 4 + bZ(r 2 + s 2) - ~  b2(1 - r Z s 2 ) ~  = 0. (14) 

The general solutions of Eqs. (13) and (14) are 

Y = Clcosba~ + Czsinba~ + C3cosb/.ff + t.4smo~q, (15) 

gr = Dls inba~  + D2cosba~ + D3sinbfl~ + D4cosbfl~. (16) 

a _ [ rZ + s z ~ ( ~ ) 2  1 ]  1/2 (17) 
p - - - T -  �9 , 

Substituting Eqs. (15) - (16) into Eq. ( 9 ) ,  we have 

- (C lb2a2cosba~  + C2b2aZsinba~ + CabEflZcosbfl~ + C4bEfl2sinbfl~) + 

b2s2( ClCOSba~: + C2sinba~ + Cacosbfl~ + C4sinb/~) - L (  D1 bacosba~ - 

D2basinba~ + D3bflcosbfl~ - D4bflsinbfl~ ) = O. 

To ensure the above equality, the coefficients C~ ~ C4 and D~ 

following relationships: 

Ct = L a / b .  D l / (  s 2 - a2) ,  

C 2 = -  L a / b .  D 2 / ( s  2 - a2) ,  

C3 = L f l / b .  D 3 / (  s 2 - f lz) , 

C 4 = - L f l / b ' D 4 / ( s  2 - f12). 

(18) 

- D 4 must satisfy the 

(19) 

(20) 

(21) 

(22) 

N a t u r a l  F r e q u e n c i e s  a n d  Modes of the Impact System 

Suppose a free-free Timoshenko beam is struck transversely by a rigid mass M0 with the 

velocity V 0 at the central point of the beam (as shown in Fig. 1 ) .  The beam and the rigid body 

can be seen as a contact-impact system. Considering the symmetry of the system, the left half 

part of the beam [0,  L / 2 ]  (as shown in Fig.2)  is chosen for the analysis. 
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Fig. 1 Impact system Fig.2 Equivalent impact system 

2.1 Natural  frequencies 
The boundary conditions of the equivalent impact system shown in Fig. 2 are as follows: 

(i Y 0 
L 0~: ,=o 

8gr /3~l ,= o = 0, (24) 
(1  3Y ) 1 p 2 y  

kAG -~ O---~- ~ = -~M o �9 �9 , (25) 
= 1/2 = 1/2 

[ * = 1/2 = 0 .  (26) 
Substituting Eqs. (15)  and ( 1 6 )  into the above boundary conditions, considering 

Eqs. (19) - (22) and introducing the mass ratio 2 = p . A . L / M o ,  the following equations can be 
obtained 

$ 2 S 2 
a 2 _ 7 D 2  + f12 _ s2D4 O, (27) 

ba. Dl + bfl. D 3 = 0, (28) 

L 32) [ ba ba ] b2(a f--L $2) [ 2), cos "-2ba b_~] t2).sin-~ - + baeos -~ jD1  + - basin D2 + bZ(a s _ 

b 2 ( fl2L-- s 2 ) [ 2 '~ s in b-if-2 + b fle~ b-ff-2 ] D3 + 

b : ( fl L s2) [2)'c~ b fls in b~2 ] D4 = O ' (29) 

sin(ba/2) D~ + cos(ba/2) DE + sin(bfl/2) D3 + cos(bfl/2) D4 = 0. (30) 

Equations (27) ~ (30) can be expressed in matrix form 

where 

d = (D1,D2,D3,D4)T;  

A = 

Ad = 0 (31) 

0 s 2 / ( a  2 - s 2)  0 

ba 0 bfl 

A31 A32 A33 

sin(ba/2) cos(ba/2) sin(bill2) 

I L(2Asin(ba/2) + bacos(ba/2)) 
A31 = b 2 ( a  2 L - ~ ' y  ' A32 = 

[A33 L(2Xsin(bfl/2)bZ(fl z +_ bfleos(bfl/2))s 2) ; A34 

s2/(flO - sZ)],  

A34 ] 

cos(bfl/2) j 

L( 22 cos(ba/2) - basin(ba/2))  

L(2Xcos( 

b 2 ( a  2 _ s 2) 

b f l / 2 )  - b f l s i n ( b f l / 2 ) )  
b2(f12 -- S2)  

(32) 
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Only when I A I --- 0,  the nontrivial solutions of the matrix equation (31)  exist. Let 

f ( b )  = I A I , t hen  
�9 s 2 a 2 - s 2 a 2 s 2 . ba~ 

2 L A . a  f 2 - - 2 - )  + f ( b )  = b ( a  2 -  sZ)z(l  _..._~s2)(afl__si n ba b_if_ - b_ff_ - T c o s  f ,2~,n 2 cos 

L a ' f l  -s2 s 2 ) [ _ 2 +  ( ~  + a - ~ ) s i n ~ s i n  bfl 
(a  2 _ s2)(f l  2 _ 2 + 

(:-: :-:) 
f s 2+42 s2 cosTcos =0.  (33) 

Equation (33)  is just the characteristic equation of the impact system. It has unlimited 

positive real roots b~, n = 1 , 2 , 3 , " ' ,  which correspond to the infinite natural frequencies of the 

system pn, n = 1 , 2 , 3 , ' "  (corresponding relationship is Eq. ( 1 0 ) ) .  

2 .2  Na tu ra l  m o d e s  

From Eqs. (27) and (28) ,  following expressions can be derived 

D4 f12_ s 2 
~" - D 2  - -  a 2 -  s 2 '  ( 3 4 )  

D3 a 
- ( 3 5 )  

A t - D 1 - - f l "  

From Eqs. (27) ,  (28) and (30) ,  we have 

DE sin-~- + At.sin 2 
(36) 

r] - Ox - ba b ff_" 
eos-~--+ ~ 'cos  2 

Substituting Eqs. (34) - (36) into Eq. (16) ,  we have 

air" = D~.(sinba~ + r/cosba~ + Atsinbfl~ + r/~'cosbfl~). (37) 

Substituting Eqs. (19) ~ (22) into Eq. (15) ,  and combining Eqs. (34) ~ (36) gives 

1 

In which, 

/ a  
X - b ( s  2 _ a2). (39) 

For every real root bn,  n = 1 , 2 , 3 , " -  of the characteristic equation ( 3 3 ) ,  there are the 

corresponding modes Yn((:) and g t ( ~ )  of the impact system: 

( 1 2 ) Y~ = Z~" cosbnan~ - r/~sinbnan~: + --~cosbd?~(: - sinb,~n~ e , (40) 

gr,~ = sinb,~an~: + rs + Atns inb ,~  + r l~cosbd3~: ) .  (41) 

3 Dynamic Responses of the Impact System 

From Eqs. (37) and (38 ) ,  it can be seen that there is one-to-one correspondence between 

every order of modes Yn ($ )  and ~ (~:) ; in addition, because of the symmetry of the structure 

and the loading, the beam has only rigid translation displacement, but has no rigid rotation 

displacement. So the transverse displacement and bending rotation angle of the impact system can 
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be written as follows: 

y ( $ , t )  = Ao't + ~-]jA,. Y,(~:).sinp,t, (42) 
a = l  

§  

r  = ~-],A." a~,(~) ' s inp, t .  (43) 
n = l  

The first term of right-hand side in Eq. (42) represents the rigid response, that is to say, the 

zero frequency response of the impact system, whose mode is Y0(~:) = 1. The series terms in 

Eqs. (42) and (43)represent the elastic responses of the impact system. The former is the 

deflection of the beam, and the latter is the bending angle of rotation of the beam cross-section, 

respectively. In calculation, enough orders of natural frequencies should be chosen to satisfy the 

requried precision for various responses. 

The initial conditions of the impact system are 

Oy(~, t )  ~-  V o ( ,  = 1/2),  

[o 3t ,=0 (0 ~< ~ ~< 1/2) ,  (44) 

~ ,p (q , t )  = 0. (45) 
Ot t=o 

From Eqs. (42) and (43), following expressions can be derived 

t = 0  +** 

g(~) Oy($, t )  = At+ ~ a n . p ~ .  Y~($) (46) 
= Ot .=~ ' 

h($) 3~b($,t) t=o = ~--aa"'P"'ar/"(~) 
= 3t 

3.1 

(47) 

The factor  At  of r ig id r e s p o n s e  

Multiplying both sides of Eq. (46) by Yo(~) = 1 and the distributed mass of the beam 

~(~ )  = pAL,O <~ ~ <~ 1/2, considering the concentrate rigid mass ~r = Mo/2 at the impact 

point 6~ = 1/2, and integrating them with respect to ~ over the length of the beam [ 0 ,1 /2 ) ,  we 
have 

l i m / |  m ( ~ ) .  Y o ( ~ ) . g ( ~ ) . d ~ ]  + M. Yo "g = 
r 2 4 7  L dO 

f r ['1/2-, 
ao l J im[J  ~ m ( , ) - Y o ( e ) . d e ] +  M.Yo( 1 ) } +  

+** l" r ~ 1 / 2 -  e ] 

"~,A,~'p," / lira / / ~ (~:)" Y~ Y" (~:) "d~: 1 + 
n n  1 I. r  L d 0 

 o(1) 
For the rigid mode Yo(~) = 1 and the elastic mode Y,(~) ,  the orthogonality condition can 

be found as 

, - l im[fl /2-~m(e) 'r~ + , o . o o  ~ r ' Y ~  = 0 (n  = 1 , 2 , 3 , " - ) .  

(49) 
Substituting the initial conditions (44) ~ (47) and the orthogonality condition (49) into 

Eq. (48) gives 
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_ J k _ _ . ( _  v0). (5o) A ~  1 + 2  

The factor A o is just the rigid velocity of the system V,:(Vr = ( -  V0)/(1 + 2 ) ) .  So the 

momentum of rigid response for the system is (1 + A) .Mo. (  - Vo)/(1 + A) = - M o. V 0 which 

equals to the initial momentum of the system before the contact-impact process. According to the 

principle of momentum conservation, the momentum sum of elastic responses for the system 

should be zero. From this view point, the rigid response of the system can be evaluated directly. 

3 . 2  The factor  A n of e last ic  r e s p o n s e  

Multiplying both sides of Eq. (46) by Ym(~:) and the distributed mass of the beam ~ (~)  = 

pAL ,0 ~< ~: < 1/2,  considering the concentrate rigid mass M = Mo/2 at the impact point ~ = 

1/2,  and integrating them with respect to ~: over the length of the beam [ 0 , 1 / 2 ) ,  we have 

�9 ~§ m(~:)" Y m ( ~ ) ' g ( ~ ) ' d ~ ]  + ~I" Y.~ "g = 

ao{!im+o[flo/2-r176 g m ( ~ ) ~  + / ~ ~  gm(~)}'4" 
�9 = f . r l / 2 -  r 

~ A . . p . . l l i m / ]  m (~:) �9 Y~ (~:) �9 Y. (~:) �9 d~:] + 
~=1 L ~ + O L  JO 

Multiplying both sides of Eq. (47) by g r  (~)  and the distributed rotation inertia of the beam 

cross-section I (~)  = i lL ,O ~ ~ < 1/2,  considering the bending angle of rotation ~,~ ( 1/2) = 

0 at the impact point ~ = 1/2,  and integrating them with respect to ~ over the length of the beam 
[ 0 , 1 / 2 ) ,  we have 

[1,2_r (e). _ -  
lim[ 
E~+O ~ dO 

�9 - f } ~An'Pn'Ilim[ 1/2-r . ( 5 2 )  
n=l Lr  JO 

Superposing Eq. (51) and Eq. (52) ,  combining the initial conditions (44) ~ (47) and the 
orthogonality condition (49) ,  we can get 

1 +" 
= 

n=l 
l im~ |  [ m ( ~ ) ' Y ~ ( ~ ) ' Y n ( ~ )  + l ( ~ ) ' g r , ~ ( ~ ) ' g " n ( ~ ) ] . d  ~ + 
~ + O k O O  

For the transverse displacement mode Yn(~) and the rotation angle mode g r ( ~ ) ,  the 

orthogonality condition can be written as 

f O/z- ~ l 
l im~ |  [ ~ ( ~ ) ' Y m ( ~ ) ' Y n ( ~ )  + I ( ~ ) ' g t . ~ ( ~ ) ' ~ ( ~ ) ] - d ~ :  + 

l r  0 

Substituting Eq. (54) into Eq. (53) ,  the general coefficient A n can be obtained as 
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1 1 

An = [ ~ 1 / 2 - r  . ( 5 5 )  

~ + O t d  0 

With the flexural displacement and the rotation angle responses known, the dynamic 

responses of the beam, such as the velocity V( ~:, t ) ,  the shear force 0 ( ~, t )  and the impact 

force P ( t ) ,  e t c . ,  can be derived as follows: 
§ 

O y ( ~ , t )  = Ao + ~ a A  .p . ya(~) .cosp , t ,  (56) v ( ~ , t )  = o t  
n=l 

Q ( ~ , t )  - kAG.[ 1 . 3 y ( ~ ' t )  l 
= t L 3t - r  = 

+" [ 1 ;3Yn('~) ] 
- kAG'~aAn"  L 3~: ~n(~:)  "sinpnt" (57) 

n=l  

Because of the symmetry of the structure and the loading, the shear force distributes 

antisymmetrically about the center of the beam. So the shear force of the beam is discontinued at 

the impact point (~  = 1 /2 ) .  The shear forces at both sides of the point are Q ( 1 / 2  - 0, t )  and 

Q ( 1 / 2  + 0, t ) ,  respectively, where (1 /2  - 0) and (1 /2  + 0) represent the left side and right side 

of ~ = 1 /2 ,  respectively. Therefore, the impact force of the moving rigid body is 

1 ,,) 0,)_- P ( t )  = Q ( ~ - + I  - - 1 , t )  (58 

4 N u m e r i c a l  E x a m p l e  

The parameters of example beam are: the length of the beam L = 36. 576 em; area of its 

cross-section A = 6. 452 era2; its mass density p = 7 .75 x 103 kg/m3; the shape factor of its 

cross-section k = 2 /3 ;  the modulus ratio of elastic to shear E / G  = 8 /3 ;  the mass ratio of beam 

to rigid b o d y l  = 1; f r o m E q s . ( l l )  and (12) it can be found tha ts  = 2 r ; i f r  = 0 .02 ,  then 

s = 0 .04.  The wave speeds of flexural wave front and shear wave in the beam can be evaluated, 

which are c = ~ / E / p  ( i .  e . ,  the longitudinal wave speed) and c~ = ~ /kG/p ,  respectively, and 

the ratio of them is c/es = 2. 
Figure 3 shows the dimensionless impact force between the beam and the rigid body at the 

impact end of the beam. From the figure it can be seen that from the dimensionless time r = 

te /L  = 1, i . e . ,  the time used up by the flexural wave propagating to the free end (~  = 0) and 

by its reflective wave from the end arriving at the impact end ( ~ = 1 / 2 ) ,  the impact force starts 

to oscillate slightly. From the time r = 1 .5 ,  i . e . ,  the time when the wave returns again to the 

free end, the force oscillates evidently. At about the time r = 1 .6 ,  the impact force diminishes 

to zero, that means the impact rigid body begins to separate from the beam, and the impact 

process finishes. 

Figure 4 shows the shear force distribution along the beam at the time r = 0 .4 .  From this 

figure it can be found that in the regions ~: = 0 - 0.1 and ~ = 0 .9  - 1, the shear forces are zero, 

this is because the flexural wave front still does not an-ive in these regions. From the figure it can 

also be seen that the shear force has sharp peak values at the points ~ = 0 .3  and ~ = 0 . 7 ,  which 

dues to that the shear waves just reach these points at the moment r = 0 .4 .  Since the shear force 

exhibits an antisymmetrical distribution along the length of the beam about the beam center, the 
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shear force jumps at the point ~ = 1/2.  

Compared with Ref. [ 7 ] ,  it can be found that the elastic response characteristics of impacted 

unrestrained beam are similar to those of simply supported beam. 

Figure 5 and Fig. 6 show the dimensionless velocity distribution along the beam length at the 

time r = 0 .4 .  The horizontal straight line in Fig. 5 denotes the rigid velocity of the beam, i . e . ,  

Vr which is just the constant term A 0 of the right-hand side in Eq. (56) .  The mass ratio is taken 

as ), = 1 in the example, so the rigid velocity of the beam is Vr = 0.5 ( - V 0) according to 

Eq. (50) .  The curved line in Fig.5 represents the elastic velocity distribution of the beam, i . e . ,  

Ve which is the serial part of Eq. ( 5 6 ) .  Fig. 6 represents the total velocity distribution of the 

beam, i . e . ,  V which is the summation of the rigid velocity Vr and the elastic velocity V e. It can 

be seen that the distribution characteristics of velocity is the same as that of shear force except for 

the symmetry of velocity distribution. 
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5 Conclusions 

1) The dynamic responses of an unrestrained Timoshenko beam to transverse impact of a 

rigid body at its center are composed of two parts: rigid responses and elastic responses. The 

numerical example reveals that the elastic responses in the total impact responses of the 

unrestrained Timoshenko beam are nearly the same as the impact responses of the simply 
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supported beam.  

2) The momentum sum of  the elastic responses in the impact system is always zero.  

According to the principle of  the momentum conservation, the momentum of  the rigid responses 

in the impact system equals to that o f  the moving rigid body before impact ,  which makes the rigid 

responses of  the system easy to evaluate.  The rigid responses of  the system mainly depend on the 

mass ratio of  the unrestrained beam to the moving rigid body.  
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