
Applied Mathematics and Mechanics 

(English Edition, Vol 26, No 1, Jan 2005) 
. Published by Shanghai University, 

Shanghai, China 

�9 Editorial Committee of Appl. Math. Mech., ISSN 0253-4827 Article ID: 0253-4827 (2005) 01-0044-08 

A N A L Y S E S  ON S T R U C T U R A L  D A M A G E  I D E N T I F I C A T I O N  

B A S E D  ON C O M B I N E D  P A R A M E T E R S  * 

TANG He-sheng (~_~/4~)1 ,  XUE Song-tao ( ~ / f z ~ )  1'2, 

CHEN Rong (1~ ~ ) 1 ,  WANG Yuan-gong (q::~:rJJ) 1 

(1. Research Institute of Structural Engineering and Disaster Reduction, 
Tongji University, Shanghai 200092, P.R. China; 

2. Department of Architecture, School of Science and Engineering, 

Kinki University, Osaka, Japan) 

(Communicated by HE Fu-bao, Original Member of Editorial Committee, AMM) 

Abstract: The relative sensitivities of structural dynamical parameters were analyzed using 

a directive derivation method. The neural network is able to approximate arbitrary non- 

linear mapping relationship, so it is a powerful damage identification tool for unknown 

systems. A neural network-bused approach was presented for the structural damage 

detection. The combined parameters were presented as the input vector of the neural 

network, which computed with the change rates of the several former natural frequencies 

( C ) ,  the change ratios of the frequencies ( R ) ,  and the assurance criterions of flexibilities 

( A ). Some numerical simulation examples, such as, cantilever and truss with different 

damage extends and different damage locations were analyzed. The results indicate that the 

combined parameters are mare suitable for the input patterns of neural networks than the 

other parameters alone. 
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Introduction 

Service loads, environmental and accidental actions may cause damage to structures. When 

the structural damage is small or it is in the interior of the structure, its detection cannot be done 

visually. Inspection of existing buildings and bridges after catastrophic e v e n t s ,  such as 

earthquakes and hurricanes, as well as under normal operating conditions, is often time 

consuming and costly because critical members and connections are concealed under cladding and 

* Received date: 2003-09-06; Revised date: 2004-10-14 

Foundation item: the National Natural Science Foundation for Distinguished Young Scholar of 

China (59925820) 

Biographies: TANG He-sheng, Lecturer, Doctor, E-mail: thstj @ mail. tongji, edu. on; WANG 

Yuan-gong, Professor, Corresponding author, E-mail: izumi@ mail. tongji, edu. cn 

44 



Structural Damage Identification of the Neural Network 45 

other architectural decorations. For many important structures, such as hospitals, fire stations, 

military control/surveillance centres, major bridges, power stations, and water treatment plants 

etc., it is imperative to assess their healthy state immediately after a major catastrophic event, 

which has great significance to human lives and properties. 

The problem of damage identification is essentially one of pattern recognition. One of the 

more powerful approaches, currently applied in this area is based on the application of NNs. NNs 

have been viewed as potential saviors for the solution of the difficult problems in damage 

identification ElI . NNs are able to treat implicit damage mechanisms, so that it is not necessary to 

model the structure in detail. The method can also deal with non-linear damage mechanisms 

easily. 

In recent years, research on vibration and NNs based damage identification has been 

expanding rapidly [1-3] . NNs were developed as a methodology for emulating the human brain, 

resulting in such systems that can learn by experience. Many researchers have developed various 

NN models for different purposes [4,s] . In this paper, a multiplayer backpropagation NN (BP- 

NN) [4] is used for structural damage identification. 

A simple NN is formed from interconnected artificial neurons. It consists of an input layer, 

a hidden, and an output layer as shown in Fig. 1. The network is a feed-forward multiplayer 

network that has n input nodes, p hidden nodes and m output nodes (n-p-n , ) .  

Hidden layer 

Fig. 1 Architecture of backpropagation NN 

Through learning the patterns of input and output, mapping a relationship of the NN' s input 

and output which can be nonlinear as well as linear, and its characteristic information is 

determined by the weights w~p and W~m assigned to the connections between nodes in two adjacent 

layers. The basic strategy for developing an NN-based approach to identify the damage of a 

structure is to train the NNs to map the relationships between structural damages (outputs) and the 

input patterns. 

In this paper, combined parameters that consist of the change rates of the several former 

natural frequencies, the change ratios of the frequencies and the assurance criterions of the 

flexibilities are presented as the input parameters of NNs in structural damage identification. Two 

numerical example analyses on a cantilever and a planar truss are presented to demonstrate the 

effectiveness of the proposed method. Simulation results indicate that the combined parameters 

with modal flexibility are more sensitive than natural frequencies or mode shapes alone for damage 

detection, and the results also illustrate a great promise of using the combined parameters as input 

patterns of the NNs for detecting damages, and localizing the damage. 
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1 Inputs to Neural Network 

For the method of damage detection based on the NNs, the question what input patterns are 

more suitable for the NN, there is still not a good answer [7] . In the process of structural damage 

identification, the input patterns must be chosen first of all in order to characterize the changes of 

structural states. As the damage identification index, choosing proper parameters may increase the 

accuracy and reliability of identification, so it is the most important problem for damage 

identification. Several researchers have used the various input patterns Suitable for their purpose. 

Such as, Wu X, et al. [2] used the frequency spectrum, simulation results showed that was not 

effective. Yun Chungbang, et al. Es] used the natural frequencies and modes. Fox Es] showed that 

mode shape changes were relatively insensitive to damage in a beam with a saw cut. Using the 

natural frequencies or mode shapes alone for damage detection, may reduce the efficiency and 

accuracy of the damage identification l 

Recently, some researchers have found experimentally that the modal flexibility is a more 

sensitive parameter than natural frequencies or mode shapes alone for structural monitoring and 

damage detection in bridges Eg- 11], because the modal flexibility involves functions of both the 

natural frequencies and more shapes. In this paper, the combined parameters are presented as 

input patterns of NNs in structural damage identification, which are computed with change rates of 

the several former natural frequencies ( C R F ) ,  change ratios of the frequencies (RAF) and the 

assurance criterions of the flexibilities (ACF) .  

Definitions of the CRF and RAF are as follows: 

c(i)  = A,o, /o , , ,  ( l )  

R(  i , j )  = Awl /Ato  j ,  (2)  

where Ao~ i , to i means the change of the ith mode natural frequency and the ith mode natural 

frequency, respectively. 

For a structural system with n degrees of freedom, the natural frequencies are w 1 , w 2 , . . . ,  

co n , and mode shapes are ~) = [ r 1 6 2 1 6 2  which are normalized by mass matrix. The 

modal flexibility matrix is defmed as 

F = q, Txq, = (3) 

11 : ~ ' i] where Or is the transpose of 4~, and ~ = 1/co~ ... 
~ _, ~176176 

L "'" 0 1/w~ 

Definition of the ACF is given by 

(4) 
A(  i , j )  : (f:)Tfja(ffl)TfB' 

where f:,fjB means ith modal flexibility vector before and after the damage occurs, respectively. 

The input vector of the combined parameters is defined as 

/in = { C ( i ) , R ( i , i ) , A ( i , i ) }  ( i  = 1 , ' " , r n ) ,  (5)  

where m is the number of modes to be included in the identification. 
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2 N u m e r i c a l  E x a m p l e s  

The structures considered here to illustrate the effectiveness of the proposed approach are 

modelled as a planar truss and a cantilever. Structural damage is simulated by the reduction in 

Young' s modulus. 

2 .1 Can t i l eve r  s t r uc tu r e  

An example of cantilever, which contains 10 elements, 11 nodes and 20 nodal DOFs, is 

shown in Fig. 2. it is assumed that the baseline parameters are known. Values for the material and 

geometric properties are listed in Table 1. 

/ 

/ 

Fig.2 Cantilever structure model 

Table 1 Material and geometric properties of the cantilever 

Modulus Density Moment of inertia Width Height Length 

g / (kN/m 2) p / ( t /m 3) 1/(m 4) a / (m)  b/(m) L/(in) 

2.0E7 2.5 1.35E - 7 6.0E- 2 3.0E - 2 1.9 

The mode shapes are assumed to be measured only in the x-direction, and only the first 6- 

orders of the natural frequencies are available from the test DOFs. The first six CRFs (see 

Eq. ( 1 ) ) are used as input patterns to the NNs, so the dimension of the input vector will be six. 

The output patterns are defined as 

Oou t ~- ( O l , 0 2 , ' " , O i , ' " , O m )  , (6) 

where o i means the damage extent and location of the ith element, rn denotes all numbers of the 

elements. 

Using the NN(6-10-30-10), which consists of one input layer (6 nodes),  two hidden layers 

(10 nodes, 30 nodes) ,  and one output layer (10 nodes) ,  the training of the NN was 

accomplished by using Levenberg-Marquardt (L-M) algorithm [121 . The training and testing data 

sets are prepared for the case with 1% ,10% ,40% and 60% reduction of the modulus (element 

1 to element 10), respectively. Examples (due to 3 % ,  15 %,  30% and 55 % reduction in element 

1, 3% and 25% reduction in element 6) of the tested output are shown in the Fig .3(a)  to Fig. 

3 ( d ) ,  and Fig .4(a)  to F ig .4 (b ) .  

Figures 3(a) - (d) show that the estimation errors for the simulation data (element 1 ) are 

0 .5  % ~ 7 % for the case of single damage, It also can be seen that with the damage increasing, 

the identification errors increasing correspondingly, even fault identification occurs, such as 

element 4 damaged 6 % ( see Fig. 3 (c )  ) ,  and element 10 damaged 18 % ( see Fig. 3 (d )  ) .  
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Figures .4(a) ~ 4(b) show that estimation errors are 0.7% ~ 4% (for element 6).  But, it also 

has fault identification, such as element 10 damaged 5% (see Fig .4(b)) .  

3.0 

2.5 

~ 2 0  

~ 1.5 
O 
o 1.0 

0.5 

0.0 

-0.5 
1 2 3 4 5 6 7 8 9 10 

l _2 .0  ~ 5 6 _7___ 
Number of element E Number of element E 

(a) Damaged 3% (b) Damaged 15% 

30.0 

25:0 

20.0 

215 .0  

o 10.0 

5.0 

0.0 

-5.0 

i i 

1 
~ Im till [ ]  "1 2 

2 3 4 5 7 8 9 10 _ _  
Number of element E Number of element E 

(c) Damaged 30% (d) Damaged 55% 

70.0 
60.0 
50.0 
40,0 

2 3 0 . 0  
x 

20.0 
lO.O 
o.o 

-10.0 
-20.0 

3 4 5 6 7 8 9 10 

Fig. 3 Example of NN outputs (single damage of element 1 ) 
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Fig .4  Example of NN outputs (single damage of element 6) 

For the multi-damage problem, examples (elements 3,6 damaged 20 %,  35 % respectively, 

and elements 1,6 damaged 15%, 40% respectively) of the tested output are shown in Fig.5(a) 

and Fig.5(b) .  
Figure 5 shows that the estimation errors increase distinctly. The maximum error for Fig. 5 

(b) is 15%. Which have more fault identifications for multi-damage case than single damage 

case. 
The examples of the cantilever indicate that the NNs approach which employs the partial 
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CRFs data to identify damage is efficient for single damage. But, it also can be seen that with the 

damage increasing, the identification errors increasing correspondingly. For multi-damage case, 

more fault identifications occurred, even though for small damage case. 
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Fig.5 Example of NN outputs (multi-damage) 

Truss s tructure  , 2 . 2  

To overcome the disadvantages of above input vector by using CRFs, an example of truss is 

presented in this section, which indicates that the combined parameters proposed in this paper will 

be more suitable for the input patterns of NNs than the other parameters alone. 

The second example is a truss as shown in Fig .6 ,  which contains 13 elements, 8 nodes and 

The main parameters are listed in Table 2. 

2 (~) 4 (~) 

i, 

Fig. 6 Truss structure model 

Table 2 Material  and geometric properties of the truss 

Modulus Density Sectional area Class (D Class (~) 
E/(kN/m 2) p / ( t /m  3) A/(m 2) Length l , / (m)  Length 12/(m) 

2.0E7 2.5 4.0E- 3 4.24 3 

13 nodal DOFs. 

Using the NN (12-25-13),  which consists of one input layer (12 nodes),  one hidden layer 

(25 nodeS), and one output layer (13 nodes).  The training and testing data sets are prepared for 

the case with 2 % ,  10% ,25% ,40% and 60% reduction of the modulus. The first four order 

parameters (see Equation 5) are used as input patterns to the NNs, example (single damage case, 

due to 5 % ,  15% and 30% reduction in element 3, element 7,  and element 10, respectively) of 

the tested outputs is shown in the Fig .7 ,  and another example (multi-damage case, due to 10% 

and 20% reduction in element 5 and element 11, respectively) of the tested outputs is shown in 
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Fig.8.  
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Hg.7 Example of NN outputs using the Fig.8 
combined parameters (single damage) 
(Elements 3, 7, 10 damaged 5 %, 
15 %, and 30%, respectively) 

Example of NN outputs using the 
combined parameters ( multi-damage ) 
(Elements 5,11 damaged 20%, 10%, 
respectively) 

Figures 7 and 8 show that the NNs approach, which employs the combined parameters (Eq. 

(5) )  data as input patterns to identify damage (location, extent), is more efficient for single- 

and multi-damage than the other parameters alone (see the cantilever example) ; with the damage 

increasing, the identification errors keeping almost no changes correspondingly. The maximum 

error for Fig.7 (single damage case) is only 1 . 6 % ,  and for Fig.8 (multi-damage) is only 1. 

2 % .  

3 Summary 

For the problem of structural damage identification based on the NNs, the combined 

parameters are presented as the input patterns of the NNs in this paper, which consist of change 

rates of the several former natural frequencies, the change ratios of the frequencies and the 

assurance criterions of the flexibilities. Some numerical simulation examples, such as, cantilever 

and truss with different damage extents and locations are analysed, which indicate that the 

combined damage parameters will be more suitable for the input patterns of NNs than the other 

parameters alone, not only for the case of single damage, but also for the multi-damage. 

Especially, for the case of multi-damage, the data simulation proved the proposed method more 

effectiveness. 
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