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Abstract: The generalized Fourier-series method was used to derive the impact

responses formula of an unrestrained planar frame structure when subjected to an impact

of a moving rigid-body. By using these formula, the analytic solutions of dynarnic

responses of the contact-impact system can be obtained. During the derivation, the

momentum sum of elastic responses of the contact-impact system is demonstrated to be

zero. From the derivation, it is seen that the modal method can also be used to solve

this kind of impact problem.
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Introduction

Recently, there have been considerable studies on transient responses and wave

propagation of restrained structures which are being impacted[1,2]. But, for the unrestrained

structures, there are few relative literatures having been published. Unrestrained structures

are mainly space structures, which often are very important structures, for examples: ,space

vehicles, space stations and satellites which are moving in the small-gravity or zero-gravity

environment. When these structures are subjected to impacts of moving bodies, even if

slight impacts, the motion of these structures or the experiment task executed in these

structures may be affected severely so much as to lead to failure of the experiment.
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Therefore, impact responses of these types of structures need to be analyzed precisely.
Moreover, it is hoped that this investigation will be useful for spacecraft docking and for

vibration control of space stations or satellites.
We have studied the problems of longitudinal impact for an unrestrained bar and

transverse impact for an unrestrained Timoshenko beam[3] , obtained the analytic solutions of

impact responses of these impact systems, and concluded that the momentum sum of elastic
responses of the impact system is equal to zero. For the impact problem of the unrestrained
structure which is struck by a moving rigid-body, whether the same method (the general
Fourier-series method) can be used to solve the impact responses? Whether the impact
system follows the same regularity? And whether the calculation results can illuminate clearly

the propagation phenomena of stress waves in the structural members? They arouse our great
interest. With these questions, in this paper we analyze an unrestrained planar structure
which is subjected to the impact of a moving rigid-body. The paper includes two parts. In
Part I, the instant response formulas of an unrestrained planar frame structure subjected to

the impact of a moving rigid body are derived. In Part II , the numerical example is given.

1 Impact System

A symmetry unrestrained planar frame structure (as shown in Fig. 1) is considered.

The length of the frame is L and its width is L12. The frame structure is composed of two

square spans, each side-length of which is L12. The structure is struck by a rigid mass Mo
with the velocity So at the joint B along its symmetry axis. In the structure, the joints A, C,
D and F are pin-connected joints, and the joints B ,E are rigidly-connected joints. Since the

structure members AD, CF are pin-connected at each end of them, they can be seen as bar
elements. Due to the symmetry of the structure and loading, there are only axial
deformations but no transverse deformations for member BE, so it can also be seen as bar
element. The members AC ,DF are both analyzed by Timoshenko Theory of beams,
considering the effect of transverse shear deformation.

The moving rigid-body and the unrestrained structure are considered as a contact-impact
system. Considering the symmetry of the system, half part of it (as shown in Fig. 2) is
chosen for analysis. Here, we denote beamAB and beam DE by beam 1 and beam 2, bar DA

and bar EB bar by bar 3 and bar 4, respectively. For the members 1, 2, 3 and 4, we
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introduce the local coordinate systems (XI ,YI), (X2,Y2), (X3,Y3) and (x4,Y4) , with the
corresponding coordinate origins of 0 1,02,03 and 0 4 at the joints A,D,D and E,

respectively.

2 Modal Functions

2. 1 Modal functions of Timoshenko beam
The motion equations for a Timoshenko beam are

EI~ + kAG( av - .,,) - pI~ = 0 (l )
ax2 ax 'f' at2

,

A iv _ kAG( iv _ M!..) = 0 (2)
p at2 ax2 ax '

where v ( X ,t) is the transverse displacement of the beam; l/J (X ,t) is the bending rotation

angle of the beam's cross-section; E, G, I, A andp are the elastic modulus, shear modulus,
inertia moment of the cross-section, cross-sectional area and mass density of the beam,

respectively; k is the shape factor of the cross-section.
The transverse displacements and bending rotation angles of beams land 2 can be

written as

Vi(gi,t) = Vi(gi'P) 'sinpt, (3)

l/Ji(gi,t) = 'P;(gi'P) •sinpt , (4)
in which i = 1 ,2, denoting beams land 2, respectively; gi = x/L are the dimensionless
coordinates along the axis of beams land 2 ; p is the circular frequency of the impact system;
L is the length of the rectangle frame.

Through derivation, the modal functions of transverse displacements and bending
rotations of beams land 2 can be written as the following forms[4] :

V;(gJ = Cil • cos( biaigJ + Ci2 • sin( biaigJ + CiJ . cos( bj3igJ + CiA' sin( bj3lJ , (5)

'Pi(gJ =Dil'sin(biaigJ +D'2'cos(bialJ + DiJ'sin(bj3igJ + DiA'cos(bj3igJ , (6)
in which

. 2 2 2 2 2 1/2 lIEI
a , = ['i + Si _ (" - S, ) l] b2 = _ A.L4 2 ,2 = _i S2 = __i i
f3 . 2 + -- + b2 ' I EIP" p" A.L2' , kA.G.L2·

& 2 & & I J. t & &

It can be derived further that the coefficients Cil - Ci4and D il - D iA in Eq. (5) and Eq.

( 6) must satisfy the following relationships[4
] :

L a i 1
Cil = T' 2 _ 2

D il '
I Si a,

L f3i 1 D
w= -. 2 f32CiA b Si - i,

2.2

L f3i 1
CiJ = -b-. • 2 _ 2DiJ'

& Si {3i
Modal functions of the bars

The motion equation for a bar can be written as:

iu(x,t) E. iu(x,t)
ax2 = E' at2

The longitudinal displacements of bars 3 and 4 are given by

u/ xj ,t) = U/ gj,p) •sinpt ,

(7)

(8)
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in which j =3 ,4, denoting bars 3 and 4, respectively; The definitions of gjandp are the same
as before.

Substituting Eq. (8) into Eq. (7) , the modal functions of longitudinal displacements of
bars 3 and 4 are obtained

Uj( gj) = DJ1 • cos ( nlj) + Dfl • sin ( nlj) , ( 9 )

in which 4 = bj·Tj, bf =pjAjL4lIE/j' Tf = I/AjL
2.

3 Boundary Conditions

- - E .A
4 .l .

aU4
1 ,P; I€,;1I2 = O.

- 4 2 L CJg4 €.;V2

( 10)a1Jt1I = 0
ag l €,;O

For the equivalent impact system as shown in Fig. 2, the conditions of equilibrium and
compatibility at each joints of the structure can be separately expressed as follows:

The condition of equilibrium at joint A :

klA IGI •(l. aVI _ 1Jt
I

) I = E3A3.iaU31 '
L agl €,;O L ag3 €,;1I2

The condition of equilibrium at joint B:

kIAIGI(l.aVI -1JtI ) I - ~ ·Mo·l·vI I _
L CJgI €,;V2 €,-I/2

The condition of equilibrium at joint D :

k2A2G2·(l. aV2 -1Jt2) I = - E3A3.i. aU31 '
L ag2 €,;O L ag3 €,;O

The condition of equilibrium at joint E:

k2A2G2•(l. aV2 _ 1Jt2) I =E4 • A4.L. au4/ '
L ag2 €,;1I2 2 L ag4 €.;O

The condition of compatibility at joint A :

VI I t: -0 = U3 I ... - €,; 1/2

The condition of compatibility at joint B:

VI I t: -1/2 = U4 I ... - €. ;1/2

The condition of compatibility at joint D :

V2 I <;0 = U3 I .., €,;O

The condition of compatibility at joint E:

V2 I < ;1/2 = U4 I .., €.;O

a1Jt21 = 0
ag2 €,;O

1JI: I =02 €,; 1/2 •

(11)

(12)

(13)

(14)

(15)

(16)

( 17)

4 Characteristic Equations and Natural Frequencies

Substituting Eq. (5) , Eq. (6) and Eq. (9) into the above boundary conditions Eqs.
( 10) - (17) , considering the relations of Cij and Dij ( i, j = 1,''',4), and introducing the
mass ratio of beam AC to the moving rigid-body A = PIAlLIMo , the homogeneous linear
equations set with respect to the coefficients in the modal functions can be obtained

si si E3A3·b3T3 ( • b3T3 b3T3 )
2~·DI2 + 02 _ 2· D14 + kA G .L· sm-

2
·D31 -cos-

2
·D32 = 0, (18)

U I Sl PI SI I I I

b.a, ·D l1 + bd31·D13 = 0, (19)
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(20)

(21)

2 2
51 (. b.a, 1 bl(X1 bl(XI) D 51 ( bl(X1 1 bl(X1 . bl(XI) D-2--2 Sln-- +-'--'COS-' 11 +-2--2 COS- --'-'Sln--' 12

(XI - 51 2 2 A 2 (XI - 51 2 2 A 2
2 2

51 (. bJ31 1 bJ31 bJ3l) D 51 ( bJ31 1 bJ31 . bJ3l) D
+~ sm- +-'-'COS-' 13+~ cos- --'-'Sln-' 14

PI - 51 2 2 A 2 PI - 51 2 2 A 2

1 E4A4•b4T4 ( . b4T4 b4T4)-2' kIAIGI.L· smT·D41 -COST·D42 = 0,

. bl(XI bl(XI . bd31 bd31
smT·Du + cosT·Dl2 + smT·Du + COST·DI4 = 0,

(22)

(23)

(24 )

(29)

(25)

(26)

(27)

(28)

5; 5; E3A3•b3T3
2--2·D22 + 2 2· D24 + k A G L ·D 32 = 0,

(X2 - 52 /32 - 52 2 2 2'

b2(X2 •D21 + b2/32' D23 = 0,

S; . b2(X2
2--2 -sm T· D21

(X2 - 52

5; b2(X2 5;. bJ32
+ 2 2'COS -2-·D22 + 02 2-sm -2 'D 23

(X2 - S2 P2 - 52

S; bl32 1 E4A4· b4T4
+ 02 2'COS T· D24 - 2' k A G 'L ·D42 = 0,

P2 - 52 2 2 2

. b2(X2 b2(X2 . bl32 bJ32
sln-

2-·D21 + cos-
2-·D22 + smT·D23 + COST·D24 = 0,

L (XI 1 L /31 1 b3T3. b3T3
-b-' 2 2-o; + -b-' 2 2-ti; + COS T· D31 + sin T· D32 =0,

I (XI - 51 I /31 - 51

L (XI 1 bl(X1 L (XI 1 . bl(X1 L /31 1 bl/31
-b-' 2 2·cos T·Du - -b-' 2 2-srnT· Dl2 + -b-' 2 2·cos -2 -ti;

I (XI - 51 I (XI - 51 I /31 - 51

L /31 1 . bl/31 b4T4 . b4T4
- -b-' 2 _ 2-sm T'DI4 + COS T· D41 + sin T·D42 =0,

I /31 51

L(X2 1 L/32 1
-b-' 2 2·D21 + -b-' 2 2·D23 + D31 =0,

2 (X2 - S2 2 /32 - S2

L (X2 1 b2(X2 L (X2 1 . b2(X2
-b-' 2 2·cosT· D21 - -b-' 2 2-sinT· D22

2 (X2 - 52 2 (X2 - 52

L /32 1 bJ32 L /32 1 . b2/32
+ -b-' 2 _ 2·cos -2 ·D23 - -b-' 02 _ 2-sm -2 ·D24 + D41 = 0.

2 /32 52 2 P2 S2
Equations (18) - (29) can be written inAmatrix form:

A • d = 0, (30)

in which d = (Du,Dl2,DI3,DI4,D21,D22,D23,D24,D31,D32,D41,D42)T is the vector
composed of coefficients in displacement and angular modal functions VI (~I) ,PI (~I) ,

V2(~2)' P2(~2) ,U3(~3) and U4(~4)'

The parameters are not the same for different members, so the dimensionless

frequencies bk ,k = 1, "',4 for different members differ from each other even though the

whole structure vibrates at the same natural frequency. For convenience, suppose that the

section constants of different members are the same, so the dimensionless frequencies bk , k =
1 , ... ,4 of different members are uniform, and in this paper it is denoted by b.
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A A

Only when I A I =0, the nontrivial solutiops of Eq. (30) exist. Letf( b) =I A I , then

f( b) =I A I = O. ( 31)
Equation (31) is the characteristic equation of the impact system. It has unlimited positive

real roots bn ,n = 1,2,3,''', which correspond to the infinite natural frequencies of the

system Pn ,n = 1,2,3,"',

z = EI bZ• (32)
Pn pAL4 n

For every bn ,n = 1,2,3,"', the corresponding "characteristic vector" can be obtained:

d; = (Dll,n ,DIZ,n ,D13,n ,DI4,n ,DZI,n ,Dzz,n ,DZ3,n ,DZ4,n ,D31,n ,D3Z,n ,D41,n ,D4Z,n) T. (33)
In usual analysis of structure vibration, the characteristic vectors indicate the modal
functions[5] • But, the "characteristic vectors" here are not the same as that just introduced.

They are obtained by using the matrix theory to solve the matrix Eq. (30) , which denotes

the vectors composed of coefficients in every order of modal functions VI,n (gl) ,1JI'z,n (gl) ,
VZ,n (gz) , 1JI'z,n (gz) ,U3,n(g3) and U4,n(g4)' Utilizing the relation between eij and Dij , we can
determine the modal functions corresponding to every characteristic root bn ,n = 1,2,3"':

t.«, 1 t:«; 1 .
VI,n(gl) = -b-' Z Z·Dll,n·cos(bnangl) --b-' Z z·Dlz,n·sm(bnangl)

n S - an n S - an

1JI'1,n (gl)

VZ,n(gz)

1JI'z,n (gz)

U3,n( g3)

U4,n( g4)

L f3n 1 () L e, 1 . ( )
+-b-' Z _02.D13,n·COS bnf3ngl --b-' Z _02.DI4,n·sm i.ei. ,

n S Pn n S Pn

= Du n·sin( b; anti) + D1z n-cosf b, anti), ,

+ D13,n •sine b, es.: + DI4,n'cos( bnf3ngl ) ,

L an 1 () L an 1 . ( )= -b-' z Z·DZI,n ·cos bnantz - -b-' z z ·Dzz,n 'SIn bnantz
n S - an n S - an
L f3n 1 L e, 1 .

+-b-' Z _02.Dz3,n·cos(bnf3ntz) --b-' Z _02.Dz4,n·sm(bnf3ngz) ,
n S Pn n S Pn

= DZI n•sine bnantz) + Dn n•cos( bnangz), ,

+ DZ3,n 'sin(bnf3ntz) + DZ4,n 'cos(bnf3ntz) ,
= D31n'cOS(flnt3) + D3Zn'sin(flng3) ,, ,

= D41,n 'cOS(flnt4) + D4Z,n ·sin(flng4)·

(34)

(35)

(36)

(37)
(38)
(39)

5 Dynamic Responses

With every order of characteristic root of the impact system bn , n = 1,2 ,3 , ...

corresponding to the characteristic vector dn , we can obtain the corresponding modal

functions VI n(tl) ,1JI'z n(gl) ,Vz n(gz) ,1JI'z n(gz) ,U3n (t3) and U4nu.: For" normalizing". . , , , ,

the modal functions, they are divided by a certain coefficient (for example Du,nL aJ( b;(/

- a:)), the coefficient of cos(bnantl~ in VI,n({i) , whic1~.Js denoted by An' ~hen we can

get the" normalized" modal functions VI,n (tl) , 1JI'z,n (tl) , VZ,n (gz) , 1JI'z,n (tz) ,U3,n(g3) and

U4,n(t4) , in which all the terms are known except for An' And then every modal function
can be expressed as the product of An and the corresponding "normalized" modal function.

Because of the symmetry of the structure and the loading, the beam has only a rigid

translation displacement, without any rigid rotation displacement. For the whole structure,
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the rigid displacement can be expressed by Aot + Bo. So the transverse displacements and
bending rotation angles of the impact system can be written in following series form:

1) For beam 1:
+0>

V1,n(gl,t) = Ao-t +Bo + IAn-V1,n(gl)-sinpnt, (40)
11.::;:1

+0>

l/JI,n(gl,t) = IAn-P1,n(gI)-sinpn t.
11.=1

2) For beam 2:
+0>

VZ,n(gZ,t) =Ao-t +Bo + IAn-Vz,n(gz)-sinpnt,
11.=1

(41)

(42)

+0>

l/Jz,n (gz ,t) = I An -PZ,n (gz) -sinPnt.
11.=1

(43)

3) For bar 3:
+0>

U 3,n( g3,t ) = Ao-t +Bo + IAn-U3,n(g3) -sinpnt.
n;}

(44)

4) For bar 4:
+0>

U4,n(g4,t) = Ao -t + Bo + I An -U4,n(g4) -sinpnt.
11.=1

(45)

6 Initial Conditions

(46)

(47)

(48)

(49)

(50)

o~ gl ~ 112,

o ~gz';;;; 112,

Initial conditions are

V1(gl,t) 11=0 =0; l/JI(gl,t) 11 =0 =0,

Vz( gz, t) I 1=0 =0; l/Jz( gz,t) I 1=0 =0,

U 3( g3,t ) 1 , =0 = 0, 0 ~ g3 ~ 112,

U4(g4,t) 1,=0 =0, 0 ~ g4 ~ 112,

gt(gl) = avl(gl,t) I = {-So, gl = 112,
at 1 =0 0, 0 ~ gl < 112,

al/JI(gl,t) ' = 0, avz(gz,t) ' = 0, al/Jz(gz,t) I = 0, aU3(g3,t) I = 0,
1 =0 at 1 =0 at 1 =0 at 1 =0

(51)

aU4(g4,t) I = {- So, e. = 112, (52)
at 1=0 0, 0 ,;;;;g4 < 112.

From the displacement initial conditions (46), (47), (48) and (49) , we have
Bo =O. (53)

And the rotation angle initial conditions are satisfied automatically.

7 Coefficient of Rigid Response Ao

For the rigid modes and the elastics modes of the impact system, the orthogonality
condition can be deduced by using Betti's law[5] :

!i.~[1I1Z
- & Tn1(gl) -V1,0 (gl) -V1,n (gl) -dgl +1I1Z

- & Tn4(g4) -U4,o(g4) -U4,n(g4) -dg4]

+ fl2 Tnz(gz) -Vz,o (gz) -Vz,n (gz) -dgz + lllz Tn3(?73) -U3,o(g3) -U3,n(g3) -dg3
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-- (1)- (1)+M·YI •o 2 ·YI •n 2 = 0, n = 1,2,3,''', (54)

(56)

whereml(~I),m2(~2) ,m3(~3) andm4(~4) are the distributed masses of elements 1,2,3

and 4, respectively j M is the concentrate rigid mass of the equivalent impact system.
Utilizing the initial conditions (46) - (52) and the orthogonality condition (54) , the

coefficient of rigid response Ao can be obtained
Ao =- 50/(3. 5'A + 1). (55)

The coefficient Ao is the rigid velocity of the structure u, =- 50 / ( 3.5 • A + 1). So the
momentum of rigid response for the structure equals (3. 5· A + 1) .Mo'V r , which is just equal
to the initial momentum of the rigid-body - Mo • 50 before the contact-impact process.
According to the principle of momentum conservation, the momentum sum of elastic
responses for the system should be zero. From this view point, the rigid response of the
structure can be evaluated directly.

8 Coefficients of Elastic Response An

For the elastic modes of different orders of the impact system, the similar orthogonality
condition can be deduced by using Betti's law[5]. By using the same initial conditions and
the orthogonality condition, the coefficients of elastic response An can be obtained

An = M.VI.m( ~ )·gl( ~ )!P: 'U~~{tl2-s[ml(~I) 'Vi,n(~I) + il(~I) ·1Jfi,n(gl) ] '<!gl

+ LII2
-

S

m4 (~4) •U~.n (~4) . <!g4 }+ L
lI2

[m2(~2) •V;,n (~2) + /2(~2) •P;,n(~2) ] •<!g2

(112 - - - (1)}
+ Jo m3(g3) 'U;.n(~3) 'd§3 +M·Yi,n 2 .

9 Dynamic Responses

Substituting the generalized coefficients Aoand An into Eqs. (40) - ( 45) , we can get the

translation displacement and bending rotation angle of each member for the structure. Then
we can obtain further the other dynamic responses, such as the shear force Q(~ ,t) , the
moment M (~ ,t) and the axial force N(~ , t) , etc. , which are as follows:

1) For beam 1:

QI(~I ,t) =- kAG· [ ~ •OV1 ~~I ,t) - ifJl (~I ,t) ]

+a> av (~) _
=- kAG· '\' A .[l.-. I,n I -1JI' ce )]'sinp t (57)

~ n L:Jt: I.n sIn'
a e l U~I

M (l: t) =EI.l.-.aifJI(gl,t) = EI· ~ A .1.-.a1Jl'1.n(~I) 'sinp t (58)
I ~ I , L at: L n L:Jt: n •

~l n=! U~l

2) For beam 2:

Q2(~2,t) =-kAG.[ 1·aV2~i:,t) -ifJ2(~2,t)]

=- kAG· I An' [l.-. aV2.n(~2) - 1JI'2.n(~2!) ]-sinPnt, (59)
n=! L O~2
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= EA. I An •aU4.n(g4) .
n=1 ag

4
·SlllPn

t .

= EA. I An' aU3.n(g3) .
,,=1 ag

3
·SlllPn

t.

Mz(gz,t) = EI.l.al/Jz(gz,t)
L at:

3) For bar 3: ~z

N3( g3,t ) = EA. aU3(g3 ,t)

4) For bar 4: ag
3

N4( g4,t ) = EA. au4(g4,t)
ag4

+00=EI. IA .l.ao/z.n(gz)
n e l n L ag

z
·sinpn t . ( 60)

(61)

(62)

10 Conclusions

1) In this paper, the generalized Fourier-Series method is used to derive the analytical
solutions of transient responses for an unrestrained planar frame structure subjected to the
impact of a moving rigid-body. It is demonstrated that the modal method can also be used to
successfully solve this type of impact problem.

2) Through derivation, it is found that the impact problems of unrestrained structures
follow the same regularity as that in the first two chapters of Ref. [3 J. The dynamic
response of a impact structure are composed of two parts: rigid response and elastic
response, and the rigid response of the structure depends on the mass ratio of the structure to
the rigid-body; The momentum of the rigid response of the structure equals that of the
moving rigid-body before impact. According to the principle of the momentum
conservation, the momentum sum of the elastic response in the structure is always zero.

3) The method this paper can be used to derive the impact response formulas for the
similar unrestrained frame structure.
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