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H. Filtering in Neural Network Training and Pruning
with Application to System Identification

He-Sheng Tang'; Songtao Xue?; and Tadanobu Sato®

Abstract: An efficient training and pruning methodology based on the H., filtering algorithm is proposed for artificial neural networks
(ANNSs). ANNS s are first trained by the H,, filtering algorithm and then some unimportant weights are removed based on the training. The
results presented in the paper show that the proposed method provides better pruning results of the network without losing its generali-
zation capacity. It also provides a robust training algorithm for given arbitrary network structures. The usefulness and effectiveness of the
proposed methodology are demonstrated in developing an ANN model of a hysteretic structural system.
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Introduction

It has been recognized that artificial neural networks (ANNSs)
offer a number of potential benefits for application in the field of
nonparametric system identification, particularly for modeling
nonlinear systems (Masri et al. 1996; Nakamura et al. 1998; Chen
et al. 1995; Masri et al. 2000; Wu et al. 2002). One concern in
neural networks is the choice of a “fast” and “robust” training
algorithm for a given problem. In neural network training, the
most used online training method is the back-propagation algo-
rithm (BPA) (Rumelhart et al. 1986; Abid et al. 2001). However,
it is virtually a first-order stochastic gradient descent method
(Jaakkola et al. 1994), and hence, its learning speed could be very
slow. Many modified schemes based on the classical nonlinear
programming technique have been proposed to speed up the train-
ing (Bojarczak and Stodolski 1996; Haykin 1999). Adopting from
the idea in identification theory (Haykin 1996), a class of second-
order descent methods such as the recursive least-squared (RLS)
(Chen et al. 1990; Kollias and Anastassiou 1989; Leung et al.
1996) and extended Kalman filtering (EKF) (Singhal and Wu
1989; Fukuda and Tzafestas 1991; Shah et al. 1992; liguni et al.
1992) algorithms, has been introduced to estimate the weights of
a neural network. The RLS algorithm is an effective online train-
ing method for neural networks. However, one main drawback of
the existing RLS algorithm is its stability. RLS may not be able to
run for a large number of samples. Although the EKF algorithm is
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somewhat efficient for the network training, it should be noted
that the EKF method requires knowledge of the noise source sta-
tistics. The convergence of this algorithm as well as the final
values depends, to a great extent, on this initial guess, which is
unrealistic in modeling identification. In an earlier work, the writ-
ers have presented suboptimal H., filtering to train feedforward
multilayer networks, which is independent of noise statistics
(Tang and Sato 2004). Despite so many techniques, a further
improvement is highly desirable as regards learning accuracy,
computational complexity, numerical stability, and generalization
capability.

Apart from the training algorithm, another concern in neural
networks is the size of a neural network for a given problem. If
the size is too small, the network may not be trained to solve the
given problem. On the other hand, if the size is too large, over-
fitting occurs and also the resource is wasted (Abrahart et al.
2001; Makarynskyy et al. 2005). Thus, in order to eliminate un-
necessary weights, the pruning algorithm has been applied. There
are different pruning or model selection methods, such as the
Akaike information criterion (AIC) and cross-validation tech-
niques (Akaike 1974; Stone 1977), which require tens of net-
works to be exhaustively trained before the correct network size
is determined, or the simple weight decay method (Krogh and
Hertz 1992; William 1995; Bebis et al. 1997), or error sensitivity
based optimal brain damage (OBD) (LeCun et al. 1990) and op-
timal brain surgeon (OBS) (Hassibi and Stork 1993) methods, or
OBD-like pruning methods (Sum et al. 1999; Leung et al. 2001),
or growing methods (Haykin 1999) which may be sensitive to
initial conditions and become trapped in local minima (Prechelt
1996). In the OBD and OBS approaches, the estimation is based
on the Hessian matrix of the training error. However, the Hessian
matrix is usually unavailable in online mode operation since the
training patterns are not held after training.

As the H,, filtering was shown to be more efficient and robust
than the Kalman filter (Sato and Qi 1998; Hassibi et al. 1998), it
is useful to see the possibility of applying the H., filtering training
method together with network pruning. The objective of the
present study is to develop an ANN training and pruning meth-
odology based on the H.,, filtering algorithm for identification of
nonlinear systems. It will be shown that the proposed methodol-
ogy can reduce the complexity of the network during the training
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without diminishing the network’s estimation capacity. Moreover,
independent of the statistics of the disturbances of the network’s
inputs and outputs, the proposed method provides a robust global
optimization training algorithm for given arbitrary network struc-
tures. Examples of nonlinear system identification are given to
verify the usefulness and effectiveness of the proposed
methodology.

H,, Filtering Algorithm in Neural Network Training

H,, Filtering Algorithm

H., filtering (Didinsky et al. 1995; Hassibi et al. 1998; Sato and
Qi 1998) is a state estimation problem of minimizing the maxi-
mum energy in the estimation error over all the disturbance tra-
jectories and without any assumptions on the statistics or distri-
butions of the disturbance signals. The worst-case performance is
a useful formulation when the unknown signals contain determin-
istic components, or when they are random but with unknown
statistics.

The design of discrete H., filtering is discussed by Hassibi et
al. (1998), and is explained as the following linear discrete
system:

X1 = AgX + By (1)

V= Cxi +my (2)

where x;=state vector of the system at the time step k; y,=vector
of measurement at time step k; v,=process noise; and
n,=measurement noise. There is no assumption on the nature of
the unknown quantities n; and v, and (A;,B;,C;) are known
system matrices.

The suboptimal H., estimation problem is interesting not nec-
essarily in the estimation of x;, but in the estimation of some
arbitrary linear combination of x; using the noise-corrupted ob-
servations {y;,k=0,1,2,N-1}, i.e.

2, =Lix; (3)

where L, e R7*". Different from that of the modified Wiener/
Kalman filter, which minimizes the variance of the estimation
error, the design criterion of the H., filter is to provide a uniformly
small estimation error, z,—Z;, for any ny, v, € [, and x, € R". Let
the estimation performance measure be

N-1 n
2k=0 ”Zk - ZkH%)k
J= 4)

o N-1 2 2
HXO_XOHPEI + 2k=0 {”V"HWZI * ”nk VZI}

where [(xo—X,), W, V] #0; X,=a priori estimate of Xy, X,—Xg
represents the unknown initial condition error; PSI >0, Q,=0,
W, >0, and V,>0=weighting matrices. P;' >0 denotes a posi-
tive definite matrix that reflects a priori knowledge on how the
initial guess X, close to X, is. The notation [z[g, is defined as the
square of the weighted (by Q) [, norm of z,, i.e., ||zk||é=z,{sz.
The H,, filter will search Z, such that the optimal estimate of z,
among all possible Z;, in the sense that the supremum of the
performance measure should be less than a positive prechosen
noise attenuation factor 'yz, i.e., the worse case performance
measure

sup J<w? (5)

xo,{nk},{vk}

Input Hidden 1 Hidden 2 Output

Fig. 1. Feedforward neural network model

Theorem (Hassibi et al. 1998)

Let y>0 be a prescribed level of noise attenuation. Then, there
exists an H,, filtering for x, if and only if there exists a stabilizing
symmetric solution P,>0 to the following discrete-time Riccati-
type equation:

Pii=AP (I, + CV;'CP, - V_z(_)kPk)_lAZ+ B,W,B/. P,=p,
(6)

where (_)k=L,{QkLk. If this is the case, then an H., filtering can be
given by

L=LX X =A% (7)

X =%, + Ky — CX_)), XZ,=X(=linitial guess (8)

where X;=a posteriori estimate of the state at the step k;
%, =prediction of x;; and K;=gain of the filter given by

K= AP, + CiV,'CPY ' C V! )

The above formulation shows that H.-optimal estimators
guarantee the smallest estimation error energy over all possible
disturbances with finite energy. Consequently, they are overly
conservative and will result in better robust behavior to distur-
bance variations.

H.. Filtering in Network Training

In this study, a feedforward neural network (FNN) is adapted
(Fig. 1). Fig. 1 shows a typical three-layer FNN: the input layer
u; (i=1,...,n) with n nodes, the two hidden layers with p and ¢
nodes, and the output layer y; (i=1,...,m) with m nodes. Be-
tween layers, there are weights, wilj, wizj, and w?j, representing the
strength of connections of the nodes in the network. In Fig. 1 we
can assign a different activation function of y(e), B(¢), and a(e)
with corresponding bias terms, b', b2, and b3, for each layer. In
this paper, the hyperbolic tangent function

1 =™

flx) = (a>0) (10)

14+
is chosen as the activation function.

The output vector y is calculated by feeding the input vector u
through the hidden layer of the FNN, which is given as

y=ofw!'B[w>y(wiu+b?) + b?] +b'} (11)

with wi=[wi]; w’=[wi]; w’=[w]; b'={bj,....b)}"; b’
={p, ... ,bZ}T; b*={b3,....b>}; and u={u,,...,u,}". Without
loss of generality, the bias can be omitted in this network in order
to reduce network complexity (Haddadnia et al. 2002).
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Let y,=f(w;,u,) be the transfer function of a single-layer
FNN, where y,=output; u,=input; and w,=parameter vector.
Given a set of training data, the training of a neural network can
be formulated as a filtering problem (Singhal and Wu 1989; Tiguni
et al. 1992). In this case, a discrete-time FNN’s behavior can be
described by the following nonlinear state-space model without
process noise (here, the prescribed x; will be replaced by w,):

Wil = Wy (12)

i = f(wi,u) +ny (13)

Eq. (12) is known as the process equation, where the state of
the system is given by the network’s weight parameter values wy.
Eq. (13) is the observation or measurement equation; it represents
the desired network response vector y, as a nonlinear function
f(e) of the input vector u, and the weight parameter vector wy;
this equation is augmented by the random measurement noise ny.

To apply the optimal H,, filtering algorithm, a linear Taylor
approximation of f(w;,u;) at W,_,, u; is used. That is

f(Wk,uk) = f(\”\V,;_l,uk) + Ck(wk - \”\V;_l) (14)
where
of
= T (15)
aw u=uk,w=\?v;_1

A new quantity is introduced as follows:
N =Y~ f(Wiw) + Cowi (16)

The entries in the term n, are all known at time k, and there-
fore, m; can be regarded as an observation vector at time k.
Hence, the nonlinear model [Eq. (13)] is approximated by the
linear model

= Cwi + 0y (17)

The problem addressed by H.,, filtering is to find an estimate
w, of w, with given values of u;m; (j=0,1,...,k). The full al-
gorithm is then obtained by substituting the linearized mapping
functions into the H., filtering recursion Egs. (6)—(9). The process
equation, Eq. (12), is linear; thus matrix A, is an identity matrix.
Suppose that weighting matrices Q,, W, and V, are all identity
matrices. Then an optimized H,. filtering algorithm for neural
network training can be derived

Wi =W, + K — CW_))

= Wi + Ky, = f(W_ ) + CoWvy_y = CoWv ]

=W + Ky, —f(W_pu)l, Wi, =AW, (18)
K =PI+ C[CP)'C] (19)
P, =PI+ C[CP, -y L{L,P)"! (20)

where the attenuation factor y must be tuned so as to satisfy the
P, positive definite.

H,, Filtering in Neural Network Pruning

In this section, the conjunction of network training and pruning
with the H.. filtering algorithm will be illustrated. To present the
new methodology, the background of the Hessian-based network
pruning approaches (Haykin 1999; LeCun et al. 1990) is first
introduced. The basic idea of this approach to network pruning is

Subs3

Subs2

Subs1

TS T 777777777

Fig. 2. Model of three degrees of freedom structural system

to use information on second-order derivatives of the error sur-
face in order to make a trade-off between network complexity and
training-error performance.

Without loss of generality, the network employed here is con-
sidered as a feedforward architecture with n; input units, ny hid-
den sigmoid units, and a single linear output unit. The initial
network is fully connected between layers and implements a non-
linear mapping from input space u, to target output space
Vi=fir(u;,wy), where f(¢)=actual output mapping function;
w=network parameters; and y,=prediction of the target output
v Then, for a given training set, the cost function can be ex-
pressed as

1 N
Ew)= 222 (= fo)? (21)
k=1

where N=number of training examples.

Under the assumption that the network is fully trained, i.e., the
cost function E has adjusted to a local or global minimum on the
error surface, the second derivative of E with respect to w or the
Hessian matrix can be approximated as

R PAYEAY
B = 1> (a)(a) (22)

The OBD procedure simplifies the computations by making a
further assumption of the Hessian matrix H being a diagonal ma-
trix. Thus, the saliencies for each parameter are as follows:

1
Si= E[H]i,iw[zi] (23)

where [H]; ;=ith diagonal element of the H; and w;;= ith weight.

However, the assumption of diagonal dominant of matrix H is
not made in the OBS procedure so that the OBS recalculates the
magnitude of all the weights in the network, and saliencies for
each parameter are given by

2
Wi

S =———
L

(24)
where H™'=inverse of the Hessian matrix H; and [H™'|;;=ith
diagonal element of the inverse matrix.

The pruning strategy is to find the low-saliency or smallest
saliency parameters, which are then selected for deletion. After
training, two kinds of information are obtained: (1) the parametric
vector Wy, and (2) the recursion matrix P,. For simplicity, the
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Fig. 3. Time history of network weights: (a) some parts of Subs 1; (b) some parts of Subs 2; and (c) some parts of Subs 3

Riccati Eq. (20) can be rewritten in an alternative form that is
more convenient for analysis. By employing the following matrix
inversion lemma (MIL):

A-AB(C+B’AB)"'B’A=(A""+BC'B")""  (25)
the following update for P;' is obtained
P =P+ ClC- v LIy (26)

Suppose that the weight parameter and the “error covariance
matrix” P, are both convergent. Without loss of generality, it is
convenient to select matrix L; equal to C, and then to readily
establish the asymptotic behavior for the matrix

P =P+ (1-y)CICy 27

To illustrate the connection between the matrix P, and the
Hessian matrix H of the cost function, the Riccati recursion Eq.
(27) with initial condition P, can be rewritten in the form of a
recursion as

Restoring force (kN)

0 4 8 12 16 20

Time{Sec)
(@

k
Pl =P +(1-y) X ClC, (28)

i=0

From Egs. (15), (22), and (28), the Hessian matrix of the cost
function is approximately expressed as

Pl - P
~ k+1 7()2 (29)
N1 -v7)
and the inversion is
H'=N(1 -y)P;, [I- (P, —Py)'P;, ] (30)

Hence, the by-product P, can be used to measure the increase
in the training error E due to the changes in the weight vector w.

In the rest of this section, we will first discuss how to use the
matrix H to measure the saliencies of weights and then present
the pruning approach.

1
4
E 2 Subs2
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b

Fig. 4. Comparison between actual output (solid line) and H.-network output (dashed line) of the online training (with 0% noise injection in
training data): (a) time history of restoring forces; (b) restoring forces versus relative displacements
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Fig. 5. Comparison between actual output (solid line) and H..-network output (dashed line) of the online training (with 5% noise injection in
training data): (a) time history of restoring forces; (b) restoring forces versus relative displacements

From the classical OBD and OBS pruning approaches, remov-
ing the weight Wp;) (the ith element of the weight vector) means to
set W7 to zero. Thus, a fast heuristic pruning algorithm (OBD-
like) for the FNN based on the by-product P, of the weight esti-
mation of the proposed H.,-training algorithm is presented. It is

described as follows:

Subs1

2 |
0
-2
20 22 24 26 28 30
2
2 Subs2
Y
e
2 0
2
8
3
o«
2 . . . .
20 22 24 26 28 30
2
Subs3
4]
2 . ; . R
20 22 24 26 28 30

Time(s)
@

1.  Set the initial values P, and w;

o

Train the given network with the proposed H.-training ap-

proach to acceptable minimum error;

3. Calculate the estimated weight vector w, the estimated train-
ing error E and the by-product P, after training;

4. Evaluate the ith saliency of weight

0.2 | Subst
0
02
20 22 24 26 28 30
_ 02
2 Subs2
%
&
2 0
8
5
B
£.02 . . : :
20 22 24 26 28 30
0.1 .
Subs3
0
04 . : s -
20 22 24 26 28 30

Time(s)
(b)

Fig. 6. Comparison between a segment of the actual output (solid line) and trained H,.-network (with 0% noise injection in training data) output
(dashed line) for the test set: (a) time history of restoring forces; (b) instantaneous test errors

JOURNAL OF COMPUTING IN CIVIL ENGINEERING © ASCE / JANUARY/FEBRUARY 2007 / 51

J. Comput. Civ. Eng., 2007, 21(1): 47-58



Downloaded from ascelibrary.org by Tongji University on 12/08/18. Copyright ASCE. For personal use only; all rights reserved.

21 Subsi

Subs2

Restoring force (kN)
o

20 22 24 26 28 30

Subs3

20 22 24 26 28 30
Time(s)

@

Instantaneous test error

02| Subst
0
02
20 22 24 26 28 30
Subs2
0.2 1
0 W
0.2
04
20 22 24 26 28 0
0.1
Subs3
0
0.1 -
20 22 24 26 28 30

Time(s)
{b)

Fig. 7. Comparison between a segment of the actual output (solid line) and trained H,.-network (with 5% noise injection in training data) output
(dashed line) for the test set: (a) time history of restoring forces; (b) instantaneous test errors

1 .
NES E[H]i,iw[zi] (31)

5. Define the tolerance level in the estimated training error as
NE (0<A<1). If the saliency S;=\E, then delete the
synaptic weight W3, and return to Step 4; otherwise, go to
Step 6; and

6. Stop the computation when no more weights can be deleted
from the network.

It should be noticed that the above pruning approach is suit-
able for the online situation, where the training set is not available
after training. This is because the pruning approach does not use
the training set. However, the traditional Hessian-based pruning
approach uses the training set to calculate the Hessian matrix.
Hence, the Hessian-based pruning approach is not suitable for the
online situation. The example simulation in the next section
shows that P, of the Riccati recursion is diagonally dominant.

Magnitude
Magnitude

Therefore, the pruning procedure can be further simplified by
neglecting the effect of the off-diagonal elements of P, in the
calculation of S;.

Illustrative Numerical Examples

Problem Statement

A hysteretic structural system is selected for the example analysis
to illustrate the applicability of the proposed methodology. One of
the most widely used models, the Bouc—Wen model (Wen 1976),
is studied because it can capture many commonly observed types
of hysteretic behavior. The reduced-order motion equation for the
ith (i=1,...,n) active degree of freedom (DOF) for an n DOF
shear-type structure (Fig. 2) subjected to earthquake-induced
ground excitations (X,) can be written as

Magnitude

Fig. 8. Values of the P, after training H.-network: (a) network for Subs 1; (b) network for Subs 2; and (c) network for Subs 3
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Fig. 9. Number of weights in the pruned network versus the training error (using El Centro responses with 5% noise injection in training data):
(a) network for Subs 1 identification; (b) network for Subs 2 identification; and (c) network for Subs 3 identification

m;+r;= (1 =8;,)r =—m, (32)

where 8,,=0 (i#n) or 3,,=1 (i=n); and m;, X;, and r;=ith mass,
relative acceleration, and restoring force, respectively.

The ith component of the interstory restoring force vector is
expressed by

Filg,ug,ry) = iy + 24 (33)

and z; is satisfied by

Subst
2

20 22 24 26 28 30

Subs2

Restoring force (kN)
o

20 22 24 26 28 30

2} Subs3
0
-2
20 22 24 26 28 30
Time(Sec)
(@

2= kgt = ol || 2 — Bz (34)

where 1u,=relative velocity between the (i—1)th and ith mass
point; ¢;=damping; k;=stiffness; and o;, B,, and n,=nonlinear
parameters, respectively.

Assume that the mass is known and the experimental measure-
ments for X; (i=1,...,n) and ¥, are available and that the corre-
sponding x; and x; can be found by direct measurements or
through integration of X;. Hence, the restoring up force values r;

Subs1
2

Subs2

Restoring force (kN)
(=]

02 -015 -041 -0.05 0

-0.1 -0.05 0 0.05
Relative displacement (cm)
b

Fig. 10. Comparison between a segment of the actual output (solid line) and pruned H..-network (using El Centro responses with 5% noise
injection in training data) output (dashed line) for the test set (using El Centro responses): (a) time history of restoring forces; (b) restoring forces

versus relative displacements
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Fig. 11. Comparison between a segment of the actual output (solid line) and pruned H..-network (using El Centro responses with 5% noise
injection in training data) output (dashed line) for the validation test set (using Kobe responses): (a) time history of restoring forces; (b)

instantaneous test errors

can be calculated using Eq. (33). The parameters for this model
are chosen to be m;=125.53 kg, ¢;=70 N s/m, k;=24,500 N/m,
n;=3, o;=2, and B;=0.5 (i=1,2,3).

Using substructure identification (Nakamura et al. 1998; Wu et
al. 2002), the structure will be divided into several substructures.
Here, one active degree of freedom is simplified as a substructure
system (Subs). The FNN is taken into account to model the dy-
namic behaviors of the substructures, namely, the FNN is trained
to identify a substructure model of r;(it;,u;,r;). In this paper, the
hysteretic nonlinearity system is considered as a memory-type
model, and the restoring force with one step time delay will be
selected as the input (Smyth et al. 2002; Masri et al. 2004; Tang
and Sato 2004). A three-layer FNN is applied in which the input
signals are u; and u; at time step k, and r; at time step k—1, and
the outputs are the calculated values of r; at time step k. Hence,
the network has three input nodes, one output node, and one
hidden layer with 30 nodes. The total number of the network
weights is 120.

0.9
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01 —— Subs1

0.5 — - Subs2
0.4 - - - Subs3
0.3
0.2}
0.1

Test set MSE

TSRS TS T TS S N '

0 Ty e . .
120 110 100 90 80 70 60
No. of weights in the pruned network

Fig. 12. Number of weights in the pruned network versus the test set
MSE of the system identification problem

In this study, the effectiveness of the noise injection training is
also investigated; noises are artificially added to structural re-
sponses in generating the training data. The noise level is defined
as the value of the standard deviation. For instance, if the standard
deviation is 0.05, the noise level in the data can be referred to as
5% in the root-mean-square (RMS) level.

Case 1: Nonlinear System Identification

El Centro (May 18, 1940) with modified maximum amplitude of
25 cm/s? and 30 s time history are used in this case. The sam-
pling interval of the structural responses to be used for identifi-
cation is Ar=0.02 s. The training data sets are prepared for cases
with 0 and 5% noise in the RMS level.

The time history of some parts of the estimated network’s
weights is shown in Figs. 3(a—c). Some weights converge to
stable values very quickly in the first 500 iterations. This fast
convergence demonstrates that the H,. filtering is a very fast train-
ing algorithm.

Excellent online restoring force estimation results using the
proposed approach are shown in Fig. 4(a) (0% noise). The actual
and identified force-displacement loops are shown in Fig. 4(b)
(0% noise), where a quite complete agreement is clear between
the actual and identified loops. Moreover, the tendency is the
same while varying the noise level, and one example of 5% noise
level is shown in Fig. 5.

To verify the generalization ability of the H.-training FNN,
the trained networks mentioned above are applied to predict re-
sponses to another 500 test samples. It is noted that these test
samples have not been used during the training phase. The time
history of the predicted restoring forces is shown in Fig. 6(a) (0%
noise), which shows very good agreement with the true results,
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Fig. 13. Zero mean Gaussian noise and three outliers (denoted by “+”

and Fig. 6(b) (0% noise) shows the corresponding instantaneous
test errors. Moreover, Fig. 7 shows the estimation results with 5%
noise level. It is seen that the network is performing extremely
well in matching the system’s response.

Case 2: H,, Filtering in Network Pruning

To illustrate the conjunction of the H.,, filtering algorithm in net-
work training and pruning, the example of the above-mentioned
nonlinear substructure identification is studied. Different noise
cases and two different types of structural responses are selected
for example analysis to illustrate the applicability of the proposed
approach. There are two structural response data, one is by El
Centro, and the other is by the Kobe earthquake (January 17,
1995, modified maximum amplitude of 25 cm/s?, sampling inter-
val Ar=0.02 s).

The total number of the network weights is 120, and the net-
work is trained using the H., filtering algorithm. The training set
contains 1,000 samples using El Centro responses with 5% noise
in the RMS level, and the test set contains 500 samples using
Kobe earthquake responses.

Figs. 8(a—c) show the last step values of P, (120 X 120 matrix)
of the Riccati recursion for the three substructure identifications
using El Centro response data. Figs. 8(a—c) show that the matrix
P, is almost diagonally dominant. Fig. 9 shows the estimated
training error against the number of weights in the pruned net-
work. It is clear that nearly only 95 weights are enough to capture

the unknown Substructure System 1 without increasing the train-
ing error dramatically, and 90 weights suffice for Substructure
Systems 2 and 3. Another 500 pairs of test data are used to vali-
date the pruned network. Fig. 10(a) shows a comparison of the
pruned H.-neural network output and the actual system output.
Fig. 10(b) depicts corresponding loops of restoring forces versus
relative displacements. Fig. 10 shows that the generalization ca-
pability of the pruned network does not change much. To demon-
strate further that the generation capability is not affected much if
some weights in the networks are pruned, we feed in other test
data, generated by the Kobe earthquake, into the pruned network.
Fig. 11(a) depicts a segment of the actual and the desired pruned
network output corresponding to the test input, and Fig. 11(b)
shows corresponding instantaneous test errors. Fig. 11 clearly
shows that the generalization capability of the pruned network is
not affected much. It is seen that in both cases the pruned network
performs well in modeling the unknown system.

We use the mean-squared error (MSE) to measure the gener-
alization ability of the pruned network. It is calculated by feeding
a test set, generated by the Kobe earthquake, into the pruned
network with different pruning steps. The gathered data are plot-
ted in Fig. 12, which shows that the average generalization error
will increase as the number of pruned weights increases. It shows
that the test MSE of the pruned network is quite close to the
original network when the number of pruned weights less than 95
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Fig. 14. Number of weights in the pruned network versus the training error (using Kobe responses with 5% noise injection in training data): (a)
network for Subs 1 identification; (b) network for Subs 2 identification; and (c) network for Subs 3 identification
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for Subs 1, and 90 for Subs 2 and Subs 3. This phenomenon is
consistent with our expectation.

In addition, comparative studies for two kinds of noise injec-
tion training and pruning are presented to verify the robustness
and generalization capability of the proposed methodology using
the Kobe earthquake responses. One is the Gaussian noise case
where the training set was corrupted by 5% noise in RMS level.
The other is the non-Gaussian noise case where the training set
was corrupted by zero mean Gaussian noise (with 5% noise in
RMS level) and three outliers (denoted by “+”). One example of
the non-Gaussian noise for the Subs 1 network’s output training
data is shown in Fig. 13(a). The long, lower tail and plus signs in
the box plot of Fig. 13(b) denote the strong outliers in the sample
values.

Fig. 14 shows the estimated training error against the number
of weights in the pruned network for the Gaussian noise case. It is

found that about 80-90 weights are enough to capture the un-
known Substructure System 1 without increasing the training
error dramatically, and about 80-100 weights suffice for Sub-
structure Systems 2 and 3. The results are almost identical with
the results (Fig. 9) by using the El Centro responses. To demon-
strate that the generation capability is not affected much if some
weights are pruned, we feed in another 500 pairs of test data into
the pruned network. Fig. 15(a) shows a comparison of the pruned
H.-neural network outputs between the actual system outputs.
Fig. 15(b) shows corresponding instantaneous test errors. These
figures show that the generalization capability of the pruned net-
works is not affected much.

For the non-Gaussian noise case, the estimated training errors
against the number of weights in the pruned network are shown in
Fig. 16. Comparisons of the net weight prunings plotted in Fig. 14
with those in Fig. 16 show a similar “minimum” weight number.
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Fig. 16. Number of weights in the pruned network versus the training error (using Kobe earthquake responses with non-Gaussian noise injection
in training data): (a) network for Subs 1 identification; (b) network for Subs 2 identification; and (c) network for Subs 3 identification
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Fig. 17(a) presents a comparison of the pruned H..-neural network
outputs between the actual system outputs using another 500 pairs
of testing data, and Fig. 17(b) shows the corresponding instanta-
neous test errors. There is good agreement between the output of
the pruned network and the actual one. Fig. 17 shows that the
generalization capability of the pruned network does not change
much for strong outliers. Fig. 17 also shows that H, filtering
algorithm has a good robustness to such disturbances.

In general, the Kalman filtering algorithm is strictly optimal
only for Gaussian distribution of noises, while the H.. filtering
algorithm makes no assumptions about the noise distribution. In
addition, the H,, theory suggests that the maximum energy (worst
case) gain of the Kalman algorithm from disturbances (initial
state, system, and observation noises) to the estimation error has
no upper bound because the H,, algorithm when y — o is formally
identical to the Kalman algorithm (Hassibi et al. 1998). This is
why we believe that the H,, training leads to greater robustness to
variations in weight initialization or to deterministic disturbance
in observation.

Conclusions

In this paper, we have derived an efficient neural network training
and pruning methodology using the H,, filtering algorithm. The
FNN model pruned with H., filtering provides a good architecture
design for generalization capacity and requires a smaller number
of connection weights than a totally connected net. It leads to a
lower hardware implementation cost and more efficient estima-
tion of large complex structural systems. Examples of nonlinear
system identification are carried out to evaluate the performance
of the network. The results show the effectiveness and robustness

of the neural network pruning and training by the H. filtering
algorithm.
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