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Differential evolution (DE) is a heuristic method that has yielded promising results for solving complex
optimization problems. The potentialities of DE are its simple structure, easy use, convergence property,
quality of solution, and robustness. This paper utilizes a DE strategy to parameters estimation of struc-
tural systems, which could be formulated as a multi-modal numerical optimization problem with high
dimension. Simulation results for identifying the parameters of structural systems under conditions
including limited output data, noise polluted signals, and no prior knowledge of mass, damping, or stiff-
ness are presented to demonstrate the effectiveness of the proposed method.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

System identification plays a key role in health monitoring,
non-destructive evaluation, and active control of civil infrastruc-
tures. Because of their wide applicability, system identification
methods have been studied in civil engineering for various pur-
poses. In structural identification, considerable efforts have been
invested in developing methods for identification of system models
and their parameters. Currently, a wide range of analytical meth-
ods exists for linear or nonlinear systems identification, such as
the least square method [1–3], the extended Kalman filter [4],
H1 filter method [5], particle filter method [6,7] and so on. These
methods often have certain traits in common that tend to limit
their applicability and success due to the complexity of systems
in real world. Most of these methods require an initial guess so that
the process can start. The problem can be very sensitive to the
choice of these initial estimates, which makes them a poor choice
if no prior knowledge is available. Instead, some successes have
been achieved with various heuristic optimization algorithms such
as genetic algorithms (GAs), evolution strategy (ES) and simulated
annealing (SA). These heuristic stochastic search techniques seem
to be a promising alternative to traditional approaches. Cunha
et al. [8] used GAs to identify the elastic constants of composite
materials. Franco et al. [9] used ES to identify multiple degree-of-
freedom (DOF) systems. Perry et al. [10] used a modified GA to
identify structural systems. Chou and Ghaboussi [11] introduced
GAs method to identify damage severity of trusses. Koh et al.
ll rights reserved.

: +86 21 65983410.
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[12–14] applied GAs method to solve the global system identifica-
tion problem in shear-type building structures. Levin and Lieven
[15] applied SA method to optimize a finite element model for
describing the dynamic behavior of structures.

As a novel evolutionary computation technique, differential
evolution (DE) has gained much attention and wide applications
for solving complex optimization problems since Storn and Price
introduced the algorithm in 1995 [16]. It resembles the structure
of an evolutionary algorithm (EA), but differs from traditional
EAs in its generation of new candidate solutions and by its use of
a ‘greedy’ selection scheme. Another main characteristic of DE is
with its ability to search with floating point representation instead
of binary representation that is being used in many basic EAs. DE is
one such hybrid, taking the concepts of ‘larger populations’ from
GAs, and ‘self-adapting mutation’ from ESs. The characteristics to-
gether with other factors of DE make it a fast and robust algorithm
as an alternative to EA.

Given the characteristics and advantages of DE over the other
optimization methods, DE algorithms have becoming more and
more popular in solving complex, nonlinear, non-differentiable
and non-convex optimization problems. Over the recent years,
DE has been successfully applied in different fields mainly for var-
ious optimization problems, such as reservoir system optimization
[17], optimal design of shell-and-tube heat exchangers [18], beef
property model optimization problems [19], generation planning
problems [20], distribution network reconfiguration problems
[21], capacitor placement problems [22], induction motor identifi-
cation problems [23], optimal design of gas transmission network
[24], chaotic systems control and synchronization [25], to name a
few.
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Fig. 1. The principle of system identification.
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It is worth noting that another recently proposed heuristic algo-
rithm, particle swarm optimization (PSO) [26] has a similar struc-
ture in its search mechanism. Owing to its simple concept, easy
implementation and quick convergence, nowadays PSO has gained
wide applications in different fields including the civil engineering,
such as structural reliability assessment [27], optimal design [28–
31], structural system identification [32].

Compared with GA and PSO, DE has some attractive character-
istics [25]. It uses simple differential operator and one-to-one
competition scheme to avoid complicated generic searching oper-
ators in GA. It has constructive cooperation between individuals
and memory of the good solutions, whereas in GA, previous
knowledge of the problem is destroyed once the population
changes and in PSO, a secondary archive is needed. In [20], the
authors compared the performance of some meta-heuristic tech-
niques including DE on solving the generation expansion planning
problem. The results show that DE outperforms other techniques
including GA, ES, ant colony optimization (ACO), PSO, SA, tabu
search (TS) and hybrid approach (HA). Although many GA versions
have been developed, they are still time consuming. SA has proven
to be thorough and reliable, but is generally too slow and ineffi-
cient to be of practical use with larger modeling problems [33].
Vesterstrøm and Thomsen [34] have investigated the performance
of DE, PSO and EA on a selection of 34 numerical benchmark func-
tions. The experimental results show that DE is far more efficient
and robust compared to PSO and the EA. Despite the fact that
the DE has wide applications in different fields mainly for various
optimization problems, the DE has not been used widely in the
field of civil engineering.

Numerous traditional approaches in literature tackled the prob-
lem of system identification in the field of civil engineering. How-
ever, it is difficult for these approaches to extract the physical
characteristics of the system like mass, damping, or stiffness in a
structural system unless some of these are assumed known a pri-
ori. Meanwhile, the measurements of inputs and outputs from a
real structural system tend to be complex and expensive. Thus,
there is a significant interest in the development of an algorithm
that uses as few measurements as possible to obtain the physical
characteristics of the system without a priori knowledge of this
system. In this study, a parameter estimation technique based on
DE is presented to overcome some of the difficulties encountered
in the field, which could be formulated as multimodal numerical
optimization problems with high dimension. Some numerical
examples are presented from which the effectiveness and effi-
ciency of the DE are investigated. The influence of incomplete
availability of measurements on the performance of DE for system
identification is also discussed.
2. Problem formulation

The basic idea in system identification is to compare the time
dependent response of the system and a parameterized model by
a norm or some performance criterion giving a measure to how
well the model response fits the system response. In order to show
this in more detail, let us consider a physical system with input u
and output y. Let y(ti) for i = 1, . . ., T denotes the value of the actual
system at ith discrete time step. Suppose that a parameterized
model that is able to capture the behavior of the physical system
is developed and this model depends on a set of n parameters,
i.e., x = (x1,x2, . . ., xn)T 2 Rn. Let ŷðtiÞ for i = 1, . . ., T denotes the value
of the parameterized model, i.e., the identified system at ith dis-
crete time step. Hence, the objective of system identification is to
find a set of parameters that minimize the prediction error be-
tween system output y(ti), i.e., the measured data, and model out-
put ŷðx; tiÞ at each time instant ti (see Fig. 1).
Therefore, our interest lies in minimizing the predefined error
norm of the outputs, e.g., the following mean square error (MSE)
function.

f ðxÞ ¼ 1
T

XT

i¼1

kyðtiÞ � ŷðx; tiÞk2 ð1Þ

where k�k represents the Euclidean norm of vectors. Formally, the
optimization problem requires finding a set of n parameters
x* 2 Rn, so that a certain quality criterion is satisfied, namely that
the error norm f(�) is minimized. The function f(�) is commonly
called a fitness function or objective function. Typically, an objec-
tive function is used which reflects the goodness of solution in
DE. The identification problem thus is treated as a linearly con-
strained multi-dimensional optimization problem, namely

Minimize f ðxÞ; x ¼ ðx1; x2; . . . ; xnÞT

s:t: x 2 S; S ¼ fx : xmin;i 6 xi 6 xmax;i; 8i ¼ 1;2; . . . ;ng
ð2Þ

where f(x) = objective function which maps decision variable x into
the objective space f = Rn ? R, S is the n-dimensional feasible search
space, xmax and xmin denote the upper bounds and the lower bounds
of the n parameters respectively.

Obviously, the fitness landscape of this problem type may have
many local optima and a highly complex topology. For Eq. (2), the
local and global minima can be easily calculated if the region of
realizability of x is convex. However, for structural system identifi-
cation problem, it may not always be convex, and therefore
requires heuristic algorithms such as DE to solve it.

3. Differential evolution algorithm

The DE algorithm [35,36] is a population based algorithm like
genetic algorithms using the similar operators: crossover, muta-
tion and selection. In DE, a population of NP (population size) solu-
tion vectors is initialized randomly at the start, which is evolved to
find optimal solutions through the mutation, crossover, and select-
ing operation procedures.

An optimization task consisting of n parameters can be repre-
sented by an n-dimensional vector. Let S 2 Rn be the search space
of the problem under consideration. Then, the DE algorithm uti-
lizes NP, n-dimensional vectors

xi ¼ ðxi1; xi2; . . . ; xinÞT 2 S; i ¼ 1;2; . . . ;NP ð3Þ

as a population for each iteration, called a generation of the
algorithm.

3.1. Mutation

The objective of mutation is to enable search diversity in the
parameter space as well as to direct the existing object vectors
with suitable amount of parameter variation in a way which will
lead to better results at a suitable time. It keeps the search robust
and explores new areas in the search domain.
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According to the mutation operator, for each individual, xðGÞi ,
i = 1, . . ., NP, at generation G, a mutation vector vðGþ1Þ

i ¼ ðvðGþ1Þ
i1 ;

vðGþ1Þ
i2 ; . . . ; vðG¼1Þ

in ÞT is determined using one of the following equa-
tions [37]:

vðGþ1Þ
i ¼ xðGÞr1 þ FðxðGÞr2 � xðGÞr3 Þ ð4Þ

vðGþ1Þ
i ¼ xðGÞbest þ FðxðGÞr1 � xðGÞr2 Þ ð5Þ

vðGþ1Þ
i ¼ xðGÞi þ F1ðxðGÞbest � xðGÞi Þ þ FðxðGÞr1 � xðGÞr2 Þ ð6Þ

vðGþ1Þ
i ¼ xðGÞbest þ F1ðxðGÞr1 � xðGÞr2 Þ þ FðxðGÞr3 � xðGÞr4 Þ ð7Þ

vðGþ1Þ
i ¼ xðGÞr1 þ F1ðxðGÞr2 � xðGÞr3 Þ þ FðxðGÞr4 � xðGÞr5 Þ ð8Þ

where xðGÞbest ¼ best individual of the population at generation G; F
and F1 > 0 = real parameters, called mutation constants, which con-
trol the amplification of difference between two individuals so as to
avoid search stagnation; and r1, r2, r3, r4 and r5, are mutually differ-
ent integers, randomly selected from the set {1, 2, . . ., i � 1,
i + 1, . . ., NP}.

Here the choice of Eqs. (4)–(8) lead to different variants of DE,
such as DE/rand/1/bin, DE/best/1/bin, DE/current-to-best/1/bin,
DE/best/2/bin, and DE/rand/2/bin, respectively. In this study we
use the DE/current-to-best/bin scheme (Eq. (6)). Fig. 2 illustrates
the vector-generation process defined by Eq. (6).

3.2. Crossover

Following the mutation phase, the crossover operator is applied
on the population. For each mutant vector, vðGþ1Þ

i , a trial vector
uðGþ1Þ

i ¼ ðuðGþ1Þ
i1 ;uðGþ1Þ

i2 ; . . . ;uðGþ1Þ
in ÞT is generated, with

uðGþ1Þ
ij ¼

vðGþ1Þ
ij if ðrandðjÞ 6 CRÞ or ðj ¼ randnðiÞÞ

xðGÞij if ðrandðjÞ > CRÞ or ðj–randnðiÞÞ

8<
: ð9Þ

where j = 1, 2, . . ., n; rand(j) is the jth independent random number
uniformly distributed in the range of [0, 1]. randn(i) is a randomly
chosen index from the set {1, 2, . . ., n}, and CR is user defined cross-
over constant 2 [0, 1] that controls the diversity of the population
[37].

3.3. Selection

After producing the offspring, the performance of the offspring
vector and its parent is compared and the better one is selected. If
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Fig. 2. Two-dimensional example of an objective function showing its contour lines
and the process for generating v in scheme DE/current-to-best/bin from vectors of
current generation.
the parent is still better, it is retained in the population. DE em-
ploys a greedy selection process that the better one of new off-
spring and its parent wins the competition providing significant
advantage of converging performance over genetic algorithms.

To decide whether the vector uðGþ1Þ
i should be a member of the

population of the next generation, it is compared to the corre-
sponding vector xðGÞi . Thus, if f denotes the objective function under
consideration, then

xðGþ1Þ
i ¼

uðGþ1Þ
i if ðf ðuðGþ1Þ

i Þ < f ðxðGÞi ÞÞ
xðGÞi otherwise

(
ð10Þ

Thus, each individual of the trial vector is compared with its
parent vector and the better one is passed to the next generation,
so the best individuals in the population are preserved. These steps
are repeated until specified termination criterion is reached.

3.4. Operational parameters

DE has three key parameters: scaling factor of the difference
vector – F, crossover control parameter – CR and population size
– NP. An additional control variable, F1, is introduced in DE/cur-
rent-to-best/bin scheme. The idea behind the additional control
variable F1 is to provide a means to enhance the greediness of
the scheme by incorporating the current best vector xðGÞbest. The oper-
ational parameters control the balance between exploitation and
exploration. Proper configuration of the above parameters would
achieve good tradeoff between the global exploration and the local
exploitation so as to increase the convergence velocity and robust-
ness of the search process. Depending on the problem and avail-
able computational resources, the population size can be in the
range as low as 2n (n is the problem dimension) to as high as
100n [38]. Generally, with a population size of 20n, F1 = 0.95 and
F = 0.8 appear to be reasonably good value to generate satisfactory
results. The test results in [37] show that a satisfactory range of CR
appears to be within 0.8–1.0.

3.5. Feasible possible parameter space

Theoretically speaking, the search of DE for an optimum in the
feasible search space S could be carried out like the other stochastic
search optimization algorithms. However, in structural system
identification using dynamic analysis, not all sets of parameters
in the specified search space might provide physically plausible
solutions to the problem. Restricting the search space to the feasi-
ble region might be difficult because the constraints are not simple
[9]. In this paper, a penalty strategy [39,9] is implemented in the
DE algorithm to tackle this problem. If a candidate parameter set
is not a physically plausible solution, that is the system is unstable,
then an exaggerated cost function value is returned. As this value is
uncommonly large in comparison to usual cost function values,
these ‘‘unstable” offspring are usually eliminated in a single
generation.

3.6. Implementation of DE

The procedure of DE methodology can be summarized in the
following steps.

Step 1: Input the required DE parameters. Initialize the popula-
tion of individual for DE, randomly in the limits of spec-
ified decision variables.

Step 2: Check all individuals. Eliminate non-physically plausible
individuals. Evaluate the objective values of all individu-
als, and determine xbest which has the best objective
value.



Table 1
Structural properties of 8-DOF system

Stiffness (kN/m)
Levels 1 5.529e3
Levels 2–8 2.723e3

Mass (kg)
Levels 1–7 49.48
Levels 8 45.06

Damping (kN s/m)
Levels 1 100.31
Levels 2–8 52.167
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Step 3: Perform mutation operation for each individual accord-
ing to Eq. (6) in order to obtain each individual’s mutant
counterpart.

Step 4: Perform crossover operation between each individual
and its corresponding mutant counterpart according to
Eq. (9) in order to obtain each individual’s trial
individual.

Step 5: Evaluate the objective values of the trial individuals.
Step 6: Perform selection operation between each individual and

its corresponding trial counterpart according to Eq. (10)
so as to generate the new individual for the next
generation.

Step 7: Check all individuals. If a candidate parameter set is not a
physically plausible solution, then an exaggerated cost
function value is returned. Eliminate ‘‘unstable”
individuals.

Step 8: Determine the best individual of the current new popula-
tion with the best objective value. If the objective value is
better than the objective value of xbest, then update xbest

and its objective value with the value and objective value
of the current best individual.

Step 9: If a stopping criterion is met, then output xbest and its
objective value; otherwise go back to Step 3.

4. Illustrative examples

To illustrate the effectiveness of the parameter estimation tech-
nique with the differential evolution strategy presented above, two
different structural systems are considered. One is an 8-DOF struc-
tural system, the other is a 20-DOF system that has been previ-
ously used by other authors to test other structural system
identification methods.

For structural identification problems it is common that the
mass of the structure is assumed to be known and the identifica-
tion aims to identify structural stiffness properties. In this paper
this common problem is considered and extension is made to the
much more difficult case of unknown mass systems, where the
mass, stiffness and damping of the structure are to be identified.

In order to compare the performance of the methodology of
identification presented here with the recently developed method
that has been suggested in literature based on the particle swarm
Fig. 3. n-DOF structure.
optimization, the system represented in Fig. 3 is analyzed. The
structural system considered is two-dimensional shear frame type
structures with properties as given in Table 1. The structure con-
sists of rigid beams and flexible columns, effectively reducing the
motion to a single translational degree of freedom at each floor
level.

The dynamic equation of motion of the structural system can be
written as

M€vðtÞ þ C _vðtÞ þ KvðtÞ ¼ uðtÞ ð11Þ

where M, C and K are the mass, damping and stiffness matrices, v is
the displacement vector and u is the input force vector.

Therefore, an n-DOF system is fully described by the set of
parameters

x ¼ ðm1; . . . ;mn; k1; . . . ; kn; c1; . . . ; cnÞ ð12Þ
4.1. 8-DOF system

In this example, the mass distribution of the structure is sup-
posed to be known and unknown priori. It is assumed that the
structure is excited by known force (Niigata earthquake excitation
(Japan, 2000)) and that the response of the structure, in terms of
accelerations, is recorded at some given points. The acceleration
output measurements error norm is used as the fitness function.
The influence of limited availability of measurements on the per-
formance of DE for parameters estimation is discussed in this
study. In the ‘‘full output” scenario, measurements at all floors
are available, whereas in the second ‘‘partial output” scenario, only
floors 1, 3, and 5 are available. The time records used span a total
length of 20 s with a sample time of 0.01 s. The strategy parame-
ters are F1 = 0.95, F = 0.8, CR = 0.85, maximum generations = 500
and population sizes = 100. The search space is taken as 0.5–2.0
times the exact values.

The statistical simulation results of 20 independent runs for the
known mass system with the usage of the DE strategy are carried
out, along with the results obtained with the PSO method for the
sake of comparison. The input and output (I/O) data are polluted
(in the cases considering noise) with Gaussian, zeromean, white-
noise sequences, whose root mean-square (RMS) value is adjusted
to be a certain percentage of the unpolluted time histories. The
mean results of the parametric identification for full output sce-
nario are summarized in Table 2 with 0% and 10% RMS noises. In
addition, a typical DE search performance for the noise-free sce-
nario is provided in Fig. 4. Fig. 5 shows the convergence graphs
for this problem.

It can be seen in Table 2 that results of the PSO and DE are com-
parable and the relative errors obtained in the estimation of the
parameters are quite similar in the noise-free scenarios. In the
noise-polluted scenarios, the results of the Table 2 show that
the errors are slightly higher, ranging from 1.3% to 2.3% for DE in
the stiffness parameters, ranging from 2.7% to 6.1% for PSO, and
quite higher in the damping parameters, ranging from 1.9% to



Table 2
Results for known mass system with full output scenario-comparison with PSO

Parameters True value 0% Noise 10%Noise

PSO DE PSO DE

k1 5.529e3 5.529e3 (0)a 5.529e3 (0) 5.380e3 (2.7) 5.458e3 (1.3)
k2 2.723e3 2.723e3 (0) 2.723e3 (0) 2.617e3 (3.9) 2.780e3 (2.1)
k3 2.723e3 2.723e3 (0) 2.723e3 (0) 2.834e3 (4.1) 2.673e3 (1.9)
k4 2.723e3 2.723e3 (0) 2.723e3 (0) 2.626e3 (3.8) 2.784e3 (2.3)
k5 2.723e3 2.723e3 (0) 2.723e3 (0) 2.644e3 (2.9) 2.677e3 (1.7)
k6 2.723e3 2.723e3 (0) 2.723e3 (0) 2.889e3 (6.1) 2.685e3 (1.4)
k7 2.723e3 2.723e3 (0) 2.723e3 (0) 2.878e3 (5.7) 2.766e3 (1.6)
k8 2.723e3 2.723e3 (0) 2.723e3 (0) 2.5923e (4.8) 2.672e3 (1.9)
c1 100.31 100.31 (0) 100.31 (0) 106.03 (5.7) 102.61 (2.3)
c2 52.17 52.22 (0.1) 52.17 (0) 55.14 (7.3) 51.13 (2.0)
c3 52.17 52.17 (0) 52.17 (0) 48.21 (7.6) 54.15 (3.8)
c4 52.17 52.17 (0) 52.17 (0) 56.39 (8.1) 50.76 (2.7)
c5 52.17 52.17 (0) 52.17 (0) 55.18 (7.4) 53.83 (3.2)
c6 52.17 52.23 (0.1) 52.17 (0) 49.11 (5.9) 53.16 (1.9)
c7 52.17 52.17 (0) 52.17 (0) 48.89 (6.3) 50.71 (2.8)
c8 52.17 52.12 (0.1) 52.17 (0) 57.17 (9.6) 53.42 (2.4)

a Relative errors of identification are in parentheses expressed in %.

Fig. 4. Typical identification results for 8-DOF known mass system.

Fig. 5. Typical convergence characteristics of estimation for 8-DOF known mass
system.

2008 H. Tang et al. / Computers and Structures 86 (2008) 2004–2012
3.8% for DE, ranging from 5.7% to 9.6% for PSO. The results show
that the DE and the PSO seem to perform well to less polluted
cases, yielding very accurate results for the noise-free case but
accruing more error as the noise level increases. Nevertheless,
the results obtained by DE obviously outperform those obtained
by the PSO in the noise-polluted case. The largest relative errors
are usually observed in the damping coefficients. Due to the fact
that the damping parameter has only a small contribution to the
overall response, its value is generally poorly estimated. This is a
fact that has been reported in other studies [9,10] as well.

Fig. 4 shows that both of two algorithms are able to find near
optimum solutions quickly for the noise-free known mass problem.
Although the fitness values of the two algorithms (Fig. 5) are very
small, the DE converges to the optimum at an exponentially



Table 3
Results for unknown mass system with partial output scenario-comparison with PSO

Parameters True value 0% Noise 10% Noise

PSO DE PSO DE

m1 49.48 48.49 (2.0)a 48.94 (1.1) 46.02 (7.0) 48.30 (2.4)
m2 49.48 48.74 (1.5) 49.18 (0.6) 51.65 (4.4) 50.56 (2.2)
m3 49.48 49.02 (1.1) 50.12 (1.3) 45.42 (8.1) 48.54 (1.9)
m4 49.48 50.42 (1.9) 49.13 (0.7) 46.51 (6.1) 47.90 (3.2)
m5 49.48 46.50 (4.1) 48.20 (2.6) 52.89 (6.9) 48.10 (2.8)
m6 49.48 48.24 (2.5) 50.22 (1.5) 53.08 (7.3) 50.76 (2.6)
m7 49.48 50.51 (2.1) 48.64 (1.3) 45.57 (7.9) 51.16 (3.4)
m8 45.06 45.87 (1.8) 44.88 (0.4) 53.68 (8.5) 50.91 (2.9)
k1 5.529e3 5.412e3 (2.1) 5.470e3 (1.5) 5.275e3 (4.7) 5.373e3 (2.8)
k2 2.723e3 2.774e3 (1.9) 2.688e3 (1.3) 2.573e3 (5.5) 2.807e3 (3.1)
k3 2.723e3 2.772e3 (1.8) 2.686e3 (1.3) 2.916e3 (7.1) 2.782e3 (2.2)
k4 2.723e3 2.647e3 (2.3) 2.766e3 (1.6) 2.897e3 (6.4) 2.644e3 (2.9)
k5 2.723e3 2.772e3 (1.8) 2.691e3 (1.2) 2.592e3 (4.8) 2.812e3 (3.3)
k6 2.723e3 2.793e3 (2.6) 2.666e3 (2.1) 2.568e3 (5.7) 2.655e3 (2.5)
k7 2.723e3 2.607e3 (4.2) 2.804e3 (3.0) 2.935e3 (7.8) 2.615e3 (4.0)
k8 2.723e3 2.623e3 (3.7) 2.771 (1.8) 2.910e3 (6.9) 2.807e3 (3.1)
c1 100.31 95.60 (4.7) 102.70 (2.4) 109.73 (9.4) 105.72 (5.4)
c2 52.17 54.83 (5.1) 54.20 (3.9) 56.81 (8.9) 55.61 (6.6)
c3 52.17 48.52 (7.0) 54.41 (4.3) 46.95 (10.7) 55.97 (7.3)
c4 52.17 48.62 (6.8) 50.56 (3.1) 60.56 (16.1) 49.46 (5.2)
c5 52.17 56.13 (7.6) 50.50 (3.2) 59.89 (14.8) 54.79 (5.1)
c6 52.17 47.48 (9.1) 53.68 (2.9) 46.06 (11.7) 56.13 (7.6)
c7 52.17 54.88 (5.2) 49.25 (5.6) 56.70 (8.7) 49.20 (5.7)
c8 52.17 55.50 (6.4) 50.34 (3.5) 58.01 (11.2) 55.45 (6.3)

a Relative errors of identification are in parentheses expressed in %.

Fig. 6. Typical identification results for 8-DOF unknown mass system.
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Table 4
Structural properties of 20-DOF system

Stiffness (kN/m)
Levels 1–10 5000
Levels11–15 4000
Levels16–20 3500

Mass (kg)
Levels 1–10 4000
Levels11–20 3000

Natural period of vibration (s)
First mode 2.123
Second mode 0.797

Table 5
Location of acceleration measurements

System Floor levels

Known mass 2, 4, 7, 10, 12, 14, 17, 20
Unknown mass 1, 2, 3, 4, 6, 8, 10, 12, 14, 16, 18, 20

Table 6
Results for 20-DOF known mass system (noise-free)

SGAa SSRMb PSO DE

Results
Mean error-k (%) 8.33 0.52 0.71 0.41
Max. error-k (%) 31.28 1.60 3.37 1.29
Mean error-c (%) 15.81 0.64 2.24 0.53
Max. error-c (%) 28.97 1.21 8.31 1.45

a,b The results of SGA and SSRM are directly cited from [10].
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progressing rate (resulting in a straight line when plotted using a
logarithmic y-axis). We may note that DE performs moderately bet-
ter than the PSO.

In order to assess the effectiveness of the DE on more difficult,
unknown mass systems, the same 8-DOF system is considered.
The robustness of the strategy is demonstrated in the presence of
0% and 10% I/O noise with partial measurements. All identified
average results over 20 runs are presented in Table 3.

As shown in Table 3, it is clear that the average and relative er-
ror results obtained by DE are better than those obtained by the
PSO. The DE estimations of mass, stiffness and damping parame-
ters are very good, even in the presence of large I/O noise. The
mass, stiffness and damping parameters of the unknown mass sys-
tem are identified with average error ranging from 0.4% to 2.6%,
from 1.2% to 3.0% and from 2.4% to 5.6% under 0% noise respec-
tively, and the corresponding errors ranging from 1.9% to 3.4%,
from 2.2% to 4.0% and from 5.1% to 7.6% under 10% noise respec-
tively. In addition, the DE approach is capable of locating the global
optimum in all 20 runs. Unknown mass systems are highly multi-
modal problems. This problem is significantly more challenging
than the known mass system. Nevertheless, the maximum error
of DE in stiffness of only 4% under 10% noise is very good. On all
of them, DE clearly performs better and it finds the global optimum
in all cases. The DE seems to be more powerful in escaping local
optima and in search for the global optimum on more complex un-
known mass problems, and significantly improves the results on
partial output scenario.

Fig. 6 depicts a typical DE search performance for the unknown
mass system. It can be seen that the DE is able to reach the close
vicinity of the final solution within the first 150 iterations. Fig. 7
shows the convergence graphs for this problem. DE converges to
the optimum at an exponentially progressing rate. This figure high-
lights the large improvement that is achieved when using the DE.

Overall, DE is superior compared to the PSO algorithms in this
study. It finds optimum in all cases. The calculation process is
shown that the DE seems to be very robust over different trials
on the test system in both solution accuracy and computational
efficiency.

4.2. 20-DOF system

In order compare the performance of the DE methodology with
other evolutionary computation methods that have been suggested
in literature such as GAs, an one-dimensional shear frame type 20-
DOF structural system similar to the above mentioned example
with the structural properties as given in Table 4 is analyzed. This
system was used by Perry et al. [10] to test a structural system
identification algorithm denominated a modified GA, which in-
volves a search space reduction method (SSRM) and a modified
GA based on migration and artificial selection (MGAMAS) strategy
to provide a robust and reliable identification.
Fig. 7. Typical convergence characteristics of estimation for 8-DOF unknown mass
system.
The mass of the structure is lumped at each floor level and Ray-
leigh damping matrix C (Eq. (13)), where modal damping ratio (1r)
is set as 5% in the first two modes of vibration (r = 1 and 2).

C ¼ aM þ bK ; 1r ¼
a

2xr
þ bxr

2
ð13Þ

In this example, similar to other studies [10], the mass, stiffness
and damping ratios are not known and have to be therefore esti-
mated. Input forces are applied at the 5th level of the structure
as random white Gaussian noise with the RMS of the force scaled
to 1000 N. The input forces and noise pattern are freshly generated
for each run to avoid any bias that might result from using the
same inputs for all of the 20 runs. Acceleration measurements
are obtained at the different floor levels as given in Table 5. The
acceleration output measurements error norm is used as the fit-
ness function. The search limits are taken as 0.5–2.0 times the
exact values. The DE parameters are F1 = 0.95, F = 0.8, CR = 0.85,
maximum generations = 500 and population sizes = 400. The
Table 7
Results for 20-DOF unknown mass system

5% Noise 10% Noise

SSRMa PSO DE SSRMa PSO DE

Results
Mean error-m (%) 1.51 3.6 1 1.42 3.00 7.06 3.29
Max. error-m (%) 4.02 10.81 3.56 10.40 16.27 11.21
Mean error-k (%) 1.38 3. 65 1.27 2.78 5.31 2.63
Max. error-k (%) 3.83 8.13 4.11 8.64 14.36 9.02
Mean error-c (%) 6.70 10.34 7.23 14.69 17.31 13.54
Max. error-c (%) 12.90 16.57 10.68 20.36 29.06 21.04

a The results of SSRM are directly cited from [10].



Fig. 9. Typical convergence characteristics of estimation for 20-DOF unknown mass
system.
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results (average and maximum error of mass, stiffness and damp-
ing properties) obtained with the usage of the DE are presented in
Tables 6 and 7, along with the results obtained with a simple GA
(SGA), PSO and the SSRM [10] for the sake of comparison. Fig. 8 de-
picts a typical DE search performance for the unknown mass sys-
tem. Fig. 9 shows the convergence graphs for this problem.

In the noise-free known mass system, it is observed that DE is
superior to both PSO and the SGA; results of the SSRM and DE
are comparable and the relative errors obtained in the estimation
of the parameters are quite similar, with the DE performing slightly
better than the SSRM. One possible reason that DE works so well is
that self-referential mutation operation is driven by differences be-
tween the parameter values of contemporary population members.
This allows each parameter to self-tune, and gives an appropriate
reduction in magnitude as the optimization proceeds and conver-
gence is approached.

In the noise-polluted cases, the DE and SSRM performed better
than the PSO at two levels of noise tested (5% and 10%). However,
the DE seems to be slightly more sensitive to the existence of noise
than the SSRM. It yields very accurate results for the noise-free
case but accrues slightly higher error than the SSRM as the noise
level increases. Nevertheless, the maximum errors in mass, stiff-
ness of only 3.56% and 4.11% respectively under 5% noise are very
good.

In general, the performance of DE is superior to the PSO algo-
rithm tested. It is simple, robust, and it can find the optimum in
Fig. 8. Typical identification results for 20-DOF unknown mass system.
almost every run. In addition, it has few parameters to set, and
the same settings can be used for many different problems. The re-
sults also show that DE is almost as good as the SSRM in this study.

5. Conclusions

This paper has presented a differential evolution (DE) strategy
for the problem of structural system identification. DE offers the
advantage of incorporating a relatively simple and efficient form
of self adapting mutation. DE is very easy to implement and re-
quires hardly any parameter tuning compared to substantial tun-
ing for PSO, original GA and some modified GAs. Comparative
studies have been investigated to assess the applicability of the
DE for structural parameters estimation. The results from our study
show that DE is clearly and consistently superior compared to PSO
for hard unknown mass problems, both in respect to precision as
well as robustness of the results. The results also show that DE is
almost as good as the SSRM in this study.

This proposed approach has no special requirements regarding
the incomplete output measurements from the system. Even when
the mass, stiffness and damping of the structure are unknown, the
DE can still converge to accurate results as illustrated in the
numerical study. The DE approach is a promising tool for parame-
ters estimation of structural systems in the sense that it is an opti-
mal method requiring no prior knowledge on the structure.
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