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Identification of Structural Systems Using Particle Swarm Optimization
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Abstract
Particle swarm optimization (PSO) is a new heuristic method that has yielded promising results for solving 

complex optimization problems. Its advantages are a simple structure, ease of use, quality of solution, and 
robustness. This paper utilizes the PSO algorithm for parameter estimation of structural systems, which could 
be formulated as a multi-modal numerical optimization problem with high dimension. Simulation results for 
identifying the parameters of multiple degree-of-freedom (DOF) linear and nonlinear structural systems are 
presented to demonstrate the effectiveness of the proposed method.
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1. Introduction
System identif ication is concerned with the 

derivation of mathematical models from experimental 
data. When given a data set, one typically applies a set 
of candidate models and chooses one based on a set 
of rules by which the models can be assessed (Ljung 
(1999)). System identification can be widely applied in 
civil engineering such as for health monitoring, non-
destructive evaluation, and active control. Because of 
their wide applicability, system identification methods 
have been studied in civil engineering for various 
purposes. Currently, a wide range of analytical methods 
exist for linear or nonlinear system identification. Most 
common among these methods are the least squares 
method (Yang and Lin (2004); Tang et al. (2006); 
Yang et al. (2007)), the maximum likelihood method 
(Campillo and Mevel (2005)), the extended Kalman 
filter (Yang et al. (2005)), the H∞ filter method (Sato 
and Qi (1998)), and the particle filter method (Li et al. 
(2004); Tang and Sato (2005)). Most of these methods 
require an initial guess to start the process. The 
problem can be very sensitive to the choice of these 
initial estimates, which makes them difficult to apply 
if no prior knowledge is available. The maximum 
likelihood method has proven suitable for problems 
with high noise, but requires a good initial guess. 
Studies have shown that the extended Kalman filter, 
H∞ filter, and particle filter methods give reasonably 
good results as long as the modeling method matches 

the physical system with reasonable accuracy, noise 
information is assumed, and the initial guess is good. 
Therefore, these parametric methods have common 
traits that tend to limit their applicability and success 
in dealing with complex systems in the real world.

Besides the traditional parametric identification 
methods, numerous nonparametric identification 
approaches in literature have been used in civil 
engineering applications, including structural control 
and health monitoring (Hung et al. (2003); Pei et al. 
(2005); Jiang and Adeli (2005); Tang et al. (2006)). 
However, these estimated nonparametric coefficients 
generally lack any physical meaning, and this makes 
it difficult to extract the physical characteristics of 
the system, such as mass, damping, or stiffness in a 
structural system, unless some of these are assumed a 
priori.

Some success has been achieved with various 
heuristic optimization algorithms such as genetic 
algorithms (GAs), evolution strategy (ES), simulated 
annealing (SA), and differential evolution (DE). These 
heuristic stochastic search techniques seem to be a 
promising alternative to traditional approaches. The SA 
and GA methods have been implemented to accurately 
describe the dynamic behavior of structures (Levin 
and Lieven (1998)). Cunha et al. (1999) used GAs to 
identify the elastic constants of composite materials. 
Franco et al. (2004) used ES to identify multiple DOF 
systems. GAs have been used to identify the damage 
severity of truss structures (Chou and Ghaboussi 
(2001)) and parameters of shear-type building 
structures (Koh et al. (2000); (2003)). Perry et al. (2006) 
presented a modified GA to identify structural systems. 
DE has been successfully applied in induction motor 
identification problems (Ursem and Vadstrup (2003)) 
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and structural system identification (Tang and Xue 
(2008)).

As a novel evolutionary computation technique, 
particle swarm optimization (PSO) has gained much 
attention and has been widely used for solving 
complex optimization problems ever since Eberhart 
and Kennedy (1995) introduced the algorithm. It was 
inspired by the social behavior of flocking birds or 
schooling fish. PSO shares many similarities with 
evolutionary computation techniques such as GA 
and ES. The system is initialized with a population 
of random solutions and searches for optima by 
updating generations. Compared with GA, PSO has 
the following attractive characteristics. First, PSO has 
a memory; that is, the knowledge of good solutions 
is retained by all particles, whereas in GA, previous 
knowledge of the problem is destroyed once the 
population changes. Second, PSO has constructive 
cooperation between particles; that is, particles in 
the swarm share information. Third, PSO is easy to 
implement and there are few parameters to adjust.

Given the characteristics and advantages of PSO 
over the other optimization methods, PSO algorithms 
have become increasingly popular for solving 
complex, nonlinear, non-differentiable, and nonconvex 
optimization problems. In recent years, PSO has been 
successfully applied in different fields, mainly for 
optimization problems such as function optimization 
(Liang et al . (2006)), artificial neural network 
training (Meissner et al. (2006)), structural reliability 
assessment (Elegbede (2005)), optimal design (Perez 
and Behdinan (2007); He and Wang (2007); Li et al. 
(2007); Omkar et al. (2008)), system identification, 
and parameter estimation (Coelho and Krohling (2006); 
Voss and Feng (2001); Omkar and Mudigere (2007); 
Tang et al. (2007); Tang and Xue (2008)). Despite this, 
PSO has not seen wide use in civil engineering.

Numerous traditional approaches in the literature 
have tackled the problem of system identification 
in the field of civil engineering. However, it is 
difficult for these approaches to extract the physical 
characteristics of a structural system, such as mass, 
damping, or stiffness, unless some of these are 
assumed to be known a priori. Further, measuring the 
inputs and outputs of a real structural system tends to 
be complex and expensive. Thus, there is a significant 
interest in the development of an algorithm that 
uses as few measurements as possible to obtain the 
physical characteristics of the system, without a priori 
knowledge of the system.

In this study, a parameter estimation technique 
based on PSO is presented to overcome some of the 
difficulties encountered in the field, which could be 
formulated as multimodal numerical optimization 
problems with high dimension. Some numerical 
examples for identifying the parameters of linear 
and nonlinear structural systems are presented, 
from which the effectiveness and efficiency of PSO 

are investigated. The influence of the incomplete 
availability of measurements on PSO performance for 
system identification is also discussed.

2. Problem Statement
The identification problem can be understood as an 

optimization problem in which the error between an 
actual physical measured response of a structure and 
the simulated response of a parameterized model is 
minimized. To understand this in more detail, consider 
a general physical system

where  denotes system output,  denotes 
system input, θ  = (θ 1, θ 2,…, θ n) are parameters to be 
estimated and k = 0,1,…,T denotes the kth discrete 
time step. 

To obtain successful identification, the candidate 
system, ŷ(k) = f (u(k),θ̂), must be able to accurately 
reproduce the output of the physical system for any 
given input. Therefore, our interest lies in minimizing 
the predefined error norm of the outputs, e.g., the 
following mean square error (MSE) function.

where ŷ(k) = f (u(k),θ̂) is the output of the model with 
estimated parameters and  represents the Euclidean 
norm of the vectors. Formally, the optimization 
problem requires finding a vector , such that 
a certain quality criterion is satisfied—namely that 
the error norm F(•)is minimized. The function F(•) 
is commonly called a cost or objective function. 
Typically, an objective function that reflects the 
correctness of the solution is used in PSO. The problem 
of identification is thus treated as a linearly constrained 
multi-dimensional nonlinear optimization problem

where θmax and θmin denote the upper and lower bounds 
of the n parameters, respectively. 

3. Particle Swarm Optimization (PSO)
3.1 The Basic PSO Algorithm

PSO is a population-based, cooperative search 
metaheuristic introduced by Kennedy and Eberhart 
in 1995. In PSO, candidate solutions of a population 
called particles coexist and evolve simultaneously 
based on knowledge sharing with neighboring 
particles. While flying through the problem search 
space, each particle generates a solution using a 
directed velocity vector. Each particle modifies its 
velocity to find a better solution (position) by applying 
its own flying experience (i.e., memory of the best 
position found in earlier flights) and the experience of 
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neighboring particles (i.e., the best solution found by 
the population). The dth dimension of the ith particles 
update their positions x 

d
i  and velocities v 

d
i  as shown 

below:

where θi = (θ i
1
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D

 ) is 
the best position discovered by the whole population. 
c1 and c2 are the acceleration constants reflecting 
the weighting of stochastic acceleration terms that 
pull each particle toward pbest and gbest positions, 
respectively. r1 and r2 are independent uniformly 
distributed random numbers in the range [0, 1]. w is 
the particle inertia weight. The inertia weight is used 
to balance the global and local search abilities. A large 
inertia weight is more appropriate for a global search, 
and a small inertia weight facilitates a local search. 
3.2 Constriction Factors and Parameters

The use o f a cons t r i c t i on f ac to r t o i n su re 
convergence of the PSO has been introduced in (Clerc 
and Kennedy (2002)). Accordingly, the expression for 
velocity has been modified as:

where the constriction factor χ  is defined as

χ  controls the magnitude of the particle velocity 
and can be seen as a dampening factor. It provides the 
algorithm with two important features (Eberhart and 
Shi (2000)). First, it usually leads to faster convergence 
than standard PSO. Second, the swarm maintains the 
ability to perform wide movements in the search space, 
even if convergence is already advanced but a new 
optimum is found. Therefore, the constriction PSO has 
the potential to avoid being trapped in local optima 
while possessing a fast convergence—it was shown 
to have superior performance compared to a standard 
PSO.
3.3 Feasible or Physically Possible Parameter Space

Similar to the other stochastic search optimization 
algorithms, the search for an optimum in the whole 
Rn space could be performed in theory. However, 
this choice is not reasonable for a physical problem 
(Franco et al. (2004)). Note also that not all vectors 
in the search space might provide plausible systems. 

In structural system identification using dynamic 
analysis, this problem arises when some parameter 
candidate sets evolved during the optimization 
process, representing unstable systems. In this paper, 
preserving a feasibility strategy is employed to deal 
with constraints. To find the optimum in feasible space, 
each particle searches the whole space but only tracks 
feasible solutions. All particles keep only feasible 
solutions in their memory. To accelerate this process, 
all the particles are initialized with a feasible solution. 
The procedure of pseudo-code of the modified PSO 
algorithm can be described as follows.

For each particle {
  Do {

 Initialize particle
 } while particle is in the feasible 

space
  }
Do {

For each particle {
 Calculate fitness value
 If the fitness value is better than 

the best fitness value (pBest) in 
history AND the particle is in the 
feasible space, set current value 
as the new pBest

 }
Choose the particle with the best fitness value of 

all the particles as the gBest
For each particle {

Ca lcu la t e par t i c l e ve loc i t y 
according to Eq.6; update particle 
position according to Eq.5

 }
} while a stopping criterion is not met

4. Numerical Studies
To illustrate the effectiveness of the parameter 

est imation technique with the part icle swarm 
optimization algorithm presented above, two different 
structural systems are considered. One is a 2-DOF 
nonlinear hysteretic structural system and the other is 
a 10-DOF system previously used by other authors to 
test other structural system identification methods.

(4)

(5)

(6)

(7)

(8)

Fig.1. 2-DOF Nonlinear Hysteretic Structure
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4.1 Two-Degrees-of-Freedom Nonlinear Hysteretic System
To assess the effectiveness of the modified PSO on 

a more difficult, unknown mass, a nonlinear hysteretic 
system is considered. A 2-DOF nonlinear hysteretic 
shear-type structure system is shown in Fig.1. The 
dynamics of this structure are presented by the 
equation

where M and C are 2 × 2 mass and damping matrices

x, x• , and x• • are the relative displacement, velocity, and 
acceleration vector to the ground, u is the input, and f 
= (f1-f2 , f2)

T, and the restoring force vector is expressed 
by (Sato and Qi (1998)) 

where α i, β i, and n i ( i = 1,2) are the nonlinear 
parameters.

Therefore, the system is fully described by the set of 
parameters

The properties of each story unit are: m1 =1 kg, k1 = 30 
kN/m, c1 = 0.55 kNs/m, α 1 = 1, β 1 = 2, n1 = 3, m2 = 0.8 
kg, k2 = 24 kN/m, c2 = 0.5 kNs/m, α 2 = 2, β 2 = 1, n2 = 2. 

In this example, the mass distribution of the structure 
is supposed to be unknown a priori. It is assumed that 
the structure is excited by a known force (Niigata 
earthquake excitation (Japan, 2000)) and that the 
response of the structure, in terms of acceleration, is 
recorded at some given points. The influence of limited 

availability of measurements on the performance of 
PSO for parameter estimation is discussed in this study. 
The following cases of data availability will be treated 
here as:
• Case 1: A full set of accelerations is available.

• Case 2: A partial set of accelerations is available.

The sampling time is 0.01 s and the time histories 
span a to ta l of 10 s . The accelera t ion output 
measurement error norm is used as the fitness function. 
The upper bound of the search space is twice the actual 
value of the parameters, and the lower bound is one 
third of their actual values; thus, θmax = 2θ* and θmin = 
θ*/3, where θ* = (1, 0.8, 30, 24, 0.55, 0.5, 1, 2, 2, 1, 
3, 2). In simulation tests, the PSO parameters are set 
as follows: swarm size n = 30, maximum evolution 
generation Gen = 500 (stopping condition), c1 = 2.05, 
c2 = 2.05. 

The statistical simulation results of 20 independent 
runs for the example using PSO are shown along 
with the results obtained with the ES method for 
comparison. The input and output (I/O) data are 
polluted (in the cases considering noise) with Gaussian, 
zero mean, white-noise sequences, whose root mean 
square (RMS) value is adjusted to a certain percentage 
of the unpolluted time histories. The mean results of 
the parametric identification are summarized in Table 
1. for clean signals and in Table 2. for input and output 
signals corrupted with 5% RMS noise. The results 
obtained using PSO show small errors, ranging from 0 
to 3.1%, in the noise-free scenarios. The largest relative 
errors are usually observed in the nonlinear coefficients 
such as α , β , and n. In the noise-polluted cases, we can 
see that the errors are slightly higher, ranging from 0.4 
to 7.8%. Although noise does not typically have a great 
impact on the estimation of mass and stiffness, it does 
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(12)

Note: Relative errors of identification are in parentheses expressed in %.

Table 1. Simulation Results without Noise Corruption

Parameters
True 
value

Case 1 Case 2

PSO ES PSO ES

m
1

1 1.009(0.9) 1.014(1.4) 1.012(1.2) 1.017(1.7)

m
2

0.8 0.804(0.5) 0.806(0.8) 0.807(0.9) 0.811(1.4)

k
1

30 29.986(0.05) 30.071(0.3) 29.955(0.15) 30.270(0.9)

k
2

24 24.003(0.01) 24.060(0.2) 24.097(0.2) 24.249(1.0)

c
1

0.55 0.554(0.6) 0.562(2.1) 0.541(1.7) 0.522(5.1)

c
2

0.5 0.502(0.4) 0.493(1.4) 0.494(1.4) 0.523(4.5)

á
1

1 0.984(1.6) 0.955(4.5) 0.970(3.0) 0.963(3.7)

á
2

2 2.016(0.8) 2.061(3.0) 2.037(1.8) 2.291(14.6)

â
1

2 1.972(1.4) 1.940(3.0) 1.963(1.9) 1.953(2.4)

â
2

1 1.014(1.4) 1.075(7.5) 1.023(2.3) 1.052(5.2)

n
1

3 3.024(0.8) 2.917(2.7) 2.955(1.5) 3.124(4.1)

n
2

2 1.977(1.2) 1.831(8.5) 1.938(3.1) 1.793(10.4)

(14)

(13)
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have one on the nonlinear coefficients. In the noise-free 
case, the results are comparable and the relative errors 
obtained in the estimation of the parameters are quite 
similar, with PSO performing slightly better than ES. 
As noise increases, however, PSO seems to still yield 

the same relative error levels, whereas ES appears 
more sensitive to the existence of noise, yielding very 
accurate results for noise-free cases but accruing more 
error as the noise level increases. The results show 
that ES has maximum errors of 14.6 and 25.2% for the 

Table 2. Simulation Results with 5% Noise Corruption

Parameters
True 
value

Case 1 Case 2

PSO ES PSO ES

m
1

1 1.016(1.6) 1.024(2.4) 1.020(2.0) 1.029(2.9)

m
2

0.8 0.809(1.1) 0.821(2.7) 0.813(1.6) 0.820(2.6)

k
1

30 29.882(0.4) 30.547(1.8) 29.732(0.9) 30.284(1.3)

k
2

24 24.151(0.6) 24.456(1.9) 24.288(1.2) 24.497(2.1)

c
1

0.55 0.558(1.8) 0.581(5.7) 0.563(2.5) 0.601(10.2)

c
2

0.5 0.507(1.2) 0.531(6.3) 0.486(2.9) 0.5318(6.1)

á
1

1 0.976(2.4) 1.205(20.5) 0.965(3.5) 0.773(22.7)

á
2

2 2.064(3.2) 2.190(9.5) 2.086(4.3) 2.251(12.5)

â
1

2 1.960(2.0) 1.870(6.5) 1.923(3.8) 1.863(6.8)

â
2

1 1.059(5.9) 1.185(18.5) 1.067(6.7) 1.252(25.2)

n
1

3 3.147(5.0) 3.185(6.1) 2.156(7.8) 3.514(17.1)

n
2

2 1.954(2.3) 1.872(6.4) 1.901(4.5) 1.812(9.4)

Note: Relative errors of identification are in parentheses expressed in %.

Fig.2. A Typical Simulation Result with Partial Measurements and 5% Noise
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noise-free and the noise-polluted cases, respectively. 
PSO has maximum relative errors of 1.6 and 7.8% for 
the noise-free and noise-polluted cases.

In general, for all cases studied, the results obtained 
by PSO are competitive with, or sometimes better than, 
those obtained with ES. The solutions obtained show 
even smaller errors, achieving a practically perfect 
identification in all cases. Note that the number of 
solution evaluations using PSO in the simulation tests 
is much less than that of ES in the literature—ES has 
evaluated 10,000 systems, while PSO has evaluated 
less than 200. So, it is concluded that PSO is more 
efficient than ES. 

Typical estimation results for partial measurements 
and 5% noise are provided in Figs.2.-3. From these 
figures, it can be seen that objective values and 
parameter estimations converge quickly, and the 
modified PSO avoids being trapped in local optima. 
Also, while the unknown mass systems present a far 
greater challenge compared to systems where the mass 
is known, for most practical applications, the mass will 
be known at least approximately; thus, a smaller search 
space for mass may be adopted, resulting in better and 
faster identification.
4.2 Ten-Degrees-of-Freedom Shear-Type Building 
System

To c o m p a r e t h e p e r f o r m a n c e o f t h e P S O 
methodology with other evolutionary computation 
methods that have been suggested in literature, such 
as GAs, a one-dimensional shear frame-type 10-DOF 
structural system similar to the previous example, 
with the structural properties given in Table 3., was 
analyzed. This system was used by Perry et al. (2006) 
to test a structural system identification algorithm 
called modified GA, which uses a search space 
reduction method (SSRM), and a modified GA based 
on migration and artificial selection (MGAMAS) 
strategy to provide a robust and reliable identification.

The dynamic equation of motion of an n-DOF 
structural system can be written as

where M , C , and K are the mass, damping, and 
stiffness matrices, x is the displacement vector, and 
u is the input force vector. The mass of the structure 
is lumped at each floor level and Rayleigh damping 
matrix C (Eq. (16)), where modal damping ratio (ςn) is 
set at 5% in the first two vibration modes (r = 1 and 2).

In this example, similar to other studies (Perry et al. 
(2006)), the damping parameters α and β are assumed 
to be unknown. Input forces are applied at the 5th 
level of the structures as random white Gaussian noise, 
with the RMS of the force scaled to 1000 N. In the 
known mass case, acceleration measurements at floors 
2, 4, 7, and 10 are available, whereas in the unknown 
mass case, acceleration measurements at floors 1, 2, 
4, 6, 8, and 10 are available. The mass, stiffness, and 
damping matrices are all banded and constant over 
time, allowing for an efficient numerical procedure to 
be used. The search limits are taken as 0.5–2.0 times 
the exact values.

In simulation tests, the PSO parameters are set 
as follows: swarm size n = 30, maximum evolution 
generation Gen = 500 (stopping condition), c1 = 2.8, 
and c2 = 1.3. The statistical simulation results of 20 
independent runs obtained using PSO are presented 
in Table 4., along with GA results directly cited from 
(Perry et al. (2006) ) for comparison.

In general, for all cases studied, the results show 
small errors, ranging from 0.12 to 10.7%. The largest 
relative errors are usually observed in the damping 
coefficients. Due to the fact that the damping parameter 
has only a small contribution to the overall response, 
its value is generally poorly estimated. In the noise-
free (known mass) case, results are comparable and 
the relative errors obtained in the parameter estimation 
are quite similar. In the noise-polluted case, average 
relative errors show that PSO seems to perform well 
compared to the modified GA. However, the largest 
relative errors of PSO are slightly higher than that 
of GA. A typical simulation result for the unknown 
mass system with 10% noise is shown in Fig.4. 
The convergence of objective value and parameter 
estimation is very fast.

In general, the performance of PSO is slightly 

Fig.3. Fitness vs. Generations 
(Partial Measurements and 5% Noise)

Table 3. Structural Properties

Stiffness (kN/m)

Levels 1–4 5000

Levels 5–8 4000

Levels 9–10 3000

Mass (kg)

Levels 1–5 6000

Levels 6–10 4200

Natural period of vibration (s)

First mode 1.321

Second mode 0.505

(15)

(16)
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better than GA. It is simple, robust, and can find the 
optimum in almost every run. In addition, it has few 
parameters to set, and the same settings can be used 
for many different problems. Both GA and PSO are 
population-based algorithms. Thus, they are much 
better suited to the complex search spaces. Both GA 
and PSO, however, have their own set of strengths and 
weaknesses. The PSO algorithm is conceptually simple 
and can be implemented in a few lines of code. PSO 
also has memory, whereas in GA, if an individual is not 
selected, the information contained by that individual 
is lost. However, without a selection operator, PSO 
may waste resources on an individual that is stuck in a 
poor region of the search space. PSO group interaction 
enhances the search for an optimal solution, whereas 
GA has trouble finding an exact solution and is best at 
reaching a global region. GA and PSO hybrid strategies 
can be considered as a method of developing more 
effective and efficient searching strategies to overcome 
the weakness of a pure single algorithm (Esmin et al. 
(2006)).

5. Conclusions
A particle swarm optimization (PSO) method for 

structural system identification was presented. For an 

identifiable structure, this methodology has no special 
requirements regarding the number and location of 
output measurements from the structure; even when 
all properties are unknown, the proposed strategy can 
still converge to accurate results, even in the presence 
of measurement noise, as illustrated by the numerical 
study.

The proposed PSO-based identification approach 
was successfully applied to the identification of 
nonlinear and linear structural systems, focusing on 
the effects of noise in the measurements and on the 
limited availability of measurements. Compared with 
other existing evolutionary computation techniques 
for structural system identification, the proposed PSO 
algorithm seems to perform as well as, or better than, 
the ES and modified GA approaches described in the 
literature, for reasonable levels of noise. Simulation 
results also show that the PSO method has a simpler 
procedure and higher computational efficiency.
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