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Structural damage identification is an important objective of health monitoring for civil infrastructures.

Frequently, damage to a structure may be reflected by a change of some system parameters, such as

a degradation of the stiffness. In this paper, an auxiliary particle filtering (APF) method is applied to

track a dynamic system with sudden parameter changes. In the APF, the importance density is

proposed as a mixture density that depends upon the past state and the most recent observations, and

hence which has a good time-tracking ability that is more suitable for tracking the nonstationary system

than the conventional particle filters. Simulation results for tracking the sudden parameter changes of

nonlinear hysteretic structures are presented to demonstrate the application and effectiveness of the

proposed technique in detecting the structural damages.
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1 Introduction

In the field of civil engineering, real-time

structural identification of dynamic system has

been focused on the accurate prediction as well as

structural health monitoring and damage assess-

ment. System identification and damage detection

based on measured vibration data have received

intensive studies recently. Widely adopted appro-

aches to addressing this problem are the Kalman

filter (KF) and extended Kalman filter (EKF) over

the past years [1–4]. Similar methods such as least-

square estimation method (LSE) [5–10], H1 filter

method [11], and unscented Kalman filter (UKF)

method [12,13] have been developed in some

useful forms for solving many practical problems

in civil engineering. Nonetheless, when one applies

the KF, EKF, or UKF to a complex system, a few

implementation and numerical problems may arise

[12]. The traditional Kalman filter assumes that

the posterior density at every time step is

Gaussian. However, if the true density is non-

Gaussian in a nonlinear problem, then a Gaussian

can never describe it well. The linearization

process of the EKF can also introduce large

errors which may lead to poor performance and

estimation divergence of the filter for highly non-

linear problems. Despite the fact that the UKF

apparently outperforms the EKF, UKF can

encounter the ill-conditioned problem of the
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covariance matrix (though theoretically it is posi-

tive semi-definite) in practice.

A recently developed filtering technique,

called particle filter (PF) [also called Monte

Carlo (MC) filter, bootstrap filter, condensation,

etc.] was proposed by Gordon et al. [14] and

Kitagawa [15]. It is a useful tool to perform

dynamic state estimation via Bayesian inference.

It provides great efficiency and extreme flexibility

to approximate any functional nonlinearity.

Because the particle filter offers a general numer-

ical tool to approximate the state a posterior

density in nonlinear and non-Gaussian filtering

problems with arbitrary accuracy, it has quickly

become a popular tool in signal processing

applications [16–18]. The PF method has been

successfully used in the areas of nonlinear state

estimation, such as radar tracking [19] and param-

eter identification [20,21]. The most common

choice of importance density is the transition

prior density function for particle filter, since it is

intuitive and simple to implement. However,

using the transition prior as the importance

density suffers from the drawback of not using

knowledge of the observations, and thus the

posterior density estimated by the particles, only

a few of which carry information, becomes

inaccurate. The generic particle filter may not be

appropriate for online damage detection, because

structural damage must be nonstationary phe-

nomenon.

A potential weakness of generic particle filters

discussed above is that the particle-based approx-

imation of filtered density is not sufficient to

characterize the true density, due to the use of

finite mixture approximation. To alleviate this

problem, Pitt and Shephard [22] introduced the

so-called auxiliary particle filtering (APF). In the

APF, the proposal distribution is proposed as a

mixture density that depends upon the past state

and the most recent observations. The APF is a

powerful nonlinear estimation technique and has

been shown to be a superior alternative to the PF

in a variety of applications in the areas of

nonlinear state estimation, such as robot localiza-

tion [23], human motion tracking [24], and visual

tracking [25]. Despite the fact that the APF

apparently surpasses the PF, the APF has not

been used widely in the field of civil engineering.

In this paper, an APF method for structural

damage identification is presented. Such an adap-

tive tracking technique yields a sparse approxima-

tion and gives a larger importance to more recent

data in order to cope with the system parameter’s

variations. The proposed technique is capable of

tracking the sudden changes of system parameters

from which the event and severity of structural

damage may be detected online. Simulation

results demonstrate that the proposed method is

suitable for tracking the changes of system para-

meters for hysteretic structures.

2 Bayesian Filtering

In a general discrete-time stochastic system

model, the evolution of the state sequence

xk, k 2 Nf g of the system is given by

xk ¼ fðxk�1, vk�1Þ ð1Þ

where, f : Rnx �Rnv ! Rnx is a possibly nonlinear

function of the state xk�1, vk�1, k 2 Nf g is an i.i.d.

process noise sequence, nx, nv are dimensions of

the state and process noise vectors, respectively,

and N is the set of natural numbers. The

objective of system is to recursively estimate from

measurement

zk ¼ hðxk, nkÞ ð2Þ

where, h : Rnx �Rnn ! Rnz is a possibly nonlinear

function, nk, k 2 Nf g is an i.i.d. measurement noise

sequence, and nz, nn are dimensions of the mea-

surement and measurement noise vectors, respec-

tively. In particular, we seek filtered estimates of

xk based on the set of all available measurements

z1:k ¼ zif g
k
i¼1 up to time k.

The Bayesian filtering is to recursively calcu-

late some degree of belief in the state xk at time k,

given the data z1:k up to time k. Thus, it is requ-

ired to construct the pdf pðxkjz1:kÞ. Our aim is to

estimate recursively in time the pdf pðxkjz1:kÞ, which

are given by two stages: prediction and update.

Assuming that xk in system model [Equation (1)]

is a Markov process of initial distribution

pðx0jz0Þ ¼ pðx0Þ and pðxkjxk�1, z1:kÞ ¼ pðxkjxk�1Þ.

Supposed that the required pdf pðxk�1jz1:k�1Þ
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at time k� 1 is available, the prediction stage

involves system model [Equation (1)] to obtain

the prior pdf of the state at time k via the

Chapman–Kolmogorov equation

pðxkjz1:k�1Þ ¼

Z
pðxkjxk�1Þpðxk�1jz1:k�1Þdxk�1 ð3Þ

where, the probabilistic model of the state evolu-

tion pðxkjxk�1Þ is defined by the system model

[Equation (1)] and the known probability model

for vk�1.

At time step k, a measurement zk that is

conditionally independent given the state xk
become available, and this may be used to update

the prior density to obtain the required posterior

density of the recurrent state via Bayes’ rule

pðxkjz1;kÞ ¼
pðzkjxkÞpðxkjz1:k�1Þ

pðzkjz1:k�1Þ
ð4Þ

where,

pðzkjz1:k�1Þ ¼

Z
pðzkjxkÞpðxkjz1:k�1Þdxk ð5Þ

depends on the likelihood pðzkjxkÞ defined by

the measurement model [Equation (2)] and the

known statistics of nk.

For linear Gaussian models, the integral of

the recursion can be solved analytically with a

finite dimensional representation leading to the

Kalman filter recursion, where the mean and

covariance matrix of the state are propagated.

Generally, this recursive propagation of the pos-

terior density is only a conceptual solution, and it

cannot be determined analytically. Therefore,

numerical approximations of the integral have

been proposed. A recent important contribution is

to apply simulation-based methods from mathe-

matical statistics, the sequential MC methods,

commonly referred to as particle filters.

3 Particle Filtering Methods

The particle filter is an attractive approach

for implementing a recursive Bayesian filter to

the problem of computing intractable posterior

densities by MC simulations. The key idea is to

represent the required posterior density function

by a set of random samples with associated

weights and to compute estimates based on these

samples and weights. As the number of samples

becomes very large, this MC characterization

becomes an equivalent representation to the usual

functional description of the posterior densities,

and the particle filter approaches the optimal

Bayesian estimate.

Let us introduce an arbitrary

importance distribution �ðx0:kjz1:kÞ40 whenever

pðx0:kjz1:kÞ40, from which it is easy to get

samples called importance sampling. Given N

i.i.d. random particles xi0:k

� �� �N
i¼1

distributed

according to �ðx0:kjz1:kÞ, an approximate

MC estimate of the posterior density pðx0:kjz1:kÞ

is given by

pðx0:kjz1:kÞ �
XN
i¼1

~wi
k� x0:k � x i

0:k

� �
ð6Þ

where the normalized importance weights are

defined by

~wi
k ¼

wi
kðx

i
kÞPN

j¼1 w
j
kðx

j
kÞ

ð7Þ

where the importance weights are defined by

wi
k ¼

pðxi0:kjz1:kÞ

�ðxi0:kjz1:kÞ
: ð8Þ

The choice of importance distribution (proposal

function) is one of the most critical design issues

in importance sampling algorithms. The prefer-

ence for proposal functions that minimize the

variance of the importance weights is advocated

by Doucet et al. [26]. The proposal distribution

�optðx0:kjz1:kÞ ¼ pðxkjxk�1, zkÞ minimizes the condi-

tional variance of the importance weights, i.e.,

var�opt ½w
i
kjx

i
k�1, zk� ¼ 0. Hence, with the assump-

tions of the states corresponding to a Markov

process and the observations being conditionally

independent of each other given the states, the

important weights are recursively updated as

wi
k ¼ wi

k�1pðzkjx
i
k�1Þ ð9Þ
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However, this proposal distribution suffers from

certain drawbacks: first, it requires sampling from

pðxkjx
i
k�1, zkÞ, which may be difficult, the other is

calculation of the importance weights as specified

in Equation (9) that requires evaluating the

integral pðzkjx
i
k�1Þ ¼

R
pðzkjxkÞpðxkjx

i
k�1Þdxk that

may be analytically intractable.

It should be pointed out that there is no

universal choice for proposal distribution, which is

usually problem dependent. A popular choice

among practitioners is so-called prior transition

distribution �ðxkjz1:kÞ ¼ pðxkjxk�1Þ for its easy

implementation, although it may be far from

optimal, this choice of proposal distribution has

been advocated by many researchers [14,15,27–30].

For this particular choice of importance distribu-

tion, it is evident that the weights are given by

wi
k / wi

k�1pðzkjx
i
kÞ: ð10Þ

The weights given by the proportionality in

(10) are normalized before the resampling stage.

A generic algorithm of sampling importance

resampling (SIR) particle filter using transition

prior density as proposed distribution is given as

follows.

For time steps k¼ 0, 1, 2, . . .

1. Initialization: for i¼ 1, . . . ,N, sample xi0 � pðx0Þ,

set wi
0 ¼ 1=N.

2. Importance sampling: for i¼ 1, . . . ,N, draw

samples xik � pðxkjx
i
k�1Þ.

3. Weight update: calculate the importance weights

wi
k ¼ pðzkjx

i
kÞ for i¼ 1, . . . ,N.

4. Normalize the importance weights: ~w i
k ¼

wi
k=
PN

j¼1 w
j
k.

5. Resampling: generate N new particles x j
k ( j¼

1, . . . ,N) from the set fxikg
N
i¼1 according to the

importance weights ~wi
k.

6. Repeat steps 2–5.

The transition prior sampling method does

have the advantage that the importance weights

are easily evaluated and easy to sample from.

However, using the transition prior as the impor-

tance sampling density is independent of measure-

ment, the state space is explored without any

knowledge of the observations zk. This property

is affected by the outlier problem [22], i.e., the

posterior estimation may fail, specifically when

model implausible observations occur, such

as sudden parameter changes in the system.

As shown in Figure 1, most of the particles

drawn from the prior have a low likelihood or

have little overlap with the prior in such situa-

tions, and thus the posterior density estimated by

the particles, only a few of which carry informa-

tion, becomes inaccurate. To achieve this, the

proposed importance density should include the

information from the observations.

4 Auxiliary Particle Filtering

The APF was originally introduced by Pitt

and Shephard [22]. This filter can be derived

from the original particle filter framework by

introducing an importance density �ðxk, ijz1:kÞ,

which samples the pair fx j
k, i

jgNj¼1, where, i
j refers

to the index of the particle at k� 1 from which

xk is predicted. The APF can be understood as a

one-step ahead filter: the particle xik�1 is propa-

gated to ij in the next time step in order to assist

the sampling from the posterior.

Using Bayes’ rule, pðxk, ijz1:kÞ can be

expressed as

pðxk, ijz1:kÞ / pðzkjxk, iÞpðxk, ijz1:k�1Þ

¼ pðzkjxkÞpðxkji, z1:k�1Þpðijz1:k�1Þ

¼ pðzkjxkÞpðxkjx
i
k�1Þw

i
k�1:

ð11Þ

The APF operates by obtaining a sample from

the joint density pðxk, ijz1:kÞ and then omitting the

indices i in the pair ðxk, iÞ to produce a sample

fx j
kg

N
j¼1 from the marginalized density pðxkjz1:kÞ.

p (xk | xk−1)
p (zk | xk)

xk 

Figure 1 The APF proposal density allows us to move
the particles in the prior to regions of high likelihood.
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Corresponding to Equation (11), the importance

density used to draw the sample is defined to

satisfy the proportionality

�ðxk, ijz1:kÞ / pðzkjl
i
kÞpðxkjx

i
k�1Þw

i
k�1 ð12Þ

where, li
k is a value associated with pðxkjx

i
k�1Þ

from which the i-th particle is drown.

By writing

�ðxk, ijz1:kÞ / �ðijz1:kÞ�ðxkji, z1:kÞ ð13Þ

and defining

�ðxkji, z1:kÞ ¼ pðxkjx
i
k�1Þ ð14Þ

it follows from Equation (12) that

�ðijz1:kÞ / pðzkjl
i
kÞw

i
k�1: ð15Þ

Thus, we can sample from �ðxk, ijz1:kÞ by resam-

pling with replacement from the sample set

x j
k, i

j
� �N

j¼1
that has an importance weight propor-

tional to

w j
k / wi j

k�1

pðx j
kjx

i j

k�1Þpðzkjx
j
kÞ

�ðli j

k , i
jjz1:kÞ

¼
pðzkjx

j
kÞ

pðzkjl
i j

k Þ
: ð16Þ

With choice of li
k � pðxkjx

i
k�1Þ, the outline of the

APF algorithm for online parameter estimation is

given as follows:

For time steps k¼ 0, 1, 2, . . .

1. Initialization: for i¼ 1, . . . ,N, sample xi0 � pðx0Þ,

set li
k ¼ xik, w

i
0 ¼ 1=N.

2. For i¼ 1, . . . ,N, calculate li
k � pðxkjx

i
k�1Þ.

3. For i¼ 1, . . . ,N, calculate the first-stage weights

wi
k ¼ wi

k�1pðzkjl
i
kÞ and normalize weights ~wi

k ¼

wi
k=
PN

j¼1 w
j
k.

4. Use the resampling procedure in SIR filter

algorithm to obtain new fx j
k, i

jgNj¼1.

5. For j¼ 1, . . . ,N, sample x j
k � pðx j

kjx
j
k�1, i

jÞ,

update the second-stage weights w j
k according

to Equation (16).

6. Repeat steps 2–5.

The APF is essentially a two-stage procedure:

at the first stage, simulate the particles with large

predictive likelihoods; at the second stage,

reweigh the particles and draw the augmented

states. Namely, the likelihood pðzkjl
i
kÞ is used to

select previous samples xjk�1 that are likely to

lead to current samples that are well matched

to zk. This is equivalent to making a proposal

that has a high conditional likelihood a priori,

thereby avoiding inefficient sampling. Because the

proposal density includes information about

the current observation, the estimation around

the likely points should be more accurate in APF

than in generic particle filter.

5 Numerical Examples

Consider an m degree of freedom (DOF)

nonlinear hysteretic shear-type structure subject

to ground excitation €ug, the equation of motion is

M €xþ C _xþ fð _x, xÞ ¼ �MfI g €ug ð17Þ

where, M, C are the mass and damping matrices;

x, _x, and €x are the relative displacement, velocity,

and acceleration vector to the ground; {I } is the

identity of the m� 1 column matrix; and f the

restoring force vector expressed by the Bouc-Wen

model [31]. In this case, the i-th component of

the vector is

_fi¼ ki _ui��i _ui
���� fi�� ��ni�1fi��i _ui fi�� ��ni , i¼ 1, . . . ,m

ð18Þ

where, _ui ¼ _xi � _xi�1 is the relative velocity

between the (i� 1)-th and i-th mass point; and ci,

ki, �i, �i, and ni are the damping, stiffness and

the nonlinear parameters of the i-th mass point

respectively.

Regarding the unknown parameters as state

variables, one can define an augmenting state

vector X as

X ¼ . . . , _ui, fi, ci, ki,�i, �i, log
ni
10 , . . .

� �T
,

i ¼ 1, . . . ,m
ð19Þ

in this state, to ensure positivity of the parameter

ni, log
ni
10 rather than ni is included in the augmen-

ted state vector. Equations (16) and (17) can then
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be rewritten in the form of nonlinear state

equations

_X ¼ FðXÞ þ v ð20Þ

where,

FðXÞ¼

..

.

�
ci
mi

_ui�
fi
mi
�
ð1� �imÞðciþ1 _uiþ1þ fiþ1Þ

mi
� €ug

ki _ui��i _ui
����fi�� ��ni�1fi��i _ui fi�� ��ni

0

0

0

0

0

..

.

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>;

,

�im¼ 0ði 6¼mÞ, �im¼ 1ði¼mÞ

and v is the process noise vector.

The observation equation here is expressed as

Z ¼ HXþ n ð21Þ

where, n is the observation noise vector, in which

Z is the observation defined by

Z ¼ f. . . , _ui, . . .gT, i ¼ 1, . . . ,m ð22Þ

and H is the measurement matrix given by

H ¼

. .
.

0
hi

0 . .
.

2
664

3
775, i ¼ 1, . . . ,m ð23Þ

where

hi ¼ 1 0 0 0 0 0 0
� �

: ð24Þ

Utilizing the APF technique in Equations (20)

and (21), the state vector Xk can be estimated

from the input €ug and the observed output Zk.

Hence, the unknown parameters are estimated

simultaneously.

5.1 SDOF Nonlinear Hysteretic System

Consider a single DOF (SDOF) nonlinear

hysteretic Bouc-Wen system subject to the El

Centro (NS, 1940) earthquake acceleration with

the modified maximum amplitude of 25 cm/s2.

System parameters m¼ 125.53 kg, c¼ 0.7 kNs/m,

k¼ 24.5 kN/m, �¼ 2, �¼ 1, and n¼ 2 are chosen

in the simulation. The structural responses sam-

pling interval is 0.01 s.

To verify the time-varying tracking ability of

the proposed technique, suppose that damage just

occurs at t¼ 6 s, at which time the stiffness

reduces abruptly from 24.5 to 19.6 kN/m, and the

damping increases abruptly from 0.7 to 1.05 kNs/

m. The initial estimate for the structural system

parameters to be identified is X � N (X0,r
2
0),

where, X0¼ {0, 0, 1.05, 36.75, 1.5, 1.5, 0.2}, and

r2
0¼ diag (0.012, 0.012, 0.072, 2.452, 0.152, 0.152,

0.022). The process and observation noises are

defined by vk�Nð0,QÞ and nk � Nð0,RÞ, where,

Q¼ diag(0.0012,0.0012,0.0072, 0.32, 0.022, 0.012,

0.032) and R¼ 0.0025. The total number of

particle samples is N¼ 200.

For the purpose of exploring the identification

robustness to noise, the measurement data are

polluted (in the cases considering noise) with

white-noise sequences, whose root mean-square

(RMS) value is adjusted to be a certain percentage

of the unpolluted time histories. The final param-

eter results (mean and standard deviation) of the

last 400 estimated values for 1, 5, and 10% RMS

noise levels are summarized in Table 1. In addition,

a typical performance of PF and APF is provided

in Figure 2. As shown in Table 1, the mean and

standard deviation of the parameters obtained by

the APF greatly outperform those obtained by the

PF. It is observed from Figure 2 that the proposed

method tracks the structural parameters and their

changes online very well. From these simulation

examples, we can see that the APF tracks the

parameters more accurately than the PF and is

also more robust to measurement noise level.

To evaluate the sensitivity of the APF to the

initial values, three different sets of initial values

are tested. Table 2 shows the different initial

values of the structural parameters for this analy-

sis. The final parameter results (mean and stan-

dard deviation) of the last 400 estimated values
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Figure 2 Identified parameters k, c, �, �, and log n
10 for a SDOF hysteretic structure with abruptly changed parameters:

(a) auxiliary particle filter method, (b) particle filter method.

Table 1 Estimation results for the SDOF nonlinear hysteretic system.

Noise level Method c k � � n

Exact value 1.05 19.6 2 1 2
1% PF 0.841(0.258) 19.02(1.89) 2.047(0.095) 1.078(0.081) 2.087(0.073)

APF 1.036(0.012) 19.46(0.31) 2.021(0.023) 0.986(0.017) 2.031(0.029)
5% PF 0.537(0.472) 19.00(3.07) 2.056(0.134) 1.083(0.107) 2.095(0.099)

APF 1.032(0.049) 19.31(1.84) 1.968(0.087) 0.987(0.069) 2.040(0.074)
10% PF 0.501(0.607) 18.24(5.72) 2.077(0.198) 1.098(0.145) 2.127(0.192)

APF 1.001(0.102) 19.12(2.69) 1.911(0.101) 0.972(0.081) 2.049(0.103)

Note: Standard deviations of identification are in parentheses.
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with different initial values are shown in Table 3.

In Table 3, it is seen that the results obtained in

the estimation of the parameters are quite similar,

i.e., the APF is very robust to the initial values.

To further explore the tracking ability of the

APF, the parameter changes (k and c) on the

order of 3 and 5% of original values are

conducted. For brevity time histories of the

identified parameters are not shown here, how-

ever, the final parameter results (mean and

standard deviation) of the last 400 estimated

values for 1 and 10% noise levels are summarized

in Table 4. It can be seen in Table 4 that the

APF can track the parameter changes on the

order of 3 and 5% of original values very well in

the 1% noise level. However, the errors are quite

higher in the 10% noise level. It should be noted

that the tracking ability of the APF needs to be

improved for a problem with very small order

changes of the parameters and higher noise level

of the measurements in the same time.

5.2 2-DOF Nonlinear Hysteretic

System

To further explore the effectiveness of

the APF algorithm, we consider a 2-story shear-

beam building subject to the El Centro earth-

quake excitation. In this building, two inter-story

force deflection relations, the Bouc-Wen

model in Equation (17) is used. The properties of

each story unit are: m1¼m2¼ 125.53 kg, c1¼ c2¼

0.7 kN s/m, k1¼ k2¼ 24.5 kN/m, �1¼�2¼ 2,

�1¼�2¼ 1, n1¼ n2¼ 2. Suppose a damage just

occurs in the 1st story unit at t¼ 6 s, at which

time the stiffness in the first story unit k1 reduces

abruptly from 24.5 to 19.6 kN/m, and the damp-

ing c1 increases abruptly from 0.7 to 1.05 kNs/m.

Table 5 shows the initial conditions of

the structural parameters for this analysis.

The process and observation noises are

defined by vk � Nð0,QÞ and nk � Nð0,RÞ, where,

Q¼ diag(0.0012, 0.0012, 0.0072, 0.32, 0.022, 0.012,

Table 4 Estimation results for the APF method with different order changes.

Change order Noise level c k � � n

Exact value 0.721 23.94 2 1 2
3% 1% 0.718(0.011) 23.73(0.26) 2.019(0.024) 0.987(0.013) 2.023(0.025)

10% 0.753(0.042) 23.07(1.91) 2.078(0.085) 0.961(0.068) 2.083(0.078)
Exact value 0.735 23.275 2 1 2
5% 1% 0.727(0.014) 23.21(0.31) 2.021(0.029) 0.988(0.015) 2.019(0.027)

10% 0.775(0.067) 22.08(2.17) 2.094(0.117) 0.938(0.075) 2.107(0.101)

Note: Standard deviations of identification are in parentheses.

Table 2 Different initial values (X�N (X0, �2
0)) for the SDOF nonlinear hysteretic system.

Initial value _u f c k � � logn10

Case 1 X0 0 0 1.05 36.75 1.5 1.5 0.2
�20 0.012 0.012 0.072 2.452 0.152 0.152 0.022

Case 2 X0 0 0 1.55 40.0 2.5 2.5 0.3
�20 0.022 0.022 0.12 5.02 0.302 0.302 0.032

Case 3 X0 0 0 0.95 30.0 0.5 0.5 0.1
�20 0.22 0.052 0.22 3.02 0.452 0.252 0.012

Table 3 Estimation results for the APF method with different initial values.

Initial value c k � � n

Exact value 1.05 19.6 2 1 2
Case 1 1.032(0.049) 19.31(1.84) 1.968(0.087) 0.987(0.066) 2.040(0.074)
Case 2 1.037(0.041) 19.40(1.77) 1.972(0.084) 0.990(0.067) 2.038(0.076)
Case 3 1.043(0.045) 19.34(1.80) 1.976(0.081) 0.984(0.064) 2.041(0.081)

Note: Standard deviations of identification are in parentheses.
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0.032, 0.0012, 0.0012, 0.0072, 0.32, 0.022, 0.012,

0.032) and R¼ diag(0.0025, 0.0025).

Based on the proposed tracking technique, the

identified parameters for the 5% noise level, with

the total number of particle samples N¼ 600, are

presented in Figures 3(a) and 4(a), respectively.

Also shown in Figures 3(b) and 4(b) are estima-

tion results by particle filter for comparison.
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Figure 3 Identified parameters k, c, �, �, and log n
10 for a 2-DOF hysteretic structure with abruptly changed parameters

(1st story): (a) auxiliary particle filter method, (b) particle filter method.

Table 5 Initial values (X� N (X0, �2
0)) for the 2-DOF nonlinear hysteretic system.

X _u1 f1 c1 k1 �1 �1 logn110 _u2 f2 c2 k2 �2 �2 logn210

X0 0 0 1.05 36.75 0.86 0.65 0.2 0 0 0.85 29.4 0.55 0.65 0.2
�20 0.012 0.012 0.072 2.452 0.152 0.152 0.022 0.012 0.012 0.072 2.452 0.152 0.152 0.022
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It is observed from Figures 3 and 4 that

the proposed method tracks the structural param-

eters and their variations very well. Also shown in

these figures, the APF has a good time-

tracking ability and is more suitable for tracking

the nonstationary system than the conventional

particle filters.

6 Conclusion

The auxiliary particle filtering technique has

been proposed to identify online the structural

parameters and their sudden changes due to

damages for nonlinear hysteretic structures. It is

shown that the proposed method consistently
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10 for a 2-DOF hysteretic structure with abruptly changed parameters

(2nd story): (a) auxiliary particle filter method, (b) particle filter method.
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achieves a better level of accuracy for estimating

and tracking the parameters and their abrupt

changes than the traditional particle filter

method. It has also been demonstrated that the

APF is robust to the initial values. Numerical

results indicate that the proposed approach is

particularly suitable for tracking the sudden

parameter changes from which the structural

damage can be determined.
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