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Identifiability of linear superstructures under feedback—Taking
base-isolated structures as example
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SUMMARY

The identifiability condition for substructural identification in free-vibration systems is investigated by
spectral analysis and parametric methods in the framework of closed-loop systems. Substructures governed
by linear and nonlinear feedback laws are both considered. The feedback law mechanism is shown to have
greater influence on identifiability than does the model structure or the identification method. Copyrightr
2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

For identification of free-vibration systems, many methods have been developed to identify the
dynamical characteristics of the overall structure, such as the eigensystem realization algorithm
[1]. Some situations, however, only require information about a substructure. For example, in
the case of a base-isolated structure, the superstructure is lightly damped and can be viewed as a
nearly linear system, while the base isolator is heavily damped, hysteretic, and nonlinear. The
modal frequencies and damping ratios of the overall system have strong amplitude dependence
[2,3]. This means that these dynamic properties vary with the intensity of excitation even if the
system is intact. Consequently, the changes in these properties cannot indicate the status of a
nonlinear system. Since some substructural parts of the overall structure remain in the linear
domain, the conventional indices of these substructures, defined as the changes in the dynamic
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properties, are still valid for damage indication and detection. Therefore, the damping ratios
and frequencies of the substructures are required for local damage detection.

The structural engineering community takes for granted that substructural identification of a
superstructure is equivalent to the case in which a structure is subject to ground motion, if the
base story of the superstructure is considered as the ground. Structural engineers assume that
identification will never fail if the input and output signals are known. Substructural
identification of the superstructure sometimes fails, however, in the case of free vibration.
This cannot be explained by the theory of open-loop identification, even though the input and
output signals of the substructure are both known. Therefore, investigating the identifiability
condition requires new insight, with substructural identification moved into the framework of
closed-loop systems.

In this paper, we take the example of a base-isolated structure decomposed into two
substructures: a superstructure and a base isolation layer. The superstructure is considered as a
linear system. The base isolation layer can be either linear or nonlinear. We first investigate the
linear case, in which the isolation layer is represented by a linear model with stiffness kb and
damping coefficient cb, as illustrated in Figure 1. Here, x is the displacement relative to the
ground, €xg is the ground acceleration, and the superscript a refers to the absolute coordinates.

The motion equation of the overall structure is expressed as

M €xþ C _xþ Kx ¼ �Mr €xg ð1Þ

where K, C, and M are the stiffness, damping, and mass matrices, respectively, and Mr is the
diagonal vector of M.

After decomposing the structure into the superstructure and the isolation layer, these two
subsystems compose a complete closed-loop system, as shown in Figure 2. The superstructure is
taken as the plant, while the isolation layer is the regulator. The subscripts s and b denote
the superstructure and the isolation layer, respectively. The ground acceleration functions as the
reference signal, a persistent excitation of any order, and is the input to the overall system. The
output of the plant is contaminated by unmeasured noise sources. We assume that there are no
process disturbances between the plant and the controller, and that the unmeasured noise does
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Figure 1. Structure model.
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not affect the controller, meaning that there is no correlation between the noise and the input.
The noise sources are modeled within output signals; therefore, they are located outside the
feedback loop. The isolation layer generates the feedback, which is the relative acceleration of
this layer with respect to the ground. The feedback added via the reference signal is equal to the
absolute acceleration of the layer exciting the plant.

The rest of this paper is organized as follows. Section 2 addresses the basic concepts of
closed-loop identification. Section 3 investigates the identifiability problem for linear systems
under linear feedback laws, by examining spectral analysis and parametric methods. We also
derive the identifiability condition for parametric methods. Section 4 briefly explains the
identifiability of linear systems under nonlinear feedback laws. In Section 4, we apply the
identifiability condition to study the identification of a superstructure by numerical simulation.
Finally, the last section summarizes our main results.

2. BASIC CONCEPTS OF CLOSED-LOOP IDENTIFICATION

The essential concept in closed-loop identification is identifiability, which means that there exists
an identified model M(y) that can describe the true system S when the number of measurements
tends to infinity. In the case of a closed-loop system, as shown in Figure 3, the input and the
unmeasurable noise, which is inside the feedback loop, are correlated whenever the feedback
controller exists. This is why several methods that can be applied in open loops fail when applied
to closed-loop data.

The identifiability problem of linear systems under linear feedback was first investigated by
Akaike [4] by using spectral analysis, showing that under pure feedback conditions spectral
analysis fails to yield informative results for the plant. Box and MacGregor [5] concluded an
identical result by using correlation methods, which are not applicable to the causality of true
systems. Ljung et al. [6] explored the same problem by direct, parametric approaches and proved
that by shifting between different linear regulators it is always possible to achieve identifiability
for pure feedback systems. The required number of regulators depends only on the numbers of
inputs and outputs. Söderström et al. [7] then included noise sources in the regulator and
external input signals for a general configuration. Ng et al. [8] derived the identifiability
conditions for joint input–output approaches, which require that there be no correlation
between the noise in the forward and reverse paths. The presence of delays in either the plant or
the regulator is necessary to avoid an algebraic loop [6,7]. This can be relaxed to a condition
relating to the absence of algebraic loops in closed-loop systems [9]. Wang et al. [10] used a fast-
sampling direct approach to lift these restrictive identifiability conditions for a closed-loop
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Figure 2. Subsystems in a closed-loop scheme.
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system without external signals. Finally, Forssell and Ljung [11] and Gustavsson et al. [12]
provided comprehensive surveys of closed-loop identifiability.

In the structural engineering community, the identifiability of substructural identification has
seldom been considered. It is vitally important to determine under what conditions it is possible
to obtain reliable, identified results for closed-loop systems. Generally speaking, the result of
identification depends on the following items [12]:

(a) system;
(b) feedback structure;
(c) model structure;
(d) identification method;
(e) experimental conditions.

2.1. System

Consider a linear time-invariant dynamical system in a discrete-time representation:

S : yðtÞ ¼ G0ðqÞuðtÞ þ vðtÞ; vðtÞ ¼ H0ðqÞeðtÞ ð2Þ

where y(t)ARp is a p-dimensional output signal, u(t)ARm is an m-dimensional input signal,
e(t)ARp is a sequence of independent random variables with zero mean and covariance matrix
EeðtÞeTðtÞ ¼ L40, and G0(q) and H0(q) are rational transfer function matrices, with H0(q) being
an inversely stable, monic filter. In this paper, q denotes the forward shift operator, e.g.
q�1uðtÞ ¼ uðt� 1Þ.

2.2. Feedback structure

Assume that this system is operated under a linear feedback law:

uðtÞ ¼ rðtÞ þ KðqÞyðtÞ ð3Þ

where r(t) is a q-dimensional reference signal assumed to be independent of the noise v, which is
either an additional measurable signal or a noise disturbance in the regulator output, and K(q) is
a linear, time-invariant regulator of appropriate dimensions. The feedback structure plays a
vital role in the identifiability conditions of a closed-loop system. The number of regulators or
the complexity of the regulator can influence the identifiability of a closed-loop system.
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Figure 3. A closed-loop system.
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2.3. Model

To identify the open-loop system S, we consider a model set:

M : yðtÞ ¼ GyðqÞuðtÞ þHyðqÞEðtÞ; y 2 Y� Rd ð4Þ

where e(t) is a sequence of independent, random vectors with zero mean values and covariances
~L, Gy(q) and Hy(q) are the dynamics model and the noise model, respectively, and both
are appropriate rational transfer function matrices depending on a real-valued parameter
vector y. When y varies within a feasible region, Equation (4) represents a family of models,
sometimes called a model structure. We assume that G is causal and H is both monic and
causal.

2.4. Identification method

The procedure to determine the parameter vector y is called the identification method. For a
closed-loop system, identification methods can be classified into three main groups [12]:

(a) The direct approach: Ignore the feedback and identify the system directly by measuring
the input and output, exactly as if it was an open-loop system.

(b) The indirect approach: If the regulator is known, then the closed-loop system as a whole
can be identified. The corresponding open-loop system is determined through the
knowledge of the regulator.

(c) The joint input–output approach: Jointly consider both the input and the output as
the output from a system driven by some extra input or noise. The corresponding
open-loop system is identified by estimating the characteristics of this augmented
system.

Each group includes several different methods, such as correlation and spectral analysis, the
parametric identification method [13], and the subspace identification method [14]. If there is a
time delay in either the system or the regulator, and if the regulator noise is independent of the
system noise, then the direct and joint input–output approaches are equivalent for determining
identifiability. Furthermore, the indirect approach has no advantage over direct identification in
terms of either identifiability or accuracy. Therefore, we adopt the direct identification approach
in this paper.

2.5. Experimental conditions

Basically, the experimental conditions consist of the sampling rate and the length of the
experiment, which describe how the input is determined. An experimental system can be
operated in an open loop, or the experimental conditions can be determined by the feedback
of a given regulator. Traditionally, the conditions include the regulator characteristics. In this
paper, however, we exclude these characteristics from the experimental conditions and
instead regard the regulator characteristics as a dependent item, called the feedback
structure.

2.6. Identifiability definition

The property of identifiability is related to the consistency of parameter estimation. There are
several definitions on different levels, as defined by Ljung and coworkers [12]. For a certain
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model structure, experimental conditions, and identification method, a system is said to be
system identifiable (SI) if an identified model M(y) converges to the true system S when the
number of measurements tends to infinity. If a system is SI for all possible model structures,
then it is said to be strongly system identifiable (SSI).

3. IDENTIFIABILITY CONDITIONS FOR LINEAR FEEDBACK LAWS

3.1. Nonparametric methods

As a classical, well-established method, spectral analysis was first used by Akaike [4] to study the
identifiability problem with nonparametric identification methods on closed-loop data. The
frequency response function can be obtained from the spectrum analysis:

GðoÞ ¼
FuyðoÞ
FuðoÞ

ð5Þ

where Fu(o) and Fuy(o) are the spectrum of input u and the cross-spectrum between input u and
output y, respectively. Another formulation of G(o) is the following:

GðoÞ ¼
G0ðeioÞFrðoÞ þ KðeioÞjH0ðeioÞj

2s2e
FrðoÞ þ jKðeioÞj2jH0ðeioÞj

2s2e
ð6Þ

where Fr(o) is the spectrum of the reference signal r. When the reference signal exists, the
frequency response gives a weighted average of the true process frequency response and the
frequency response of the controller’s inverse. If there is no persistent excitation signal, meaning
that Fr(o)5 0, then nonparametric methods identify only the inverse of the feedback controller:

GðoÞ ¼
1

KðeioÞ
ð7Þ

This shows that spectral analysis will not yield information about the plant if applied to a
pure feedback operation. Box and MacGregor [5] concluded an identical result by using
correlation methods. Nonparametric methods fail to yield informative results because the
causality of true systems cannot be implied by these methods. Instead, these methods only
identify the best correlation relationship between the input and output, which is represented by
the feedback law.

This result can also be explained from the viewpoint of modal vibration theory. The free-
vibration response, which is determined by the initial conditions, contains frequency content
only at the modal frequencies of the whole system. Furthermore, strictly speaking, the auto- or
cross-spectrum of the response is nonzero at modal frequencies and zero at other frequencies.
Therefore, spectral analysis cannot obtain the frequency response function of the substructure
or plant in terms of the input and output vibration signals in the frequency domain.

3.2. Parametric methods

Söderström et al. [7] generalized the identifiability conditions for a system by including the noise
sources in the regulator and the external input signals. The regulator is assumed to shift among r
different feedback laws:

uðtÞ ¼ rðtÞ þ KiðqÞyðtÞ; 1pipr ð8Þ
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Each case applies during a nontrivial period of the total time of an experiment. Here, we
introduce some abbreviations to facilitate concise description. We denote G5G0(q), Ĝ ¼ GyðqÞ,
Ki 5Ki(q), and so forth. Equations (8) and (2) then give

yðtÞ ¼ GKiyðtÞ þ GrðtÞ þHeðtÞ ð9Þ

The input can be expressed as

uðtÞ ¼ ½KiðI� GKiÞ
�1Gþ I�rðtÞ þ KiðI� GKiÞ

�1HeðtÞ

We also introduce the following notation for the feedback law Ki:

Pi ¼ ðI� GKiÞ
�1G

Now, we consider direct identification. The residual e(t) is given as

EðtÞ ¼ Ĥ�1½yðtÞ � ĜuðtÞ�

¼ Ĥ�1½Pi � ĜðKiPi þ IÞ�rðtÞ þ Ĥ�1ðI� ĜKiÞðI� GKiÞ
�1HeðtÞ ð10Þ

Since Ki is causal and the input u(t) is independent of e(t), the minimum variance prediction
error e(t) is asymptotically given as

EðtÞ � eðtÞ

Therefore, Equation (10) implies the following:

Ĥ�1½Pi � ĜðKiPi þ IÞ� ¼ 0;

Ĥ�1ðI� ĜKiÞðI� GKiÞ
�1H ¼ 1;

(
1pipr ð11Þ

The first equation can be rewritten in this form:

ðĤ�1Ĝ�H�1GÞð�KiPi � IÞ þ ðĤ�1 �H�1ÞPi ¼ H�1ðGKiPi þ G� PiÞ ¼ 0

The second equation is simplified as:

�ðĤ�1Ĝ�H�1GÞKi þ ðĤ�1 �H�1Þ ¼ 0

Thus, we rewrite Equation (11) in matrix form:

½Ĥ�1 �H�1 H�1G�H
_�1

ĜĤ�
Pi I

KiPi þ I Ki

" #

¼ ½ Ĥ�1 �H�1 H�1G� Ĥ�1Ĝ �
I 0

Ki I

" #
Pi I

I 0

" #
¼ ½ 0 0 � ð12Þ

Because the matrix
Pi I
I 0

� �
is nonsingular, we finally have

½ Ĥ�1 �H�1 H�1G� Ĥ�1Ĝ �Rr ¼ ½ 0 0 �

Rr ¼
I1 � � � I1 0 � � � 0

K1 � � � Kr I2 � � � I2

� �
ð13Þ

where I1 has order ny|ny, 0 has order ny|nr, Ki has order nu|ny, and I2 has order nu|nr. Thus, Rr is a
matrix of order ny1nu|r(ny1nr). Here, r is the number of regulators, and ny, nu, and nr are the
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numbers of plant outputs, plant inputs, and reference signals, respectively. If the identification
result converges to the true model, then we have

Ĥ ¼ H; Ĝ ¼ G

This implies that

Ĥ�1 �H�1 ¼ 0

H�1G� Ĥ�1Ĝ ¼ 0 ð14Þ

This requires that Rr be nonsingular.
In conclusion, the identifiability condition for a linear system under linear feedback can be

summarized as follows: For a linear multivariate system, if there is a reference signal, it must be
a persistent excitation of any finite order. Assume that there is a time delay in either the system
or the regulator, such that G(0)Ki(0)5 0. Then, the system is SSI if and only if

rankðRrÞ ¼ ny þ nu ð15Þ

A necessary condition for Equation (15) to hold is that

rXðny þ nuÞ=ðny þ nrÞ ð16Þ

The presence of a delay in either the plant or the regulator, given by G(0)Ki(0)5 0, avoids
algebraic relations between the input and output necessary to guarantee identifiability. Here,
this is represented strictly, but Schoen [9] relaxed this classic delay-structure condition for the
identifiability of closed-loop systems.

3.3. Identifiability conditions of superstructures

We can now apply the derived identifiability condition to the case of superstructures for two
situations: ground excitation and free vibration.

Case 1: In the case of ground excitation, the reference signal is of the same dimension as the
input signal, i.e. nu 5 nr, and the regulator is not replaceable, i.e. r5 1. Then, the identifiability
condition becomes

rank
I1 0

K1 I2

" #
¼ ny þ nu ð17Þ

Therefore, no matter what the feedback might be, the necessary condition from Equation (16)
always holds if there is ground motion. In other words, if the input and output of the plant are
given, the superstructure in the case of an earthquake is SSI.

Case 2: The case of free vibration means a situation with pure linear feedback laws; therefore,
nr 5 0. Then, the identifiability condition becomes

rank
I1 � � � I1

K1 � � � Kr

" #
¼ ny þ nu ð18Þ

Therefore, the necessary condition from Equation (16) for the free-vibration case is given as

rX1þ nu=ny

This means that even if no reference signal exists, the presence of at least two linear feedback
laws guarantees the system identifiability of the superstructure.
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If the identifiability condition is not satisfied, the system is not SSI. It can, however, be SI for
certain model structures. Söderström et al. [15] investigated the identifiability of a pure feedback
system without external inputs for certain model structures and derived the necessary and
sufficient condition for identifiability. This condition requires that the order of the regulator be
higher than that of the plant for identifiability to hold.

When the regulator is operated by a nonlinear feedback law, Equation (6) cannot clarify the
identifiability of the plant, because the description of the regulator in the frequency domain is
invalid. In parametric approaches, if the feedback law is nonlinear, it can be viewed as a
different linear regulator during every short time segment. Therefore, the complexity of the
nonlinear regulator guarantees the identifiability of the plant in the case of pure feedback, and in
the case with external signals, as well.

4. NUMERICAL SIMULATION

In this simulation, we considered a four-story structure. The part of the structure above the base
layer was defined as the superstructure. The superstructure was of the shear type and assumed to
remain within its elastic range. The stiffness and mass could vary from floor to floor, as
illustrated in Figure 4. The damping coefficient matrix was proportional to the stiffness matrix
as C5 aK, with a5 0.001. Tables I and II list the modal information for the superstructure and
the overall structure, respectively. The time step for the simulation was 0.01 s. The structure was
placed in a state of free vibration by setting its initial displacement. The acceleration response
was contaminated by 1% white noise (i.e. the standard deviation of the noise was 1% of the
standard deviation of the response).

Mass (ton) 

2400 
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1900 

3000 

Stiffness (tf/cm) 

650

700

750

4F
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2F

1F

Superstructure 

Base layer 500

Figure 4. Simulation model for a four-story building.

Table I. Modal information for the superstructure (fixed base).

Frequency (Hz) Damping ratio

First 1.2762 0.0040
Second 3.6125 0.0113
Third 5.3489 0.0168
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Autoregressive moving average models with exogenous inputs (ARMAX models) include
disturbance dynamics that can flexibly describe a disturbance as a moving average of white
noise. The model is given as follows:

yðtÞ þ a1yðt� 1Þ þ � � � þ anayðt� naÞ ¼ b1uðt� 1Þ þ � � � þ bnbuðt� nbÞ

þ eðtÞ þ c1eðt� 1Þ þ � � � þ cnceðt� ncÞ ð19Þ

with

AðqÞ ¼ 1þ a1q
�1 þ � � � þ anaq

�na

BðqÞ ¼ b1q
�1 þ � � � þ bnbq

�nb

CðqÞ ¼ 1þ c1q
�1 þ � � � þ cncq

�nc

where, ai, bi, and ci are the coefficients of the AR, X, and MA part, respectively. na, nb, and nc
are model orders of each part. This model can also be rewritten as

AðqÞyðtÞ ¼ BðqÞuðtÞ þ CðqÞeðtÞ ð20Þ

A(q)y(t) is the autoregression part of the output, B(q)u(t) describes a process of exogenous
inputs, and C(q)e(t) represents the disturbance dynamics, which is the moving average of a
stationary white noise e(t). In addition, this corresponds to Equation (2) with

Gðq; yÞ ¼
BðqÞ
AðqÞ

; Hðq; yÞ ¼
CðqÞ
AðqÞ

ð21Þ

For further information about the model estimation, readers can refer to Ljung’s book [13].
Thus, an ARMAX model is used for identification, using the acceleration at the first floor for

the input signals and the acceleration at the fourth floor for the outputs signals, as shown in
Figure 5. When the regulator (i.e. the base story) was governed by a linear feedback law, the
parametric method obviously failed to identify the superstructure, as illustrated in Figure 6.

To ensure the nonlinearity of the regulator, a cubic hardening stiffness was added to the base
layer: Fn ¼ bkbx3b (b5 10 000), where xb is the displacement relative to the ground. As shown in
Figure 7, the result identified by the ARMAX model was consistent with that of the analytical
model.

5. CONCLUSION

We have explored the identifiability condition for substructural identification in the cases of free
vibration. As explained by Akaike [4], spectral analysis in the frequency domain cannot obtain

Table II. Modal information for the overall structure.

Frequency (Hz) Damping ratio

First 0.9113 0.0029
Second 2.4803 0.0078
Third 4.0756 0.0128
Fourth 5.5001 0.0173
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the identifiability of a superstructure. If the base layer is governed by a linear feedback law, the
identifiability of the superstructure is lost unless there are at least two regulators. By making the
regulators nonlinear, identifiability can be regained with parametric methods. In a free-vibration
field test, the identification of a linear substructure under linear feedback laws can be guaranteed
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Figure 5. Acceleration response (initial displacement: 0.01m at the fourth story, 0 elsewhere).
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Figure 6. Parametric method for the linear case.
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if a nonlinear device is attached to the rest of the structure. The feedback, determined by the
characteristics of the regulator, has a greater influence on the identifiability than does the model
structure or the identification method.
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