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Using component mode synthesis to estimate the restoring force
of an isolation layer subjected to earthquakes
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SUMMARY

A new method for estimating the restoring force of an isolation layer in a base-isolated system is proposed.
The hybrid motion equation involving the modal coordinates and the physical coordinates is derived by
component mode synthesis. This significantly reduces the number of unknown parameters after the mode
shape information of the superstructure is substituted and makes it possible to identify the isolation layer
directly and locally. The effectiveness of this method was validated in a simulation example and in an
application to an actual base-isolated building. The difficulty lies in how to describe the state of a nonlinear
device of a real structure. In this paper, the amplitude-dependent equivalent stiffness and damping
coefficient are adopted to describe the nonlinearity of the isolation layer. The identified results by our
proposed method reconfirm the experimental observation of nonlinearity in the layer made up of isolators.
Copyright r 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Since the Kobe and Northbridge earthquake, base-isolation systems such as the friction
pendulum and elastomeric-bearing systems have gradually come into use to alleviate the damage
of structures. These systems isolate the superstructure from the ground, shift its natural
frequency from the destructive range of ground motion, and enable it to absorb more energy
without suffering damage. They have been shown to effectively protect structures from the
effects of large earthquakes, but their effectiveness is largely determined by the behavior of the
isolators that assimilate a large amount of the input seismic energy and reduces interstory drifts
and floor accelerations. If the isolators degrade or fail, the structure will lose its ability to resist
earthquakes. Therefore, it is important to assess the condition of isolators for monitoring the
base-isolated structures.
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The damage detection reviewed by Doebling et al. [1] is accomplished by evaluating changes
in dynamic properties such as the natural frequencies, mode shapes, and modal damping. This,
however, is valid only in the linear domain. These properties cannot indicate the status of a
nonlinear system because in a nonlinear system they will vary with the intensity of excitation
even when the system is intact. Isolators exhibit nonlinear and hysteretic properties under
experimental conditions [2], and the responses of four base-isolated buildings were investigated
by Stewart et al. [3]. The stiffness and damping of the seismic isolation systems were isolated and
evaluated; the systems were found to respond with a hysteretic action that strongly depended on
the vibration amplitude. Because of the hysteresis, the stiffness of the isolators decreased
significantly with increasing amplitude. Tobita [4] also evaluated the dynamic properties of
actual buildings by modeling the structure as a linear, time-invariant system in each time
segment. The variation in the damping and frequency with the input intensity was observed, and
the distinctive amplitude-dependent damping characteristics of based-isolated structures were
found.

A base-isolated system consists of two very different subsystems: the superstructure and the
isolation layer. The isolation layer of a base-isolated structure is composed of rubber bearing
isolators that typically have damping ratios up to 20%, while the superstructure is just
an ordinary building with a very low damping ratio of its first mode. The conventional
damage indices such as the modal frequencies and mode shapes are insensitive to local damage
and thus cannot be used to quantify damage accurately. In addition, the nonlinearity
of the system makes these indices invalid for damage detection. A direct and local identification
method is therefore better than one using the conventional indices. This paper presents a new
algorithm for estimating the restoring force of the isolation layer by component mode synthesis
(CMS). In addition, the amplitude-dependent stiffness and damping coefficients, which are
regressed from the restoring force of the isolation layer, are utilized to represent the nonlinear
state of the layer.

2. ESTIMATING RESTORING FORCE BY COMPONENT MODE SYNTHESIS

CMS is a technique used to perform the dynamic analysis of structures by means of
substructuring or decomposing the overall structure into several substructures whose boundary
conditions are compatible in a specified way. This technique is quite useful for the dynamic
analysis of complex structures in structural engineering, especially when the substructures
have dynamic characteristics so different that the coupled structure has nonclassical vibration
modes. In this paper, the state of the isolation layer is our concern and the number
of the accelerometers mounted is limited. CMS is therefore used to derive the hybrid motion
equation involving the modal parameters of the superstructure as well as the physical
parameters of the isolation layer.

The CMS methods presented by Hurty [5] can be classified into four groups: fixed-interface
methods, free-interface methods, hybrid-interface methods, and loaded-interface methods.
These groups differ from each other mainly in the choice of the supplementary Ritz vectors, the
associated generalized coordinates, and the coupling procedure. CMS methods have been
reviewed by Craig [6] and others. In this paper, the fixed-interface method is adopted.

The base-isolated structure shown in Figure 1 consists of two substructures: a super-
structure and a base-isolation layer. The superstructure is considered to be a linear system, and
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the base-isolation layer has both linear and nonlinear components. The linear component has a
stiffness kb and a damping coefficient cb, and the nonlinear component has a restoring force of
fnl. There are many choices for the nonlinear model, but in the present case a hysteretic model is
used because the rubber bearings of the isolation layer possess strong hysteresis. The model is
described in detail in Section 7.

The dynamic equation of the overall structure is written as

M €xþ C _xþ Kxþ
0

fnl

( )
¼ �Mr €xg ð1Þ

Fnl ¼
0

fnl

� �
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mn 0

. .
.
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Figure 1. Structure model.
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C ¼

cn �cn 0
�cn cn þ cnþ1 �cnþ1

..

.

�c3 c3 þ c2 �c2
0 �c2 c2 þ cb

2
666664

3
777775

where K, C, and M are, respectively, the stiffness, damping, and mass matrices; x is the
displacement relative to the ground; and €xg is the ground acceleration.

Moving the nonlinear term to the right-hand side, we obtain

M €xþ C _xþ Kx ¼ �Mr €xg � Fnl

The whole structure is separated into two substructures that have a common interface as shown
in Figure 2. In addition, we impose a fixed boundary condition on this interface and make it
unable to deform and move. These two substructures can therefore be treated as independent
structures and can generate their own modal information. Our focus in this paper is not on how
to retrieve the overall modal information by integrating substructures. Instead, we are trying to
transform the traditional dynamic equations either in physical coordinates or modal coordinates
into a hybrid form by CMS. The hybrid dynamic equations describe both the linear modal
information of the superstructure and the nonlinear physical model of the isolation layer.

The equilibrium equation of the superstructure is

Ms €x
r
s þ Cs _x

r
s þ Ksx

r
s ¼ �Mrs €x

a
b ð2Þ

where

xab ¼ xg þ xb

and

xrs ¼ xs � xb

The superscript r indicates coordinates relative to the fixed interface, while the superscript a
indicates absolute coordinates. The subscripts s and b, respectively, denote the superstructure

bx

2
rx 2m

nm

2c2k

ncnk

Fixed interface bcbk
nlf

Ground excitation 

Figure 2. CMS: fixed-interface method.

RESTORING FORCE ESTIMATION OF AN ISOLATION LAYER 155

Copyright r 2008 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2010; 17:152–177

DOI: 10.1002/stc



and the isolation layer. We assume that the damping matrix of the superstructure is
proportional to the stiffness matrix. That is, Cs ¼ aKs.

Rewriting the equation of superstructure in modal coordinates, we have

UT
s MsUs

€ns þUT
s CsUs

_ns þUT
s KsUsns ¼ �UT

s Mrs €x
a
b ð3Þ

where Us is the fixed-interface normal mode of the superstructure and ns is the modal
coordinate. xr is related to the modal coordinates as follows: xr ¼ Usns:

If Us is normalized in such a way that

M�s ¼ UT
s MsUs ¼ I

We have the relations

K�s ¼ UT
s KsUs ¼ x2

and

C�s ¼ UT
s CsUs ¼ ax2

Equation (3) can be expressed by

M�s
€ns þ C�s

_ns þ K�sns ¼ �UT
s Mrs €x

a
b ð4Þ

where x is the undamped frequency.
The physical displacements of the superstructure in local coordinates are expressed as a linear

combination of its substructure modes. After some algebraic transformations, the displacements
of the superstructure in general coordinates can be represented by a set of Ritz vectors:

xs ¼ Q
ns
xb

� �

where xb is the displacement of the isolation layer representing the interface displacement. The
boundary condition of its fixed interface determines the Ritz vectors [7] as

Q ¼ Us Ws

� �
where Ws is the constraint mode associated with the fixed interface. It is the superstructure
deformation obtained by imposing one unit displacement on the fixed interface. In this case the
superstructure is constrained only by the base layer. Therefore, Ws ¼ 1.

The overall physical coordinates can be transformed to the hybrid coordinate, which
contains the modal coordinates of the superstructure ns and the physical coordinate of the base
isolator €xb:

xs ¼ Usns þWsxb

x ¼
xs

xb

( )
¼

Us Ws

0 I

" #
ns

xb

( )
¼ Un ð5Þ

Substituting this into the motion equation of the overall structure and multiplying both sides by
UT, we get

UTMU €nþUTCU _nþUTKUn ¼ �UTMr €xg �UTFnl ð6Þ

which we can simplify as follows:

M� €nþ C� _nþ K�n ¼ �UTMr €xg �UTFnl
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where

Kbs ¼ 0 � � � 0 �k2
� �

¼ KT
bs

and

WT
s Ks þ Kbs ¼ 0

The final form of the motion equation in the hybrid coordinates is

I UT
s Mrs

MrTs Us trðMÞ

" #
€nþ

ax2 0

0 cb

" #
_nþ

x2 0

0 kb

" #
n ¼ �UTMr €xg � Fnl ð7Þ

The new coordinate system could reduce the number of physical parameters significantly.
Another advantage of this form is that the complete modal information of the superstructure is
not required. The participation factors of higher modes are relatively low for base-isolated
buildings. We assume here that only the first n orders of the superstructure are known.

When we consider only first n modes as expressed in the form

xs ¼ �Us
�ns þWsxb

x ¼
xs
xb

� �
¼

�Us Ws

0 I

� �
�ns
xb

� �
¼ �U�x

where �ns is the first n modal coordinates, and �Us is the first n columns of Us, in other words, the
first n orders of mode shapes.

Following the same procedure, we obtain

I �U
T

s Mrs

MrTs
�Us trðMÞ

" #
€�nþ

a �x2 0

0 cb

" #
_�nþ

�x2 0

0 kb

" #
�n ¼ � �U

T
Mr €xg � �U

T
Fnl ð8Þ

Extracting the second row related to the base isolator from Equation (7), we can obtain the
following single degree of freedom (DOF) equation of motion for the isolation layer:

mb €xb þ cb _xb þ kbxb ¼ �trðMrsÞð €xb þ €xgÞ �mb €xg �MrTs Us
€ns � fnl ð9Þ

Therefore, the identification of the isolation layer has become as simple as possible. The
restoring force of the isolation layer can be expressed as follows:

F ¼ cb _xb þ kbxb þ fnl ¼ �trðMrÞð €xb þ €xgÞ �MrTs Us
€ns ð10Þ
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The restoring force consists of two parts. The first term represents the rigid inertial force of the
superstructure, and the second term is the inertial force in modal coordinates.

3. IDENTIFIABILITY OF SUPERSTRUCTURE

The superstructure is to be identified before the restoring force of the isolation layer can be
estimated. Consequently, the identifiability problem of the superstructure should be investigated
here.

After the system of interest is decomposed into the superstructure and the isolation layer,
these two subsystems comprise a complete closed-loop system (Figure 3). The superstructure is
considered the plant, and the isolation layer is considered the regulator. The ground acceleration
is the reference signal, which is the persistent excitation of any order, input to the overall system.
The isolation layer generates the feedback, which is the relative acceleration of this layer with
respect to the ground. The absolute acceleration of the layer (which excites the plant) is the sum
of this feedback and the reference signal.

The identifiability condition of the closed-loop system was investigated by Ljung,
Soderstrom, and Gustavsson [8–10]. The details of this condition will not be elaborated in
this paper because that elaboration needs another notation system. For the sake of simplicity,
the necessary condition for identifiability is given here as

r� ðny þ nuÞ=ðny þ nrÞ ð11Þ

where r is the number of regulators and ny, nu, and nr are, respectively, the numbers of plant
outputs, plant inputs, and reference signals. In the case of the ground excitation, nu equals nr,
the regulator is not replaceable, and r5 1. Therefore, no matter what the feedback might be,
the necessary condition always holds as long as there is ground motion. In other words, the
superstructure under earthquakes is strictly system identifiable if the input and the output
of the plant are given.

4. SUBSPACE IDENTIFICATION

The subspace identification formulates and solves a major part of the identification problem on
a signal level. The main characteristic of these schemes is the approximation of a subspace
defined by the span of the column or row space of matrices determined by the input–output
data. The parametric time-invariant model is calculated from these spans by exploiting their
special structure, such as the shift-invariance property. Subspace identification methods take
advantage of robust numerical techniques such as QR factorization and singular

Superstructure 

Plant

Isolation layer 

Regulator 

gx sx

bx

Output signal 

Feedback

Input signal

Reference signal 

Figure 3. Subsystems in closed-loop scheme.
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value decomposition (SVD). For brevity, only an archetypical procedure is illustrated in this
paper.

Given a deterministic–stochastic state-space model with a p-dimensional output yt and an
m-dimensional input ut,

xtþ1 ¼ Axt þ But þ wt

yt ¼ Cxt þDut þ vt ð12Þ

where wt and vt are unmeasurable disturbances, respectively, called process error and
measurement error and x is an n-dimensional state-space vector.

From Equation (12) we can formulate the k-step ahead predictor ytþk by expanding xtþk.
Then we form the equation

YrðtÞ ¼ Orxt þ SrUrðtÞ þ VðtÞ ð13Þ

where

YrðtÞ ¼

yt
ytþ1

..

.

ytþr�1

2
6664

3
7775; UrðtÞ ¼

ut
utþ1

..

.

utþr�1

2
6664

3
7775; Or ¼

C
CA
..
.

CAr�1

2
664

3
775; Sr ¼

D 0 � � � 0
CB D � � � 0
..
. ..

. . .
. ..

.

CAr�2B CAr�3B � � � D

2
664

3
775

In addition, the kth block component of V(t) is

VkðtÞ ¼ CAk�2wt þ CAk�3wtþ1 þ � � � þ Cwtþk�2 þ vtþk�1 ð14Þ

Or is the extended observability matrix for the system. To eliminate the term with UrðtÞ and
make the noise influence from V(t) disappear asymptotically, we introduce

Y ¼ ½Yrð1Þ Yrð2Þ � � � YrðNÞ�

X ¼ ½x1 x2 � � � xn�

U ¼ ½Urð1Þ Urð2Þ � � � UrðNÞ�

V ¼ ½Vð1Þ Vð2Þ � � � VðNÞ�

We can rewrite Equation (13) as

Y ¼ OrXþ SrUþ V ð15Þ

and form an N�N matrix orthogonal to the matrix U:

�?
UT ¼ I�UTðUUTÞ�1U ð16Þ

Multiplying Equation (15) by �?
UT will eliminate the term with U, yielding

Y�?
UT ¼ OrX�

?
UT þ V�?

UT ð17Þ

By correlating with a suitable matrix F [11], the noise term can be removed as well. Thus, we
have

G ¼
1

N
Y�?

UTFT ð18Þ
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The column space can be reduced by using SVD. If G has rank n, only the first n singular values
will be nonzero. Therefore, we have

G ¼ USVT ¼ ½U1 U2�
S1 0

0 S2

" #
VT

1

VT
2

" #
¼ U1S1V

T
1 ð19Þ

where S1 is the n� n upper left part of S.
An estimate of the extended observability matrix may be obtained as Ôr ¼ U1S1. We can

finally estimate the system matrices C by using the first block row of Or and estimate the system
matrix A by using the shift property. Once we have C and A, we can estimate the matrices B and
D by solving a linear least-squares problem. It is worth noting that the left and right weighting
matrices for the oblique projection G determine a wide class of subspace algorithms, such as
N4SID [12], MOESP [13], and CVA [14].

5. MODE SHAPE EXPANSION

For economical reason, accelerometers are usually not installed in every story. Therefore, the
measured mode shapes consist of a limited number of DOF, typically smaller than the
number of DOF in the analytic model. The full-length vector of mode shapes is,
however, indispensable in the calculation of the equivalent external force acting on the
isolation layer. It is necessary to expand the measured mode shapes for matching the
other unmeasured DOFs. The Guyan static expansion [15] is suggested in this paper because of
its simplicity.

The Guyan static expansion method is based on the assumption that inertial forces
acting on the unmeasured DOFs are negligible with respect to the elastic forces.
This assumption is implemented by setting M5 0 in the following modal force equilibrium
equation:

Kaa Kao

Koa Koo

" #
� o2

i

Maa Mao

Moa Moo

" # !
fai

fao

 !
¼ 0 ð20Þ

The subscripts a and o, respectively, represent the locations of the measured and the unmeasured
DOFs.

This equation leads to an exact analytical relationship between the mode shapes at the
measured and unmeasured DOFs:

fao ¼ �K
�1
oo Koafai ð21Þ

Usually there is no preknowledge about the stiffness distribution of the superstructure, so we
have to use an alternative way to describe it. We assume that the stiffness distribution of a
building is proportional to its mass distribution. This assumption is reasonable for buildings
with conventional shapes.

6. IDENTIFICATION PROCEDURE

The procedure of the proposed method is illustrated in Figure 4. After the identification process
for the superstructure, the number of the unknown parameters to be identified could be reduced
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greatly as shown in Equation (9). Only partial modal information is required for the estimation
of the restoring force, which makes this method workable when the number of sensors is limited.
It is easy to incorporate the nonlinearity in the isolation layer by selecting nonlinear models for
the restoring force:

F ¼ cb _xb þ kbxb þ fnl ¼ �trðMrÞð €xb þ €xgÞ �MrTs Us
€ns

What we want to identify is the total restoring force on the left-hand side of this equation.
To do this we first need to specify the mass distribution Mrs, the expanded mode shape
matrix Us, and the acceleration in modal coordinates €ns on the right-hand side. Given
that the acceleration response at floors is observable, the ground excitation and the accelera-
tion response at the isolation layer and several other floors are known. It is not difficult
to retrieve the mode shape information Us by using subspace identification methods.
Only partial modal information is required for the estimation of the restoring force,
but the mode shapes need to be expanded at unmeasured DOFs. Then the acceleration
in modal coordinates €ns can be obtained by the transformation from the physical co-
ordinates. The mass distribution Mrs is treated by taking the design value of real buildings,
since the mass of buildings hardly changes unless significant rebuilding or retrofitting
takes place.

Identification of superstructure

Modal information 

Restoring force of isolation layer 

Expanded mode shape 

Figure 4. Procedure of the proposed method.
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7. NUMERICAL SIMULATION

A multistory structure supported by a base-isolation layer is considered here. We refer to the
part of the structure above the base as the superstructure, and we make the following
assumptions:

1. The superstructure is of a shear type, its stiffness and mass may vary from floor to floor, it
remains within the elastic range even during an earthquake, and its only nonlinearity is
associated with the base-isolation system.

2. The base-isolation layer consists of an elastic spring, a hysteretic damper, and a viscous
damper.

According to the experimental observation that the elastomeric bearings and friction-type
isolators exhibit little rate dependence and quite stable hysteresis loops [16], a smooth and
differential hysteresis model is adopted for the hysteretic dampers in the dynamic simulation. A
widely accepted one is the Bouc–Wen hysteresis model proposed by Bouc [17] and generalized
by Wen [18] and other researchers [19,20] to incorporate the deterioration of hysteretic
characteristics. Although it is not in total accordance with the plasticity theory and sometimes it
predicts negative dissipated energy [21], it has been widely used in seismic engineering.

The differential equation of the Bouc–Wen model is

Dy _z ¼ A _u� ðg sgnðz _uÞ þ bÞjzjn _u ð22Þ

and the hysteretic force of the isolation layer is given by

Fh ¼ Fyz

The terms Dy and Fy are, respectively, the yield displacement and force of the hysteretic damper;
z is a dimensionless parameter; A, b, and g are parameters that describe the shape of the
hysteresis loop; and u and _u are, respectively, the displacement and velocity of the isolation
layer. The smoothness of transition from elasticity to plasticity is determined by n, and when
n!1 the hysteresis model is reduced to a bilinear case.

A seven-story base-isolated building is considered and the mass and stiffness matrices of the
superstructure are shown in Figure 5. The damping matrix is assumed to be proportional to the
stiffness matrix and the first order of the damping ratio is 1%. The modal information of the
superstructure is listed in Table I. The accelerometers are installed in the basement, on the first
story, on the fourth story, and on the roof. The restoring force of the isolation layer is given by

F ¼ kbxb þ cb _xb þ Fh

The parameters related to the isolation layer are listed in Table II.
The earthquake that happened on 23 July 2005 in the Chiba prefecture, Japan, is selected as

the ground input. The ground acceleration was observed at the Hiyoshi Campus of Keio
University and was recorded by the Raiosya monitoring system [22]. The maximum acceleration
in this record is 70.13 cm/s2 and the sampling rate is 100Hz (Figure 6).

The simulation was conducted using Simulink MATLABs. The acceleration response of the
superstructure is illustrated in Figure 7 and the restoring force is plotted against displacement in
Figure 8.

Two cases are under consideration: one with the acceleration response contaminated by 1%
white noise and the other with the acceleration response contaminated by 10% white noise.
Taking the acceleration at the first story as the ground input to the superstructure and the
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accelerations at the fourth story and roof as the responses, the mode shapes of the
superstructure were identified by the subspace identification method (N4SID) using the
toolbox in Matlab. After the first two mode shapes at measured DOFs were extracted
(Table III), they were expanded to the unmeasured DOFs by using Equation (21) as shown in
Figure 9. In this calculation, the stiffness distribution was assumed to be proportional to the
mass distribution.

Table I. Modal information of superstructure.

Frequency (Hz) Damping ratio (%)

First 1.09 1.00
Second 2.82 2.59
Third 4.61 4.22
Fourth 6.06 5.55
Fifth 7.36 6.74

Table II. Parameter values.

kb 475 000 (kN/m)
cb 6000 (kNs/m)
a 0.0029
b 0.6
g 0.4
n 1
Dy 1.5mm
Fy 655.4 (kN)

Mass (ton) 
2337 

1904 

1907 

1889 

2449 

2232 

2995 

6952 

Stiffness (tf/cm) 

1292 

1439 

1504 

1916 

2263 

2642 

3195 

RF

7F

6F

5F

4F

3F

2F

1F (base layer) 

Superstructure

Ground excitation

Isolation layer 

Figure 5. Simulation model of a seven-story base-isolated building.
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The acceleration in modal coordinates €ns corresponds to the physical acceleration obtained
by coordinate transformation:

€ns ¼ U�1s €xr ð23Þ

U�1s is the pseudo-inverse matrix of the expanded mode shape matrix of Us. The evaluated
results and analytical values are plotted in Figures 10 and 11.

All the unknown parameters in Equation (10) needed for estimating the restoring force of the
isolation layer were determined assuming the mass to be the same as that in the simulation
model. Figure 12 illustrates the difference between the estimated restoring force and the
analytical one. Although they are consistent at a rather high level, the estimated
force–displacement is distorted a lot (Figure 13). These cases with different noise levels show
that noise degrades the identification results, the modal information, and the modal acceleration
but has little effect on the estimated restoring force. The reason is that the dominant part of the
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Figure 6. Ground acceleration observed at Hiyoshi.
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Figure 7. Acceleration response of the superstructure.
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restoring force comes from the inertia force of the superstructure, and the part coming from
modal inertia forces does not count as much.

7.1. Effect of mode selection

The effect of mode selection was examined for three different choices: the first mode, the first
two modes, and the first three modes. As illustrated in Figure 14, the first two modes can
generate acceptable results. In most cases, the response of the structure is dominated by the low-
order vibration modes with high participation factors.

7.2. Effect of mass estimation

The effect of the mass estimation was evaluated by investigating two kinds of mass variation.
First, the mass estimation was scaled to its simulation value, in this case, by 90%, and the first
two modes were selected for the restoring force estimation. As illustrated in Figure 15, the
estimated value retains the shape but is scaled by the same degree. This is due to the reason that
the rigid inertial force, which dominates the restoring force, is proportional to the total.
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Figure 8. Restoring force of the isolation layer vs displacement.

Table III. Identified mode shapes of superstructure.

1% noise 10% noise

Roof Fourth story Roof Fourth story

First 1 0.4419 1 0.4385
Second 1 �1.0053 1 �1.0281
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The second kind of mass variation was that the mass is normally distributed around the
simulation value with a certain standard deviation (in this case, 20% of the simulation value).
As shown in Figure 16, in this case too the estimated value fits the analytical value very well.
From these two examples, it is concluded that the estimation of the restoring force is insensitive
to the mass distribution but will be scaled by the estimated total mass.

8. APPLICATION TO AN ACTUAL BASE-ISOLATED BUILDING

The proposed method was applied to a building named Raiosya at Keio University in Japan. It
is a seven-story base-isolated building 30.95m high. The structure of the superstructure has a
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Figure 9. Expanded and analytic mode shapes: (a) 1% noise and (b) 10% noise.
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steel frame and the supporting columns are concrete-filled tubes. The base-isolation layer is
equipped with three kinds of devices: 55 high-damping rubber bearings 750–900mm in
diameter, 6 oil dampers in each direction, and 9 elastic sliding bearings. As illustrated in Figure
17, the monitoring system installed in this building has 16 accelerometers at 7 locations and 3
displacement sensors at 2 locations. The sampling frequency of these sensors is 100Hz. The
measurements are stored in the monitoring server and can be accessed and downloaded via the
Internet.

The earthquake that happened on 23 July 2005 in the Chiba prefecture, Japan, was used for
analysis. The movement in the x-plane was considered for the analysis. The ground motion is
plotted in Figure 6; the acceleration collected by ]1, ]2, ]4; and ]5 (shown in Figure 17) in the
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Figure 10. Acceleration in the first modal coordinate €x1s: (a) 1% noise (fitting rate5 92.1%) and (b) 10%
noise (fitting rate5 88.6%).
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x-direction and the deformation of the isolation layer collected by ]102 in the x-direction are
shown in Figures 18 and 19.

Yoshimoto et al. [23] developed an algorithm based on the subspace identification to identify
the stiffness of the isolation layer and applied it to Raiosya. In the paper, when the deformation
of the layer is small (with the maximum value 0.76mm in the y-direction), the identification
succeeded when applied to the simulation case and the existing building under earthquakes. The
method is based on linear models, however, so nonlinear behaviors are not explicitly considered.
The nonlinearity in the isolations is the crucial feature accounting for the behavior of the base-
isolated system. This nonlinearity will be illustrated by the force–displacement plot showing the
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Figure 11. Acceleration in the second modal coordinate €x2s: (a) 1% noise (fitting rate5 90.8%) and (b)
10% noise (fitting rate5 83.3%).
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hysteresis, and the amplitude-dependent stiffness and damping coefficient are adopted to relate
the nonlinearity with the deformation.

The identification of the superstructure was performed under the assumption that it
was a linear lightly damped structure. The mode shapes of the superstructure that were
identified by the subspace identification method (N4SID) when the acceleration at the first story
was taken as the excitation, and the accelerations at fourth story and roof were taken as the
responses listed in Table IV along with other modal information. We then expand the first two
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Figure 12. Estimated restoring force of the isolation layer: (a) 1% noise (fitting rate5 94.6%) and (b) 10%
noise (fitting rate5 94.1%).
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modes (Figure 20) and use the expanded mode shapes to estimate the restoring force. The
accelerations in modal coordinates were calculated by transformation (Figure 21).

Assuming the estimated mass to be the simulation value, we were able to estimate the
restoring force expressed in Equation (10). Figure 22 shows the estimated result, and Figure 23
shows the force–displacement plot.

Figure 23 indicates that the isolation layer has strong hysteresis due to its large deformation.
However, it is difficult to extract intrinsic state information of the isolation layer from the
force–displacement plot. As stated by Stewart et al. [3] and Tobita [4], the performance of
the base-isolated system depends on the vibration intensity. Therefore, it is feasible to represent
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Figure 13. Estimated restoring force vs displacement.

L. XIE AND A. MITA170

Copyright r 2008 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2010; 17:152–177

DOI: 10.1002/stc



the state condition of the isolation layer by the equivalent stiffness and damping coefficient,
which are evaluated with respect to the deformation of the isolation layer.

If we assume that the restoring force consists of the equivalent elastic force and the equivalent
viscous force, we can write

fð _xb;xbÞ ¼ keqxb þ ceq _xb ð24Þ
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Figure 14. Effect of mode selection on estimation (1% noise).
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Figure 15. Effect of mass estimation (1% noise).
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In addition, the restoring force at time t can be estimated by substituting the recorded displacement
and velocity into

fðtÞ ¼ ½xbðtÞ _xbðtÞ�
keq

ceq

" #
¼ HtP ð25Þ

Figure 17. Elevation views showing sensor allocation.

20 25 30 35 40 45 50
-1.5

-1

-0.5

0

0.5

1
x 10

4

Time (s)

R
es

to
rin

g 
fo

rc
e 

(k
N

)

Estimated Value

Analytical Value

Figure 16. Effect of mass estimation (fitting rate5 93.09%). Mass5 [2560.3 1796.5 1637.7 2407.5 2210.9
2351.7 3085.6 7947.9] from the top.
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The minimum least-squares approximation of the coefficient is given by

P ¼ ðHTHÞ�1HTf ð26Þ
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Figure 18. Acceleration response (]2 ]4 ]5 in x direction).
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Figure 19. Deformation of the isolation layer (]102 in the x-direction).

Table IV. Identified modal information of superstructure.

Mode shape

Freq. Damping Roof Fourth story

First 1.0819 0.0347 1 0.3680
Second 3.4720 0.0445 1 �1.4671
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The recorded data were sliced into segments, and the equivalent coefficients were estimated
within each segment. The average amplitude of the displacement was evaluated by using the
following equation:

Aeq ¼
ffiffiffi
2

p
RMSðxbÞ ð27Þ

where RMS is the root mean square function.
The estimated stiffness and damping coefficient in the x-plane are plotted against the

displacement amplitude in Figure 24. Both of them decrease with increasing amplitude, as usual,
the estimation of the equivalent stiffness is more stable than that of the damping coefficient. The
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20 25 30 35 40 45 50
-60

-50

-40

-30

-20

-10

0

10

20

30

40

 A
cc

el
er

at
io

n 
in

 m
od

al
 c

oo
rd

in
at

es

Time (s)

1st mode

2nd mode

Figure 21. Acceleration in modal coordinates.
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stiffness is very sensitive in the small amplitude range and might drop 50% at a shear strain of
2.5% (the 100% shear strain is at 0.2-m displacement in the design book for Raiosya).
Compared with the small amplitude experiment performed by Abe et al. [2], the same decreasing
pattern is confirmed.

9. CONCLUSION

This paper represented a new method, based on the CMS, for estimating the restoring force of
an isolation layer. The hybrid motion equation involving the modal coordinates and the
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Figure 22. Restoring force of the isolation layer.
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physical coordinates is derived by using a substructuring technique. This method is applicable
when the number of sensors is limited because only the mode shape information of the
superstructure and the estimated mass estimation are needed for estimating the restoring force.
It was shown that the proposed method is not sensitive to the mass distribution and the
expanded mode shapes but will be scaled by the total mass. The effectiveness of this method was
validated in simulations and in application to an actual base-isolated building. In this paper, the
amplitude-dependent equivalent stiffness and damping coefficient are adopted to describe the
nonlinearity of the isolation layer. The identified results by our proposed method reconfirm the
experimental observation of nonlinearity in the layer made up of isolators.
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