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Abstract. The paper describes a procedure for the uncertainty quantification (UQ)
using evidence theory in buckling analysis of semi-rigid jointed frame structures
under mixed epistemic–aleatory uncertainty. The design uncertainties (geometrical,
material, strength, and manufacturing) are often prevalent in engineering applications.
Due to lack of knowledge or incomplete, inaccurate, unclear information in the mod-
eling, simulation, measurement, and design, there are limitations in using only one
framework (probability theory) to quantify uncertainty in a system because of the
impreciseness of data or knowledge. Evidence theory provides an alternative to prob-
ability theory for the representation of epistemic uncertainty that derives from a lack
of knowledge with respect to the appropriate values to use for various inputs to the
model. Unfortunately, propagation of an evidence theory representation for uncer-
tainty through a model is more computationally demanding than propagation of a
probabilistic representation for uncertainty. In order to alleviate the computational
difficulties in the evidence theory based UQ analysis, a differential evolution-based
computational strategy for propagation of epistemic uncertainty in a system with
evidence theory is presented here. A UQ analysis for the buckling load of steel-
plane frames with semi-rigid connections is given herein to demonstrate accuracy and
efficiency of the proposed method.

Keywords. Evidence theory; uncertainty quantification; buckling load; semi-rigid
jointed frame structures; differential evolution.

1. Introduction

In steel-frame structures, stability is very important because when a structure loses its stability,
the failure is abrupt, there is no way to predict it, and the damage is always serious. Buckling
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is a critical issue for structural stability in structural design. However, design uncertainties
(applied loads, geometrical, material, strength, and manufacturing) are often prevalent in practi-
cal engineering structures. As a consequence, the buckling load may also be strongly affected by
the uncertainties of the structural parameters. The sensitivity of the buckling load to structural
parameters has long been investigated in structural design, determining that uncertain consider-
ations are unavoidable when stability problems are of concern. As reported, the buckling load or
the equivalent buckling length factor of steel-frame structures is greatly influenced by stiffness of
bracing elements and semi-rigid connections (Goto & Miyashita 1998; Raftoyiannis 2005; Lien
et al 2012). Moreover, many studies (Tucker & Bennett 1990; Rauscher & Gerstle 1992; Gao
& Haldar 1995; Sakurai & Ellingwood 2001; Huh & Haldar 2001) indicated that the stiffness
of semi-rigid connections is actually uncertain, and this can influence the behavior of the struc-
ture significantly. Therefore, the uncertainty of the rigidity of the connections has to be taken
into account in the analysis and design. In this paper, we consider the uncertainty of the initial
rotation stiffness of supports, beam-to-column connections, and horizontal bracing.

Theoretically, the initial rotational stiffness of beam-column semi-rigid connections is deter-
mined by five main parts: tensile rigidity of the column web, compression rigidity of the column
web, shear rigidity of the column web, flexural rigidity of the column flange, and flexural rigid-
ity of the end plate. These parameters are related to the modulus of material and dimensions
of joints, bolts, and welds (Moncarz & Gerstle 1981; Yee & Melchers 1987; Azizinamini et al
1987; Eurocode 3 2005). In reality, some of these design parameters are disregarded, which can
lead to uncertainties of the stiffness of the connections. In most analyses of buckling, structural
properties and applied loads are considered certain, which ignores the fact that imperfections
and unknown changes in properties, albeit small, are required for the onset of buckling.

Different approaches are used for buckling analysis when considering uncertainties such as
probability theory, fuzzy theory, convex models, and interval calculations. Hadianfard & Razani
(2003) considered the loads and the resistance of members to be random variables and adopted
Monte Carlo simulation to estimate the probability of failure of a steel frame with semi-rigid
connections. Modares et al (2004) used an interval finite element method to analyze buckling
of structures with uncertain properties and loads. Alibrandi et al (2009) presented a response
surface method for the evaluation of the probabilistic buckling analysis. Korkmaz et al (2011)
employed fuzzy logic algorithm to investigate the material uncertainties on column design
and proposed an uncertainty model for critical column buckling reinforced concrete buildings.
Basaga et al (2012) applied a combination of the reliability method and finite element method
to determine the reliability indexes of steel-braced reinforced concrete frames with semi-rigid
connections.

To represent the uncertainty in a system, Helton & Oberkampf (2004) and Oberkampf
& Helton (2001) described uncertainties as two distinct types: aleatory uncertainty and
epistemic uncertainty. Aleatory uncertainty is also called irreducible and inherent uncer-
tainty. Epistemic uncertainty is subjective and reducible uncertainty that stems from lack of
knowledge or data. In engineering, the problem parameters (geometrical, material, strength,
and manufacturing) are given or considered with uncertainties. In general, the sources of
aleatory uncertainty are typically represented using a probabilistic framework under which
the aleatory uncertainty can be represented by a finite number of random variables with
some known distribution. However, when sufficient data are not available or there is lack
of information due to ignorance, the classical probability methodology may not be suit-
able. In comparison to the quantification of aleatory uncertainty, the analysis of epistemic
uncertainty has proven more challenging. Several theories to handle epistemic uncertainty
have been proposed in the literature including possibility theory (Dubois & Prade 1996;
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Byeng et al 2007; Du et al 2006; Hanss & Turrin 2010), interval theory (Muhanna & Mullen 2001;
Ben-Haim 2006; Li & Azarm 2008), evidence theory (Shafer 1976; Bae & Ramana 2004; Limbourg
& Rocquigny 2010; Helton et al 2010; Jiang et al 2013 etc. Among these methods, evidence
theory has the greatest potential in uncertainty quantification since it is more general than proba-
bility and possibility theories. It uses plausibility and belief to measure the likelihood of an event,
without making additional assumptions. Contrary to the classical probability theory, possibility
theory is usually only used to quantify epistemic uncertainty.

Evidence theory has a strong ability to deal with uncertainty modeling and decision under
uncertainty, when the evidence about uncertainty is imprecise. However, the large computa-
tional cost caused by its discrete property severely influences the practicability of evidence
theory. There is no clear function expression for unclear information in evidence theory, which
is different from probability density function and possibility distribution function (membership
function of fuzzy variable). As the uncertainty variable is represented by many discontinuous
sets instead of smooth and continuous explicit function, onerous computational cost is inevitable
in uncertainty quantification with evidence theory.

Uncertainty propagation based on evidence theory is a very important step in dealing with
uncertainty, which is to find the maximum and minimum values of the system response, and this
part can be very computationally expensive. There are two main approaches to solving this prob-
lem: sampling (Walpole 1998) and optimization (Storn & Price 1997; Tang et al 2008). In the
sampling method, computational complexity will increase exponentially with the increasing of
uncertainty variable and quantity of the uncertainty interval; moreover, result accuracy is highly
dependent on the number of samples and the number of interval combinations. In order to alle-
viate the computational difficulties in the evidence theory based uncertainty quantification (UQ)
analysis, a differential evolution-based computational strategy for the propagation of epistemic
uncertainty in a system with evidence theory is developed. Moreover, based on the flexibility of
evidence theory, evidence theory is used to integrate aleatory and epistemic uncertainty of param-
eters into a unified framework for representation and propagation in this paper. The buckling
load or the equivalent buckling length factor of the steel-frame structures is greatly influenced by
the stiffness of the bracing elements and semi-rigid connections. The design uncertainties (ini-
tial connections’ rigidity, bracing rigidity, and applied loads) are taken into consideration. In this
paper, we are concerned with the epistemic uncertainty where sparse and/or imprecise informa-
tion is available regarding a stochastic quantity; as a result, the distribution type is assumed to
be known, but the distribution parameters are uncertain. An uncertainty quantification analysis
for the buckling load of steel-plane frames with semi-rigid connections is presented herein to
demonstrate the accuracy and efficiency of the proposed method.

2. Buckling analysis of steel frames with semi-rigid connections

The present work deals with the uncertainty quantification on the buckling load of an n-span
steel-plane frame with semi-rigid connections, supports, and elastic bracing as shown in figure 1.
The method of the simplified joint modeling prescribed by Raftoyiannis (2005) and Eurocode 3
(2005) is adopted herein and a linear moment-rotation relation accounting for joint flexibility is
incorporated into the buckling analysis of the frames. In figure 1, the beam-column connections
are extended end-plate connections. Each member is assumed to be an element. The moment of
inertia of each member is Ii (i = 1 ∼ 2n+1), Pi(i = 1 ∼ n+1) is the concentrated load on
each top of the column, and Si(i = 1 ∼ n+1) is the secant stiffness of the support connection.
SLi , SRi (i = 1 ∼ n) is the secant stiffness of the left and right beam-to-column connection. A
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Figure 1. Analytical model of the n-span steel frame with semi-rigid connections.

horizontal spring with axial stiffness Kb is used, accounting for lateral elastic support such as
bracings. A linear buckling analysis can be performed, because on the onset of buckling the joints
undergo small rotation values. Thus, the simplified moment-rotation relation can be written as
follows:

Mj = Sj θj , (1)

where Mj = the moment of joint j and θj = relative rotation of the connections.
Using Eq. (1), the connection flexibility can be directly introduced into the boundary

conditions of the frame and a linear buckling analysis can be readily performed.
The governing differential equations for the columns and the beams are given as follows:

v′′′′
i + k2

i v′′
i = 0, (i = 1 ∼ n + 1), (2)

w′′′′
j = 0, (j = n + 2 ∼ 2n + 1), (3)

where vi = the horizontal displacement of the ith column, wj = the vertical deflection of the
j th beam, and

k2
i = Pi

EIi

, (i = 1 ∼ n + 1). (4)

The general solutions of Eqs. (2) and (3) are

vi (xi) = Ai sin kixi + Bi cos kixi + Cixi + Di, (i = 1 ∼ n + 1), (5)

wj (xj ) = Ajx
3
j + Bjx

2
j + Cjxj + Dj, (j = n + 2 ∼ 2n + 1). (6)

The relationship between the moment Mi , shear force Vi , and the relative horizontal
displacement of any section of the column and beam can be expressed as follows:

Mi(xi) = −EIiv
′′
i (xi), (i = 1 ∼ n + 1), (7)

Vi(xi) = −EIiv
′′′
i (xi) − Piv

′
i (xi), (i = 1 ∼ n + 1), (8)

Mj(xj ) = −EIj w′′
j (xj ), (j = n + 2 ∼ 2n + 1), (9)

Vj (xj ) = −EIj w′′′
j (xj ), (j = n + 2 ∼ 2n + 1). (10)

Employing the frame shown in figure 1, the boundary conditions at the supports are
{

vi (0) = 0
Mi(0) = −EIiv′′

i (0) = −Siv′
i (0)

(i = 1 ∼ n + 1) (11)
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Neglecting the effect of axial deflection, the boundary conditions of the beams and columns are
{

wj+n+1(0) = 0
wj+n+1(Lj ) = 0

(j = 1 ∼ n), (12)

vi (H) = v1(H), (i = 2 ∼ n + 1). (13)

Employing the boundary conditions and the kinematic conditions:

∑n+1

i=1
Vi(H) + Kbvn+1(H) = 0, (14)

Mi(H) + Mn+i (Li−1) − Mn+i+1(0) = 0, (i = 1 ∼ n + 1), (15)

Mn+1(L0) = 0, M2n+2(0) = 0, (16){
Mn+1+i (0) = SLi

[
v′
i (H) − w′

n+1+i (0)
]

Mn+1+i (Li) = SRi

[
w′

n+1+i (Li) − v′
i+1(H)

] (i = 1 ∼ n). (17)

We obtain the following system of non-dimensional equations:

SiαiβAi + α2
i β

2Bi + SiCi = 0, (i = 1 ∼ n + 1), (18)

sin αiβAi+(cos αiβ−1)Bi+Ci−sin αi+1βAi+1−(cos αi+1β−1)Bi+1−Ci+1 = 0, (i = 1 ∼ n),

(19)

kb sin αn+1βAn+1 + kb(cos αn+1β − 1)Bn+1 −
n∑

i=1

ξ2
i α2

i β
2Ci + (kb − ξ2

n+1α
2
n+1β

2)Cn+1 = 0,

(20)

ξ2
i α2

i β
2 sin αiβAi + ξ2

i α2
i β

2 cos αiβBi − 6li−1η
2
i−1An+i − 2η2

i−1Bn+i

+ 2η2
i Bn+i+1 = 0, (i = 1 ∼ n + 1). (21)

Notice that ξ1 = 1, η0 = 0, ηn+1 = 0.

SLiαiβ cos αiβAi − SLiαiβAi sin αiβBi + SLiCi + SLil
2
i An+i+1

+ (2 + SLili)Bn+i+1 = 0, (i = 1 ∼ n) (22)

SRiαi+1β cos αi+1βAi+1 − SRiαi+1β sin αi+1βBi+1 + SRiCi+1

−2li (3 + SRili)An+i+1 − (2 + SRili)Bn+i+1 = 0, (i = 1 ∼ n) (23)

with respect to the non-dimensional constants:

Ai = Ai/H, Bi = Bi/H, Ci = Ci, Di = Di/H and
α2

i = (PiI1)/(P1Ii), β
2 = (P1H

2)/(EI1), Si = (SiH)/(EIi),

SLi = (SLiH)/(EJi), SRi = (SRiH)/(EJi), li = Li/H, (24)

kb = (KbH
3)/(EI1), ξ

2
i = (EIi)/(EI1) = Ii/I1, (i = 1 ∼ n + 1),

η2
i = EJi/EI1 = Ji/I1, (i = 1 ∼ n).

where Kb = rigidity of the horizontal brace, which can be calculated by the parameters of
bracing:

Kb =
∑

(EAdi/Li) cos2 θi . (25)
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Apparently, there are 3(n+1)+2n equations above with the number of 3(n+1)+2n variables:
Ai(i = 1 ∼ n+1), Bi(i = 1 ∼ n+1), Ci(i = 1 ∼ n+1), Ai+n+1(i = 1 ∼ n), Bi+n+1(i = 1 ∼
n). Then, the buckling equation of the semi-rigid connections, supports, and elastic bracing frame
(figure 1) with semi-rigid joints results by setting the determinant of the unknown constants of
Eqs. (18)–(25) equal to zero, i.e.,

det[K1] = 0. (26)

The non-dimensional critical load βcr is obtained by solving Eq. (26), and subsequently, the
buckling load of the frame is computed from

Pcr = (β2
crEI1)/H

2 = π2EI1/(KH)2. (27)

From Eq. (27) results the equivalent buckling length factor K of the column, which is

K = π/βcr. (28)

Equation (26) has 3(n+1)+2n characteristic values, but the minimum is the one we care about
here. According to the analysis model we use in this paper, the proportional relation between the
forces imposed on the top of each column is

Pi = λ2
i P1, i = 1 ∼ n + 1. (29)

We solve Eq. (26) to get the minimum characteristic value βmin, then we can get the buckling
load upon each column:

Pi = β2
crEIiα

2
i /H

2, i = 1 ∼ n + 1, (30)

where αi = λi/ξi .
From the analysis above, it is easy to find that βcr is mainly connected with four parameters:

Si (the rigidity of support), Kb (the rigidity of the horizontal rigidity), Ri (the rigidity of beam-
column connections), and the λi (load factor).

3. Evidence theory for uncertainty quantification

3.1 Fundamentals of evidence theory

Evidence theory was first proposed by Dempster (1967) and extended by Shafer (1976) and is
also called the Dempster-Shafer theory (DST). Among the numerous inexact probability meth-
ods, evidence theory is the most closely related to probability theory, which is a generalization
of classical probability theory. It needs less information to describe the phenomenon than prob-
ability theory and it uses the D-S combination rule instead of Bayes formula to update the belief
function.

Four important concepts are defined in evidence theory: frame of discernment (FD), basic
belief assignment (BBA), belief function (Bel), and plausibility function (Pl). The frame of dis-
cernment consists of all finite elementary propositions for an uncertain variable and is denoted
by 	. The power set of 	 (2	) indicates all the possible subset propositions of 	. As a primitive
definition in DST, the basic belief assignment is assigned through a mapping function m: 2	 →
[0, 1] to express the degree of belief in a proposition. This mass function is given as

{
m(φ) = 0∑

A⊆	 m(A) = 1.
(31)
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Figure 2. Uncertainty description of proposition A.

Every subset A ⊆ 	for which m(A)>0 is called a focal element. In evidence theory, each
focal element is usually expressed by multiple intervals—scattered, nested, or partially over-
lapped interval—which is consistent with the given insufficient and imprecise information.
Given the basic belief assignment (BBA) m, the belief measure and plausibility measure are
uniquely determined by

Bel(A) = ∑
B⊆A

m(B)

Pl(A) = 1 − Bel(A) = ∑
B∩A	=φ

m(B).
(32)

The belief Bel(A) is interpreted to be the total evidence corresponding to all the subsets of
A, while the plausibility Pl(A) represents the sum of BBA values corresponding to all the sets
B intersecting with A. Apparently, Bel(A) means the confident degree to believe that event A
is true, and Pl(A) means the confident degree to believe that event A is not false, thus Pl(A)
≥Bel(A). For information from multiple sources, the combined evidence can be obtained by
Dempster’s rule of combination (Shafer 1976). Readers are referred to comprehensive literature
on the subject (e.g., Sentz & Ferson 2002) for a detailed discussion.

Bel(A) and Pl(A) also act as upper and lower bounds of classical probability to measure the
likelihood of events without use of the explicit probability distribution, defining an interval-
valued probability distribution, [Bel(A), Pl(A)], not a single probability distribution, as shown
in figure 2. It is also called the uncertain interval for event A. Pl(A)-Bel(A) indicates that we
are uncertain about whether event A is true or not. The existence of epistemic uncertainty is
due to lack of knowledge or information, so the confident degree of event A cannot represent
the confident degree of Ã, i.e., m (A) + m(Ã) ≤ 1, which is completely different from the
single probability distribution in probability theory, i.e., p (A)+p(Ã) = 1. Therefore, traditional
probability theory is a special case of evidence theory.

3.2 Evidence theory for uncertainty quantification using differential evolution

The previous section described uncertainty qualification based on evidence theory. This section
shows how to propagate uncertainty through a given model (transfer function). This will be
shown using figure 3 (here only one uncertain variable is considered).

In this figure, x is uncertain variable, d is certain variable, andf is a system model (system
response). Essentially, uncertainty propagation is used to determine the uncertainty of system
response when the system uncertain input is given.
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Figure 3. Propagation of system uncertainty.

As mentioned previously, the uncertainty variable is usually expressed as a series of intervals
based on limited information, where n variables will form an n-dimensional hypercube. There-
fore, uncertainty propagation is a process of finding the maximum and minimum of the response
value in each hypercube, as figure 3 illustrates, and we will solve two related bound-constrained
problems:

[fmin, fmax] = [min f (xi), max f (xi)] subject to xi ≤ xi ≤ x̄i . (33)

Through the above analysis it can be found that the computational cost of the uncertainty
propagation analysis using evidence theory is mainly determined by two factors: the number
of the focal elements and the search of extreme values of the system response over each focal
element. It can be very computationally expensive due to the fact that the quantity of the focal
element is large and system function form is complex in practical engineering, so the conven-
tional optimization algorithm cannot solve this problem. To alleviate this computational burden,
a modern intelligent optimization method based on differential evolution (DE) is proposed here.
The DE method is a good choice for such a task since the uncertainty quantification (UQ) pro-
cess requires an optimization algorithm that is derivative-free and can handle discrete plausibility
values.

Differential evolution is a stochastic population-based search method proposed by Storn &
Price (1997) for solving non-linear, high-dimensional, and complex computational optimization
problems. As a novel evolutionary computation technique, differential evolution resembles the
structure of an evolutionary algorithm (EA), but differs from traditional EAs in its generation
of new candidate solutions and by its use of a “greed selection scheme. The characteristics
together with other mechanisms of DE make it a fast and robust algorithm and an alternative
to EA. The basic concepts and notations of differential evolution are briefly introduced in the
following.

An optimization task consisting of n parameters can be represented by an n-dimensional
vector. Let S∈Rn be the search space of the problem. Then, the n-dimensional vector can be
represented by xi = (xi1, xi2, ..., xin)

T∈S, i=1, 2, 3,..., NP. In DE, a population of NP (popula-
tion size) candidate solution vectors is initialized randomly at the start, which is evolved to find
optimal solutions through the mutation, crossover, and selecting operation procedures.

Mutation is used to enable search diversity in the parameter space as well as to direct the
existing object vectors with a suitable amount of parameter variation in a way that will lead to
better results at a suitable time. It keeps the search robust and explores new areas in the search
domain.

According to the mutation operator, for each individual, xG
i , i = 1, 2, ..., NP, at genera-

tion G, a mutation vector v(G+1)
i = (v(G+1)

i1 , v(G+1)
i2 , ..., v(G+1)

in ) is determined using different
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mutation methods. The mutation method of DE/current-to-best/1/bin recommended by Storn &
Price (1997) is used in this paper to deal with the uncertainty propagation in evidence theory.

v(G+1)
i = x

(G)
1 + F1(x

(G)
best − x

(G)
i ) + F(x

(G)
r1 − x

(G)
r2 ), (34)

where xG
best is the best individual of the population at generation G; F and F1>0, called mutation

constants, control the amplification of difference between two individuals so as to avoid search
stagnation; and r1, r2 are mutually different integers, randomly selected from set {1, 2,..., i−1,
i+1,..., NP}.

Following the mutation phase, the crossover operator is applied on the population. For each

mutant vector, v(G+1)
i , the trial vector u

(G+1)
i =

(
u

(G+1)
i1 , u

(G+1)
i2 , ..., u

(G+1)
in

)T
is generated, with

u
(G+1)
ij =

{
v(G+1)
ij if (r(j) ≤ CR) or (j = rn(i))

x
(G)
ij if (r(j) > CR) or (j 	= rn(i))

, (35)

where j = 1, 2,..., n; r(j) = rand(j) and rn(i) = randn(i); rand(j) = jth independent random
number uniformly distributed in the range of [0, 1]. randn(i) is a randomly chosen index from
the set {1, 2,..., n}, and CR is a user-defined crossover constant ∈[0, 1] that controls the diversity
of the population.

DE employs a greedy criterion that is different from genetic algorithms. After producing the
offspring, the performance of the offspring vector and its parent is compared and the better one
is selected. The selection process is represented by the following equation:

x
(G+1)
i =

{
u

(G+1)
i if (f (u

(G+1)
i ) < f (x

(G)
i ))

x
(G)
i otherwise

. (36)

Thus, each individual of the trial vector is compared with its parent vector and the better one
is passed to the next generation, so the best individuals in the population are preserved. These
steps are repeated until specified stop criterion is reached. Meanwhile, the optimal results can
be obtained. In this section, the DE approach is briefly described. A detailed survey of the DE
family of algorithms can be found in Das & Suganthan (2011).

3.3 Procedures of evidence-based UQ for buckling analysis using DE

The evidence theory is a well-suited framework for representing both epistemic and aleatory
uncertainty. Evidence theory used to integrate aleatory and epistemic uncertainty of param-
eters into a unified framework for representation and propagation will be addressed in this
section.

The procedures of uncertainty quantification for buckling analysis of steel frames with semi-
rigid connections using evidence theory and differential evolution-based computational strategy
can be summarized as follows:

Step 1: Getting parameter information and identifying uncertainty type.

Two types of uncertainty (aleatory and epistemic uncertainty) of the three main variables, R,
uk , and λ are included in this study. For the aleatory parameter, the equivalent BBA values within
the specified intervals are equal to the areas under the probability density distribution function.
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Step 2: Constructing the BBA structures.

After obtaining the BBA structures of all the uncertain parameters, we can integrate them into
a joint structure, which is defined by the Cartesian product of the combined BBA structures for
each uncertain parameter.

C = R × μk × λ = {
cijk = Ri × μkj × λk ] , cijk ⊂ C}. (37)

The result of the Cartesian product indicates all possible joint sets that construct the joint
frame of discernment.

Step 3: Calculating Bel and Pl.

Every element of the Cartesian set C is required to be checked in the evaluation of the belief
and plausibility functions by finding the minimal and maximal responses of the system (buckling
equation (26)) using DE. The belief is obtained by summing all the joint basic belief assign-
ment of element set that agree with the event partially. The plausibility function is calculated by
summing BBAs that agree with the event totally or partially.

4. Numerical examples

In order to demonstrate the efficiency of the proposed UQ methodology in evaluating the buck-
ling loads Pcr of a frame when the design uncertainties are considered for a more practical
engineering application of the buckling behavior of realistic steel frames, two examples of steel
frame with semi-rigid connections are presented to demonstrate the validity of the forgoing
proposed method.

4.1 Two-span single storey braced steel frame

Figure 4 shows the geometry of the two-span single storey steel frame, which is based on
semi-rigid supports, connections, and bracing and has the following properties: the section of
beam is HN350×175×7× 11 with moment of inertia 1.37×108mm4. The section of column is
HW200×200×8×12 with moment of inertia 4.47×107mm4. The brace member is L63×6 and
the section area is Ad =7.29×102 mm2. L1 = L2 =5000 mm, H =4000 mm. Without loss of
generality, we assume that the applied loads are Pi = λiP (i =1∼3) , λ1 = λ3 =1, λ2 = λ,

n+2 n+3

321

S1 S2
S3

S S S S

P1 P2 P3

L1 L2

H

L2 R2R1L1

H

Figure 4. Two-span rectangular frames with semi-rigid supports and connections.
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Table 1. Normal distribution variables with uncertain parameters.

Uncertain variables Parameters Focal elements BBA

R μ [5,8][7,10][9,12] ×1010 (N.mm/rad) 0.20,0.6,0.2
σ [5,8][8,9][9,12] ×109 0.28,0.44,0.28

uk μ [0.5,0.7][0.7,0.8] [0.8,1.0] 0.22,0.56,0.22
σ [0.01,0.05][0.05,0.07][0.07,0.11] 0.20,0.60,0.20

λ μ [0.8,0.95] [0.95,1.01] [1.01,1.05] [1.05,1.2] 0.16,0.34,0.34,0.16
σ [0.01,0.04][0.04,0.05][0.05,0.06] [0.06,0.09] 0.16,0.34,0.34,0.16

the stiffness of beam-to-column connections are SL1 = SL2 = SR1 = SR2 = R, the stiffness of
support are S1 = S2 = S3 = R, and the stiffness of horizontal bracing are Kb = uk*K0

b , where
K0

b =16,294 N/mm, uk represents the coefficient of the horizontal bracing rigidity.
Two types of uncertainty (aleatory and epistemic uncertainty) of the three main variables,

R, uk , and λ are included in this numerical example. More specifically, two common cases are
considered here: One may know the form of the probability distribution for all uncertain vari-
ables, but not be sure of the parameters governing the distribution, which is also called mixed
uncertainty, while the other situation is that some of the uncertain variables are described by the
above mixed uncertainty, and some are epistemic uncertainty.

Case study I

Uncertainty variables R, uk , and λ are supposed to follow normal distribution with the uncertain
parameters (μ, σ), and the corresponding BBA values of the distribution parameters are given in
table 1. However, in order to facilitate comparison with probability theory, the certain distribution
parameter with R∼N(8.5×1010, 9×109) N.mm/rad, uk∼N(0.75, 0.06), λ∼N(1, 0.05) is also
assumed in this example.

The cumulative belief (CBF) and plausibility (CPF) and the cumulative distribution func-
tions (CDF) of the buckling load based on evidence theory and probability theory are shown in
figure 5. It is convenient to use probability theory when knowledge of the uncertain variables is
thorough and the probability distribution is known exactly, and thus the corresponding result is
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Figure 5. The buckling load cumulative distributions of a two-span steel frame based on evidence theory
and probability theory in case I.
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Table 2. Comparison of results of evidence theory and probability theory in case I.

Result information Probability theory Evidence theory

Expected value of buckling load 16,881 kN [16,001, 17,424] kN
Probability of buckling load, which is less than 16,000 kN 0.07 [0.02,0.32]
Buckling load, which has 95% guarantee probability 17,480 kN [17,347, 17,951] kN

also probability distribution. If the information is not enough to get the probability distribution
of the uncertain variable, then each single value can be replaced by several estimated intervals
with the basic belief assignment to describe the chance that the parameter falls in the interval,
which is convenient to be handled by evidence theory in this case. The calculation results show
that the result calculated by the probability theory is just a curve inside the region enclosed by
the belief function and the plausibility function, so probability theory is just a special case of
evidence theory when the focal element degenerate single value.

Table 2 shows some information of interest from the results calculated by probability theory
and evidence theory. The expected values of the buckling load (mean value of the results) show
that the result of evidence theory is more conservative than probability theory because of the
imprecise information. The probability is 7% when the buckling load is less than 16,000 kN.
The evidence theory results show that the confidence value is [0.02,0.32], it demonstrates that
the probability is no more than 98% when the buckling load exceeds 16,000 kN, while the
probability theory result is 93%. The uncertain variables without exact probability distribution
are suitable for evidence theory to handle, since it avoids the error caused by probability theory
effectively; for example, the result calculated by probability theory shows that the probability is
no more than 5% when the buckling load exceeds 17,480 kN, while the result in the evidence
theory is 17,951 kN.

Case study II

For the second case, the R, uk,and λ are still considered to be uncertain, and λ is treated as
mixed uncertainty as before In addition, it is assumed that R and uk cannot be described prob-
abilistically due to the lack of data and knowledge, thus these two variables are epistemic, and
only the multiple interval information along with the corresponding BBA values is available as
given in table 3. For comparison with probability theory, the approximate PDFs of the uncertain
variables R and uk are obtained by the assumption that the probability mass (BBA) in each inter-
val is distributed uniformly (Savage 1972). The corresponding PDFs of R and uk as well as the
deterministic distribution of λ are given in figure 6.

Figure 7 shows CPF, CBF, and CDF of the buckling load based on the proposed method
and probability theory with the uniform assumption, and some information of interest as in the

Table 3. BBA structure for R, uk,, and λ.

Uncertain
variables Focal elements BBA

R [5,8][7,10][9,12] ×1010 N.mm/rad 0.20,0.6,0.2

uk [0.5,0.7][0.7,0.8] [0.8,1.0] 0.20,0.60,0.20

μ [0.8,0.95] [0.95,1.01] [1.01,1.05] [1.05,1.2] 0.16,0.34,0.34,0.16
λ

σ [0.01,0.04][0.04,0.05][0.05,0.06] [0.06,0.09] 0.16,0.34,0.34,0.16
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Figure 6. PDFs of R, uk , and λ.

first case is listed in table 4. As a result, evidence theory presents the lower bound 0.03 prob-
ability and upper bound 0.50 probability of the buckling load as less than 16,000 kN, which
includes the probabilistic result 0.16. This naturally reveals that evidence theory is more intu-
itive and reasonable than probability theory to handle uncertainty from a lack of knowledge and
information.

4.2 Two-span two storey unbraced steel frame

This example considers a two-span and two storey steel frame, in which the beam-to-column
connections are semi-rigidly connected and the column base are rigidly connected as shown
in figure 8. The geometrical property of each member is as follows: the section of column
C1 ∼ C6 is HN500×250×6×8 mm with moment of inertia 2.99e108 mm4, the section of beam
B1 is HN500×180×6×8 mm with moment of inertia 2.31e8 mm4, the section of beam B2
is HN450×200×6×8 mm with moment of inertia 1.97e8 mm4, the section of beam B3 and
B4 is HN550×200×6×8 mm with moment of inertia 3.11e8 mm4. In order to facilitate the
calculation, the semi-rigid behavior of all the beam-column connections is assumed to be equal.
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Figure 7. The buckling load cumulative distributions of a two-span steel frame based on evidence theory
and probability theory in case II.
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Table 4. Comparison of results of evidence theory and probability theory in case II.

Result information Probability theory Evidence theory
Expected value of buckling load 16,740 kN [15,372, 17,372] kN
Probability of buckling load, which is less than 16,000 kN 0.16 [0.03, 0.50]
Buckling load, which has 95% guarantee probability 17,640 kN [17,282, 17,971] kN

In this example, the modulus of elasticity E and the rigidity of beam-column connections R

are considered to be epistemic uncertainty, the corresponding BBA structure is given in table 5.
For this more complex steel frame, the professional FEM software ABAQUS is selected to con-
duct the buckling analysis. The CBF and CPF of buckling load obtained by combining ABAQUS
with evidence based UQ are shown in figure 9. The results are compared with a special case, in
which the two parameters assumed to satisfy uniform distribution in each interval, and the Monte
Carlo Simulation (MCS) and software ABAQUS is brought to obtain probabilistic information.

Similar conclusions as previous example are reached, the CDF curves shown in figure 9 is
right between the belief and plausibility curves, for example, the median buckling load of prob-
abilistic result in MCS calculation is 7.35×106 N, and the corresponding buckling displacement
of this steel frame obtained by ABAQUS is shown in figure 10, while the evidence result is a
bound value of [7.22, 7.423]×106 N, which verifies the basic law that belief and plausibility
are the lower and upper bounds of probabilistic result is accurate. Compared with the previous
example, the CPF and CBF curves of the buckling load have a stair-step shape, and the “stair-
step” seems more dispersed than those in figure 5 and figure 7, which indicates more vague upper
and lower probability bounds of buckling load when uncertainties are all epistemic with interval
information. In addition, the results in this example suggest that the present UQ method is also
valid for the complex structure by using ABAQUS to accomplish the buckling analysis during
uncertainty propagation.

As discussed throughout these two examples, both fuzzy intervals and probability distribution
functions can be modeled by a BBA structure in evidence theory due to its flexibility. That is,
different types of information (mixed or epistemic) can be incorporated into one framework to
quantify uncertainty without any unnecessary assumptions. Also, the UQ analysis for the more
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Figure 8. Two-span two storey steel frame with semi-rigid connections.
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Table 5. BBA structure for R and E.

Uncertain variables Focal elements BBA

R [7, 8.5][8,9.5][9,10][9.5,11] ×1010N.mm/rad 0.1,0.5,0.3,0.1
E [2.02,2.05][2.05,2.06][2.06,2.07][2.07,2.1] ×105MPa 0.16,0.34,0.34,0.16
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Figure 9. The buckling load cumulative distributions of a two-span two story steel frame based on
evidence theory and probability theory.

Figure 10. The buckling displacement of the median probabilistic result obtained by ABAQUS.

complex structure can be carried out by combining the professional FEM software with the
proposed method.

5. Conclusions

This paper presented an evidence theory and differential evolution-based method to quantify
and propagate mixed epistemic–aleatory uncertainty in uncertainty analyses. Evidence theory
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can describe many types of uncertainty in practical engineering more flexibly. As a novel
evolutionary computation technique, differential evolution is used to solve two interval opti-
mization problems in the process of uncertainty propagation of evidence theory, which can
greatly increase calculation efficiency. The buckling load of a semi-rigid jointed frames problem
provided two realistic examples of the epistemic treatment of the design uncertainties (initial
connections’ rigidity, bracing rigidity, elastic modulus, and applied load) to show that the pro-
posed method is a promising approach for analyzing and propagating uncertainty in a structural
system, whatever the types of uncertainty encountered.
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