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Abstract
In this paper, an adaptive immune clone selection algorithm for multi-objective optimization (AICSAMO) 

is proposed. A novel adaptive polynomial mutation operator with dynamic mutation probability is employed 
in AICSAMO. This adaptive mutation operator executes a rapid global search at the earlier stage of the 
algorithm and a fine-tuning search at the later stage of the algorithm, which adopts generation-dependent 
parameters to improve the convergence speed and global optimum searching ability. The effectiveness of 
AICSAMO is evaluated through the truss sizing and shape optimization problems of a 10-bar plane truss and 
a 25-bar space truss. According to the comparison of AICSAMO with various multi-objective optimization 
algorithms developed recently, the simulation results illustrate that AICSAMO has remarkable performance 
in finding a wider spread of optimal solutions and in maintaining better uniformity of the solutions with 
better convergence.

Keywords: immune algorithm; multi-objective optimization; adaptive mutation; sizing and shape optimization; truss structure

1. Introduction
Most real engineering problems involve multiple 

object ives, for example, minimizing cost and 
maximizing performance and reliability at the same 
time. These are difficult but realistic problems that 
engineers confront. For these multiple-objective 
problems (MOPs), the objectives generally conflict 
and one optimum objective is achieved at the price 
of sacrificing other objectives. In most cases, there 
is no single global optimal solution, and it is often 
necessary to determine a set of solutions that satisfy the 
predetermined constraints for an optimization problem. 
The dominant concept in defining an optimal point is 
that of the Pareto optimality, called the Pareto front.

In the last decade, evolutionary approaches have 
been the primary tools to solve real-world, multi-
objective, optimization problems, such as Multi-
objective Genetic Algorithm (MOGA) (Fonseca 
and Fleming 1993), Nondominated Sorting Genetic 
Algorithm (NSGA) (Srinivas and Deb 1994), Strength 
Pareto Evolutionary Algorithm (SPEA) (Zitzler and 
Thiele 1999), improved SPEA (SPEA2) (Zitzler et al. 
2001), Pareto-Archived Evolution Strategy (PAES) 

(Knowles and Corne 2000), Fast Nondominated 
Sorting Genetic Algorithm (NSGA-II) (Deb et al. 
2002), Multi-objective Evolutionary Algorithm 
(MEA) (Sarker et al. 2002), Dynamic Multi-objective 
Evolutionary Algorithm (DMOEA) (Yen and Lu 
2003), and Differential Evolution for Multi-objective 
Optimization (DEMO) (Robič and Filipič 2005). All 
of these methods attempted to design effective and 
efficient algorithms to improve the abilities of the 
convergence and the diversity of the solution.

On the other hand, Artificial Immune Systems 
(AIS) have been developed since the 1990s as a new 
branch in computational intelligence (Farmer et al. 
1986; Mori et al. 1997; De Castro and Timmis 2002; 
Dasgupta 2006; Castro and Von Zuben 2008). The 
AIS was inspired by the concept of the body's immune 
system: clonal selection, negative selection and immune 
network algorithms. The immune algorithm can prevent 
premature convergence without losing the diversity 
of solutions and can provide multiple suboptimal 
solutions (Mori et al. 1997). In contrast to GA, AIS 
has an affinity calculation function, which explains 
the relationship not only between the antigen and the 
antibody but also between antibodies. This function 
gives AIS the unique characteristic of guaranteeing the 
survival of the variant offspring that better match the 
antigen. In the literature, several authors (Chung et al. 
1998; Tarakanov and Tarakanov 2005; de Castro and 
Von Zuben 2009) demonstrated that immune genetic 
algorithms were superior to GAs and ES in solving 
multimodal function optimization problems. 
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Several AIS models have been applied in various 
fields, such as clustering, classification and pattern 
recognition (de Castro and Von Zuben 2002; Castro 
and Von Zuben 2010), robotics and control (Whitbrook 
et al. 2007), optimization (Miyamoto et al. 2004; 
Campelo et al. 2006; Xu et al. 2014), parameter 
estimation (Liu et al. 2009), and other similar machine 
learning problem domains (Harmer et al. 2002; 
Dasgupta et al. 2004). In recent years, AIS has been 
applied to solving MOPs, and studies show remarkable 
performances. Luh et al. (2003) proposed a novel 
scheme, named the multi-objective immune algorithm 
(MOIA), which searches unconstrained Pareto 
solutions. The results showed that the MOIA generally 
performs better than SPEA for six test functions and 
also better than MOGA, NPGA, and NSGA. Coello 
and Cortes (2005) presented a multi-objective immune 
system algorithm (MISA) based on the clonal selection 
principle. Freschi and Repetto (2005) proposed a 
vector artificial immune system (VAIS) based on 
the artificial immune network and claimed that their 
multi-objective immune algorithm was comparable to 
NSGA-II, which is the state-of-the-art algorithm for 
solving multi-objective optimization problems. Zhang 
(2007) also proposed an immune-algorithm for solving 
constrained nonlinear multi-objective optimization 
problems and reported that his algorithm performed 
well when compared to well-known evolutionary 
algorithms, such as MISA and SPEA. Gong et al. 
(2008) proposed a non-dominated neighbor-based 
immune algorithm (NNIA) for solving unconstrained 
MOPs by using a novel non-dominated neighbor-
based selection technique, proportional cloning, 
heuristic search operators and elitism. In NNIA, the 
selection technique only performs on non-dominated 
individuals and selects minority-isolated individuals to 
clone proportionally to the crowding distance values, 
recombine and mutate. By using non-dominated 
neighbor-based selection and proportional cloning, the 
method enhances the local search results in the less-
crowded regions of the current trade-off front. The 
experimental study showed that NNIA converges on 
the true Pareto optimal fronts when solving most test 
problems and is much better than the other algorithms, 
such as SPEA2, NSGA-II, PESA-II, and MISA (Gong 
and Jiao 2008). However, the probability of being 
trapped in the local optima of multimodal problems 
when using this algorithm is increased significantly. 
Therefore, how to maintain the balance between global 
optimization ability (i.e., exploration) and search 
efficiency (i.e., exploitation) has become an important 
issue in designing suitable mutation schemes for the 
multi-objective immune genetic algorithms. 

Recently, several studies have employed different 
mutation operators into multi-objective optimization 
algorithms to improve their performance, such as 
Cauchy mutation operator (Yang and Fang 2011), 
polynomial mutation operator (Zitzler et al. 2001; 

Deb et al. 2002) and hybrid Gaussian and polynomial 
mutation operators (Chen and Lu 2008; Chen et 
al. 2010). Our previous work proposed an adaptive 
mutation regulation operator (Liu et al. 2009), which 
adopts a dynamic mutation probability with generation-
dependent and affinity-adaptation parameters to 
improve the convergence speed and global optimum 
searching ability.

Polynomial mutation has better fine-grained search 
ability than Gaussian mutation in local regions, which 
is verified by multiple real-coded, multi-objective 
optimization algorithms. However, polynomial 
mutation with fixed distribution parameters is not 
efficient in searching the global Pareto optimal 
front (Chen et al. 2009). In this paper, an adaptive 
immune clone selection algorithm for multi-objective 
optimization (AICSAMO) is proposed, in which an 
adaptive polynomial mutation operator with dynamic 
mutation probability is employed. The main idea of 
this operator is to generate an adaptive mutation size 
according to the size of the current search space. 
This operator combines global exploration and 
local refinement efficiently and adopts a generation-
dependent parameter to guarantee a good balance 
between global search and local search.

Optimization of truss and frame structures is a 
popular topic in mechanical, civil, and structural 
engineering due to the complexity of problems and the 
benefits to industry. This paper describes the proposed 
architecture of the constrained multi-objective immune 
algorithm and applies it to the optimal design of 
truss structures. In this article, the authors attempt 
to minimize the self-weight and displacement of 
trusses simultaneously with changing variables of 
the member size (i.e., cross-sectional areas of truss 
members) and geometry (i.e., loci of the truss nodes). 
Design constraints are imposed in terms of allowable 
material stresses and structural displacements. For each 
candidate design of a truss, the stresses, deflections, 
and other design constraints are evaluated to determine 
whether the design is feasible. If a design is infeasible, 
a penalty function is applied to the structural weight 
reflecting the degree of constraint violation. The 
penalized weight guides the algorithm to focus on 
designs with the smallest structural weight that 
satisfy the design constraints. Several standard truss-
optimization problems from literature are illustrated 
using the proposed methods, and the comparative 
analysis with the other methods is discussed. 

This paper is organized as follows. Section 2 briefly 
describes the definition of MOPs. The formulation of 
the considered truss optimization problem is provided 
in this section. In Section 3, the AICSAMO algorithm 
is described in detail. The effect of the proposed 
methodology is investigated in Section 4 using 
benchmark optimization examples of planar and spatial 
truss structures. Finally, conclusions are given.
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2 . S ta tement o f the Mul t i -objec t ive Truss 
Optimization Problem

In this study, an optimal design problem of a 
truss is considered. The total weight of the structure 
and the displacement at one node are minimized 
simultaneously using the cross-sectional areas of 
the truss numbers and the coordinates of joints as 
the design variables, and the design does not exceed 
allowable values for compressive and/or tensile stress 
in each member or deflection of any connection. Under 
these conditions, a multi-objective truss optimization 
problem can be expressed as

where fi is the i-th objective function; gi(x) and dj(x) are 
the stress and displacement constraints, respectively; 
σ i and σ ai are the computed axial stress in the i-th 
member and its allowable value, respectively; δ i and 
δ aj are the computed displacement in the direction of 
the j-th degree of freedom and its allowable value, 
respectively; nM is the total number of truss members; 
nD is the total number of active degrees of freedom; 
x is the vector of optimization or decision variables; 
xl and xu andare the lower and upper bounds of the 
design variable, respectively. The solution to the above 
problem is a set of Pareto points instead of a unique 
solution to a single-objective optimization problem.

3. Description of the Algorithm
3.1 The Basic Mechanism of Artificial Immune 
System

The immune system is a biological defense system 
for protecting the human body from the attack of 
foreign (harmful) organisms, which can recognize 
self-cells or non-self cells and exclude non-self 
cells (antigens). Artificial Immune Systems (AISs) 
are adaptive systems, inspired by the principles and 
processes of theoretical immunology. In AIS, clonal 
selection algorithms are a class of algorithms inspired 
by the clonal selection theory of an immune response. 
Roughly speaking, the clonal selection theory states 
that when the invasion of an antigen is detected, those 
antibodies that recognize the antigen proliferate by 
cloning. This process is called the clonal selection 
principle. During proliferation, the newly cloned 
cells undergo mutations or hypermutation with rates 
proportional to their affinity for the antigen. The 
highest affinity antibodies have the lowest mutation 
rates, and vice-versa. This process is an evolutionary 
process that led us to propose optimization algorithms 

to solve constrained MOPs. Throughout this paper, 
the B cell is treated as an antibody because it only 
includes identical antibodies. As associated with the 
problem defined in Section 2, an antibody is viewed as 
a feasible solution with real encoding. Given antibody 
Ab, affinity (i.e., aff (Ab)) is explained as the match 
capability between antibody Ab and antigen Ag, which 
can be depicted by means of their objective function 
values, i.e., f(Ab) and f(Ag).

Generally, the antigens correspond to the objective 
functions and constraint conditions, and the antibodies 
are associated with the feasible solutions in a 
constrained, multi-objective optimization problem. An 
antibody Ab is the coding of the variable (solution) 
x, denoted by Ab = e(x), and x is the decoding of 
antibody Ab, expressed as x = e–1(Ab). When real-
valued presentation is adopted, that is, Ab = e(x)= 
x, so, Abi = xi = (x1,x2,..., xm)i, 1 ≤ i ≤ n where Abi 
represents the i-th antibody of the whole population 
or the i-th solution (xi), m is the number of decision 
variables, and n is the number of antibodies/solutions. 
An antibody population 

is an n-dimensional group of antibodies Ab, where n is 
the size of the antibody population B. The antibodies 
evolve continuously to search for the fittest ones, i.e., 
the most matched to specific antigens.
3.2 Non-dominated Clonal Selection and Proportional 
Cloning

The immune system response is a specific response 
to a particular 'non-self' material-antigen. When 
intrusion detection systems detect an antigen, the 
antibody recognizes the antigen and makes a decision 
whether to start proliferating by cloning; this process 
is called clonal selection. According to the concept 
of Pareto, an antibody can be classified as a non-
dominated antibody or dominated antibody. In this 
paper, the set of dominant antibodies is denoted as 
D. These dominant antibodies are the non-dominated 
individuals in population B. For example, in the 
antibody population B = {b1, b2, b3}, if both b2 and 
b3 do not dominate b1, then b1 is a dominant antibody 
in the antibody population B; the non-dominated 
individuals are the Pareto optimal solutions of 
the problem. In the multi-objective algorithm, the 
dominant antibodies in D are ranked according to 
how much they contribute to the diversity of the 
objective function values. This can be measured by 
the crowding-distance (Deb et al. 2002). For an MOP, 
the crowding-distance of a dominant antibody d ∈ D is 
given by

where fi 
max and fi 

min are the maximum and minimum 
values of the ith objective and
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The criteria of clonal selection are in descending 
order according to crowding distance; the first nA 
individuals are selected as the active population A. A 
new population C is obtained by direct proportional 
cloning from A. Then, the values of clone number 
qi are determined by the crowding-distance of the 
antibody individuals.

where ζ (aj, A) denotes the crowding-distance value of 
the active antibodies aj, and nc is the expected value of 
the size of the clone population.
3.3 Recombination Operator

The recombination operator has the ability to escape 
from a local optimum and share gene segments from 
parent chromosomes. Simulated binary crossover 
(SBX) is one of the main recombination operators used 
in various real-coded, multi-objective optimization 
algorithms (Deb et al. 2002; Gong et al. 2008). In this 
paper, the SBX operation is performed on the population 
before and after the application of the proportional 
clonal operation, which is similar to the operation 
used in Deb et al., 2002 and Gong et al., 2008. The 
operation can be described as follows:

where C and A are the populations after and before the 
clone operation, respectively; ci is the i-th component 
of C; ari a is a random individual of A; and SBX(ci,ari) 
(i=1,...,|c|) denotes selecting one individual with equal 
probability from the two offspring generated by a 
general crossover operator on clone ci and an active 
antibody ari chosen randomly from A.
3.4 Adaptive Mutation Operator

To search for a more appropriate trade-off between 
exploration and exploitation, an adaptive polynomial 
mutation scheme is proposed to enhance the capability 
of population exploration. Given antibody Abi, the 
adaptive polynomial mutation operator is defined as:

where δ i ∈[–1,1] is a small variation obtained from the 
polynomial probability distribution.

where η m is the polynomial distribution index.

where ri is a sample random number that is uniformly-
distributed between (0,1).

The property of η m is changeable during the 
searching process, denoting that the degree of 
perturbation can be varied in the mutated solution. The 
value of η m controls the magnitude of the expected 
mutation of the solution variable. The value of η m 
is relatively small at the prophase of the running 
algorithm; then, a large perturbation of variables 
by mutation is achieved, which can be helpful for 
rapidly converging to the promising Pareto front in the 
initial stage. If the value of η m is large, which means 
a small perturbation of variables during mutation, it 
will be beneficial to the fine-tuning search in the local 
neighbor region. To achieve gradually decreasing 
perturbation in the mutated solutions, the value of η m 
is gradually increased. In this paper, a dynamic η m is 
assigned according to the number of generations to 
achieve the above adaptation:

where η 0 is a predefined constant with 50 ≤ η 0 ≤ 100 at 
the beginning of the mutation operator implementation, 
and gen is the number of iterations, which is used 
to make the mutation probability decrease along the 
searching process.

The mutation probability should be changed 
dynamically according to the adaptive ability of the 
immune system. For the later stages of evolution, 
the obtained solutions are close to the known Pareto 
optimal, and it is better to decrease the mutation 
probability to maintain good individuals. Taking 
these ideas into consideration, a dynamic mutation 
probability is used in this paper, which can be 
calculated as follows:

where m is the number of decision variables, λ<1 is a 
predefined parameter that adjusts the mutation scale, 
and genmax is the maximum iteration number. The 
adaptive mutation operator executes global search at 
the earlier stage and local refinement at the later stage 
of the algorithm implementation, which can improve 
the convergence speed and global optimum searching 
ability.
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In this study, to enhance the exploratory capability, 
the proposed algorithm uses a novel adaptive mutation 
operator. In addition, the main operators of AICSAMO 
include a proportional cloning operator and crossover 
operator. The authors adopt the same population 
selection method proposed by Gong et al. (2008), 
named non-dominated neighbor selection. Moreover, 
an elitism mechanism is used, and an archive is used 
to preserve the non-dominated solutions to prevent the 
loss of elitists.

The basic algorithm of the improved immune clone 
selection algorithm for multi-objective optimization 
used in this study is described in the next eight steps.

Step 1. Set the initial conditions and termination 
criterion. Set gen = 0.

Step 2. Randomly generate an antibody population, 
identify the non-dominated antibodies, and store them 
externally in a continuously updated archive.

Step 3. If the termination criterion is satisfied, go to 
step 8; otherwise, go to next step 4.

Step 4. Choose part of the antibodies with greater 
fitness values in the archive to perform proportional 
cloning to generate the child population.

Step 5. Perform the recombination operator on the 
child population.

Step 6. Perform the adaptive mutation operator on 
the child population.

Step 7. Identify the non-dominated antibodies in the 
mating pool by combining the archive and the child 
population. Then, antibodies with greater fitness values 
are selected to be preserved in the archive. Set gen = 
gen +1. Go to step 3.

Step 8 . Output the ex te rna l a rch ive as the 
approximate Pareto optimal set. Stop the algorithm.

4. Numerical Examples 
In this study, two typical truss design problems, 

including size and shape optimizations, are used to 
validate the proposed algorithm. The performance of 
AICSAMO is compared with various optimization 
algorithms, i.e., NSGA-II and DEMO. The active 
population size of both examples is 20, the multiple 
cloning is 100, and the dominant population size 
is 100. The largest iteration genmax is determined 
according to the specific optimization problem. The 
parameter settings of NSGA-II and DEMO are found 
in Deb et al. (2002) and Robič and Filipič (2005). With 
these parameters, AICSAMO has the same simulation 
conditions as other multi-objective optimization 
algorithms.
4.1 10-bar Plane Truss Size Optimization with 
Continuous Design Variables

The 10-bar plane truss with the node and element 
numbering is shown in Fig.1., where L=360 in and 
P=100 ksi. The elastic modulus of the material is 
E=107 psi, and the density is ρ=0.1 lb·in-3. The upper 
and lower boundaries of each truss element are 0.1 
and 30 in2. The axial stress for all members is less than 

25 ksi. The objective is to minimize the volume of 
the structure and the vertical displacement at node 2 
simultaneously using the cross-sectional areas of the 
10-bar truss as the design variables.

Graphically, Fig.2. displays the Pareto optimal 
solutions obtained by AICSAMO after 50, 100 and 500 
iterations. AICSAMO can obtain the approximation 
set that is distributed uniformly and close to the 
Pareto optimal front after 100 runs. In addition, the 
comparisons with the Pareto optimal solutions derived 
by Fadel and Li (2002) employing the weighting, 
Tchebycheff and ε-constraint methods are presented in 
Fig.3. Numerous simulation results of the two extreme 
objective values utilizing single-objective methods 
(Fadel and Li, 2002) and the constrained multi-objective 
immune algorithm (CMOIA) (Luh and Chueh, 2004) 
are adopted for comparison, as listed in Table 1. Fig.3. 
and Table 1. show that AICSAMO is capable of finding 
more uniformly distributed satisfactory solutions and 
the two extreme objective values.

Fig.4. illustrates the comparison with the Pareto 
solutions derived by other multi-objective methods 
(NSGA-II and DEMO). In Fig.4., AICSAMO has 
the best spread of solutions for the 10-bar plane truss 
problem compared with NSGA-II and DEMO. Based 
on the non-dominated neighbor-based selection 
mechanism with the adaptive polynomial mutation 

Fig.1. 10-bar Plane Truss Structure
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operator, AICSAMO obtains desirable results in terms 
of the diversity metric. In addition, it can be observed 
from Fig.4. that in the vertical direction, AICSAMO 
can expand further than the other two methods. In the 
horizontal direction, the extreme point of AICSAMO is 
as far as DEMO and further than NSGA-II. Moreover, 
AICSAMO needs the least amount of time to solve 
the 10-bar plane truss problem. The execution times of 
DEMO, NSGA-II and AICSAMO are 86 s, 43.2 s and 
22.4 s, respectively.

4.2 25-bar Space Truss Shape Optimization with 
Discrete Design Variables

In this section, the performance of AICSAMO is 
studied on a 25-bar space truss, as shown in Fig.5. 
The problem is to find the cross-sectional area of 
each member and the coordinates of some joints 
such that the total structural weight and the vertical 
displacement of node 1 are minimized concurrently. 
The material properties are taken as density ρ=0.1 
lb·in-3, elastic modulus E=107 psi, and L=25 in. The 
limit of the principal stress in each truss element is 
below the maximum allowable stress of ±40 ksi. The 
truss members are divided into eight groups, as shown 
in Table 2. The discrete values considered for this 
example are selected from the set {0.1, 0.2, 0.3, 0.4, 0.5, 
0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 
1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 
3.2, 3.3, 3.4} (in2). In addition, the loading conditions 
given in Table 3. are applied to the truss structure. The 
node coordinates of the 25-bar space truss are listed in 
Table 4.

The x, y and z coordinates of joints 3, 4, 5 and 6 
are allowed to vary, whereas the positions of joints 
1 and 2 remain unchanged. The configurations are 
selected as x4, y4, z4, x8 and y8, with double symmetry 
required in both the x-z and y-z planes. Therefore, the 
problem includes 8 sizing variables and 5 configuration 

Table 1. Comparison of the Two Extreme Values for a 10-bar 
Plane Truss
Methods Extreme values
AICSAMO [115130.0225, 

1.3034]
[15960.2700, 

7.1977]
CMOIA [108413.542, 

1.3611]
[17935.1162, 

6.3562]
Weighting Method [115114.7524, 

1.3034]
[15936.5626, 

7.1969]
Tchebycheff Method [114858.8405, 

1.3037]
[15945.5321, 

7.1913]
ε-constraint Method [115114.7513, 

1.3034]
[15930.3384, 

7.1995]

Fig.3. Comparisons of the Feasible Pareto Solutions for the 
10-bar Truss
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Table 2. Group Members of the 25-bar Space Truss
Group number Bar number (number of end joints)

1 1(1,2)
2 2(1,4) 3(2,3) 4(1,5) 5(2,6)
3 6(2,5) 7(2,4) 8(1,3) 9(1,6)
4 10(3,6) 11(4,5)
5 12(3,4) 13(5,6)
6 14(3,10) 15(6,7) 16(4,9) 17(5,8)
7 18(3,8) 19(4,7) 20(6,9) 21(5,10)
8 22(3,7) 23(4,8) 24(5,9) 25(6,10)

Table 3. Loading Conditions of the 25-bar Space Truss
Node Fx(kips) Fy(kips) Fz(kips)
1 1.0 10.0 -10
2 0 10.0 -10
3 0.5 0 0
6 0.6 0 0

Table 4. 25-bar Space Truss Node Coordinates
Node x(in) y(in) z(in)

1 -37.5 0 200
2 37.5 0 200
3 -37.5 37.5 100
4 37.5 37.5 100
5 37.5 -37.5 100
6 -37.5 -37.5 100
7 -100 100 0
8 100 100 0
9 100 -100 0
10 -100 -100 0
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variables. The shape constraints for the configuration 
variables are 20 in≤x4≤60 in, 40 in≤y4≤80 in, 90 
in≤z4≤130 in, 40 in≤x8≤80 in, and 100 in≤y8≤140 in.

Fig.6. shows the Pareto front of the feasible non-
dominated solutions using AICSAMO after 500 
iterations. In addition, numerous simulation results using 
the single-objective from the literature (Wu and Chow 
1995, Tang et al., 2005) are adopted for comparison, as 
depicted in Fig.6. The results from Fig.6. indicate that 
there is no meaningful difference in performance of the 
other single-objective methods for the extreme objective 
values. The optimum geometry of point A, point B and 
point C is shown in Fig.7. The comparison of feasible 
Pareto solutions between AICSAMO, NSGA-II and 
DEMO is shown in Fig.8. From Fig.8., it's showing that 
in two directions (extreme ends of the displacement and 
volume), AICSAMO can expand further than the other 
two methods. Moreover, all Pareto optimal solutions 
for the problem are scattered uniformly. In addition, the 
execution time of AICSAMO is the shortest. For the 25-
bar truss problem, the execution times of DEMO, NSGA-
II and AICSAMO are 110 s, 54.4 s and 31 s, respectively.

                                     

 
(a) point A                                   (b) point B                                (c) point C 

 
Fig. 7. Optimum geometry 
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Fig.8. Feasible Pareto Solutions Comparison with NSGA-II and 
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The results from the 10-bar and 25-bar truss 
optimization problems show that AICSAMO achieves 
better results, which are comparable to the results of the 
algorithms NSGA-II and DEMO. The simulation results 
validate the good exploration ability of AICSAMO in 
solving multi-objective optimization problems.

5. Conclusion 
In this paper, an effective clonal algorithm for 

MOPs is presented, in which an adaptive polynomial 
mutation operator with dynamic mutation probability is 
employed. Two classical optimization problems of a 10-
bar plane truss and 25-bar space truss are solved using 
the proposed method, and the results are compared with 
other optimization methods. The simulation results show 
that the proposed algorithm has better performance in 
finding a better spread of solutions and in maintaining 
bet ter uniformity of the solut ions with bet ter 
convergence. This paper demonstrated the feasibility of 
these simple adaptive approaches. Further experimental 
and theoretical analysis should be conducted.
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