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Uncertainties originate from physical variability, data uncertainty, and modeling errors in the fatigue
crack growth prediction analysis. This study presents an evidential uncertainty quantification (UQ)
approach for determining uncertainties involved in revealing the material constants of the metal fatigue
crack growth model with imprecise uncertainty information (i.e., epistemic uncertainty). The parameters
in fatigue crack growth model are obtained by fitting the available sparse experimental data, and then the
uncertainties in these parameters are considered. To alleviate the computational difficulties in the UQ
analysis based on evidence theory, an interval optimization method based on differential evolution is
used in finding the propagated belief structure. The overall procedure is demonstrated using the results
of several replicated experiments on aluminum alloy CCT specimens.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Uncertainties are prevalent in practical engineering applica-
tions and can be categorized as either aleatory uncertainty (also
called objective, stochastic, and irreducible uncertainty) due to
inherent variability in a physical phenomenon or epistemic uncer-
tainty (also called subjective reducible uncertainty) due to
unknown physical phenomena [1]. In the process of fatigue crack
growth analysis, the various sources of uncertainty mainly include
variability in loading conditions, material parameters, experimen-
tal data, and model uncertainty. These uncertainties can affect the
analysis for fatigue crack propagation. Numerous experimental
studies demonstrated that significant variability in crack propaga-
tion occurs even after crack initiation [2,3]. Uncertainty appears at
different stages of analysis, and the interaction between these
sources of uncertainty cannot be modeled easily. Thus, predicting
fatigue behavior due to the various sources of uncertainty is diffi-
cult for design engineers or structural analysts.

Numerous uncertain models of crack propagation have been
developed to deal with uncertainties observed in large replicate
crack propagation tests and thus investigate the uncertainty of
crack growth prediction. The quantification for the aleatoric uncer-
tainties is relatively straightforward. Among the existing quantifi-
cation techniques, Monte Carlo (MC) method is the most
frequently used because of its moments than can represent a prob-
ability distribution. Karhunen–Loève [4] and polynomial chaos
expansions [5] also have the same function. Besterfield et al. [6]
combined probabilistic finite element analysis with reliability
analysis to predict crack growth in plates. Liu and Mahadevan [7]
proposed a concept of equivalent initial flaw size and used MC sim-
ulation to predict the probabilistic fatigue life. Jallouf et al. [8]
employed probabilistic theory to investigate the reliability of
undercut defect in a laser-welded plate made of Ti-6Al-4V titanium
alloy. Blacha and Karolczuk [9] validated the effectiveness of the
probabilistic model based on the weakest link concept in predict-
ing the fatigue life of steel-welded joints. Fatigue and crack propa-
gation in metals are recognized as stochastic processes [2,3]. Sarkar
et al. [10] applied Wiener chaos expansions in estimating fatigue
damage in randomly vibrating structures. Beck and Gomes [11]
applied polynomial chaos in representing random crack propaga-
tion data, in which crack propagation in metals is recognized as a
stochastic process. Riahi et al. [12] presented a stochastic colloca-
tion method for predicting random crack growth. Zhao et al. [13]
combined stochastic collocation approach with Bayesian method
in fatigue crack prognosis of metallic material, in which the distri-
butions of random parameters are provided with certain types of
distribution, such as normal distribution. Compared with the MC
method, this approach is significantly more efficient and time sav-
ing and presents more accurate predictions. However, when suffi-
cient data are unavailable or knowledge is lacking, the classical
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probability methodology may be inappropriate. Thus, strong statis-
tical information cannot handle uncertainties in a fatigue lifetime
prediction problem. In such a case, the usual probabilistic method-
ologies cannot be used and an alternative approach that can utilize
insufficient uncertainty information is required.

Given experimental bounds on the variability of the Paris equa-
tion parameters, Worden and Manson [14] investigated the effect
of the parameter uncertainty on the estimated lifetime of a cracked
metallic plate (Titanium alloy Ti-6Al-4V) using interval arithmetic.
Surace and Worden [15] conducted an extended analysis on dam-
age progression within the framework of interval arithmetic. The
major problem of the interval approach is that all ranges are
entirely independent of one another and the upper and lower
bounds are certain. This condition may result in the undesirable
overestimation of the true solution set.

In general, the sources of aleatory uncertainty are represented
using a probabilistic framework when sufficient data are available.
By contrast, epistemic uncertainty cannot be fully characterized by
probabilistic approaches because inferring any statistical informa-
tion may be difficult owing to the lack of knowledge, thereby lead-
ing to subjective probabilistic descriptions. Epistemic uncertainty
can be represented using various methods, such as interval arith-
metic [16], fuzzy sets [17], possibility theory [18,19], information
gap decision theory [20], evidence theory [21–24], and imprecise
probability [25,26]. Selecting an appropriate mathematical struc-
ture to represent epistemic uncertainties can be more challenging
than quantifying aleatory uncertainty. For example, the major dif-
ficulties in fuzzy set theory lie in that it cannot combine fuzzy sets
with probabilistic information and cannot quantify the linguistic
uncertainty. The possibility theory has no clear method for com-
bining degrees of belief and probabilistic information. Among
these methods, evidence theory has much potential in uncertainty
quantification (UQ) and is more general than probability and pos-
sibility theories. Evidence theory was first proposed by Dempster
[27] and extended by Shafer [21], which offers a framework for
naturally modeling epistemic uncertainty and aleatory uncertainty
due to its flexibility. It uses plausibility and belief to measure the
likelihood of event without the need of additional assumptions.
Evidence theory can provide equivalent formulations to convex
models, possibility theory, and fuzzy sets, and it can incorporate
different types of information in one framework to quantify uncer-
tainty in a system [22]. Recently, some engineering applications
with UQ based on evidence theory have achieved significant results
[28–33].

Evidence theory has a strong capability to deal with uncertainty
modeling and decision under uncertainty when the uncertainty
information is imprecise. However, the large computational cost
caused by its discrete property severely influences the practicabil-
ity of evidence theory. To alleviate the computational difficulties in
the UQ analysis based on evidence theory, an interval optimization
based on differential evolution (DE) for computing bounds method
is developed.

In this work, evidence theory is applied in characterizing the
uncertainty of a fatigue crack growth model in situations where
the uncertainty information is imprecise (i.e., epistemic uncer-
tainty). The available data for the crack growth model material
constants are insufficient for assigning a particular probability den-
sity function. In such a case, using only one framework (probability
theory) to quantify the uncertainty in crack growth prediction may
be limited. Thus, evidence theory that is notable for its flexibility
and can offer a viable alternative for the purpose of uncertainty
propagation is used. Fracture mechanics based on the Paris–Erdo-
gan law [34] is chosen to describe the crack propagation, and initial
crack size a0 and the Paris equation constants C andm are regarded
as uncertain variables. The fatigue crack growth data curve fitting
analysis of the large replicate experimental results of Virkler et al.
[2] and Tian et al. [35] is addressed. The present study aims to
investigate the uncertainty of crack propagation using sparse
experimental data to explore the feasibility of the approach.

2. Evidential UQ of crack growth model

2.1. Fundamentals of evidence theory

Evidence theory is introduced in this section prior to its applica-
tion to the uncertainty modeling of crack growth. Evidence theory
was originally proposed by Dempster [27] and further developed
by Shafer [21] to describe epistemic uncertainty. Among the
numerous non-probabilistic methods, evidence theory is the most
closely related to probability theory, which is a generalization of
classical probability theory. Probability masses can only be
assigned to a single event in the UQ with probability theory, and
the probability mass function is a mapping R:? [0, 1]. However,
in evidence theory, the mass function is not only assigned to a sin-
gle value but also to sets or ranges. The core of evidence theory is
the frame of discernment H, which concludes all the possible
answers to the investigated problem and all the elements in
mutual exclusion between each other. Evidence theory is a map-
ping from 2H ? [0, 1]. Mass function mapping is from 2H ? [0,
1], and A is a subset of 2H, denoted by A # 2H. This mass function
is given by

mð£Þ ¼ 0X
A#2H

mðAÞ ¼ 1

8<
: ; ð1Þ

where m(A) is also called basic belief assignment (BBA), and it rep-
resents confident degree in event A. When m(A) > 0, the subset A is
called focal element. BBA is estimated by the obtained data or given
by experience.

Evidence theory represents uncertainty using a probability
interval instead of a probability value. For event A, the lower and
upper bounds of uncertainty interval are called the belief function
Bel(A) and the plausibility function Pl(A), respectively. Bel(A) repre-
sents the confident degree to believe that event A is true, which is
the minimum possibility that A occurs, and Pl(A) represents the
confident degree to believe that event A is not false, which is the
maximum possibility that A occurs. Bel(A) and Pl(A) are given by

BelðAÞ ¼
X
B#A

mðBÞ; ð2Þ

PlðAÞ ¼ 1� BelðAÞ ¼
X

B\A–£

mðBÞ: ð3Þ

Belief and plausibility functions constitute the lower and upper
bounds of proposition A. The interval [Bel(A), Pl(A)] represents the
belief degree of proposition A. For information from multiple
sources, the combined evidence can be obtained by Dempster’s
rule [27] of combination. This rule is discussed in detail in [36].

2.2. Evidence-based UQ framework for fatigue crack growth models

Following the brief overview of evidence theory, the evidence-
based UQ framework for fatigue crack growth models is presented
in this section.

2.2.1. Crack propagation models
The proposed uncertain model of fatigue crack damage is based

on a deterministic model of fatigue crack growth [34], which is
based on the principle of linear elastic fracture mechanics. The
Paris law provides the rate of crack propagation (da/dN) as a func-
tion of the amplitude of stress intensity factor (SIF) DK:



Table 1
BBA under three relationships.

Assignment
of BBA

Ignorance Agreement Conflict
B/A < 0.5 B/A > 0.8 0.5 � B/

A � 0.8

m({I1}) A/(A + B) Two adjacent intervals can be
combined into one

A/(A + B)
m({I2}) 0 B/(A + B)
m({I1, I2}) B/(A + B) 0
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da=dN ¼ CðDKÞm ð4Þ
where C and m are the damage growth parameters. The parameters
can vary by specimen because they greatly depend on the
microstructure of material, and the effect of variability is the main
focus of the study. The calculation of these unknown constants for a
specific material requires fitting the crack growth model to experi-
mental data. The SIF range for a center-cracked panel (the width of
the crack is denoted by 2a and the width of the plate by 2w) is cal-
culated using Eq. (4). In Eq. (4), the SIF range DK in the given situ-
ation is generated simply because a time-varying stress r(t) can
present a corresponding stress range Dr.

DK ¼ YðaÞ � Dr ffiffiffiffiffiffi
pa

p
; ð5Þ

where �a = a/(2w) is a dimensionless parameter, Y(�a) is the parame-
ter related to the size of geometry, and the analytical solution is Y
(�a) = 1 for an infinite plate. Other several forms of Y(�a) for finite
plate can be found in [14]. The UQ of the fatigue crack growth is
essential to obtain the uncertainty of fatigue crack prediction life-
time (N) when uncertain parameters are provided. For a given crack
growth model based on the framework with evidence theory, three
major steps are involved in the UQ analysis. These steps are uncer-
tainty representation, propagation, and measurement. The three
steps are briefly described in the subsequent sections.

2.2.2. Uncertainty representation
For uncertainty representation, the UQ framework with

evidence theory utilizes all possible obtained values of material
constants provided by the experimental data to express the uncer-
tain variables in interval formwith assigned degree of belief. In this
work, a general methodology described previously by Salehghaffari
et al. [32] is adopted to obtain necessary information from avail-
able data and express the uncertain variables in the mathematical
framework with evidence theory. The methodology is a two-step
procedure, which involves representing uncertain parameters in
interval form using all available data through generating a his-
togram for each model parameter and determining a suitable belief
structure with assigned degree of belief for each parameter from
the generated histogram depending on the relationship in the con-
text of evidence theory. In this methodology, two adjacent inter-
vals can be identified as having ignorance, agreement, or conflict
relationship (Fig. 1). In Fig. 1, A and B are the number of data in
adjacent intervals I1 and I2, respectively. The BBA for the three rela-
tionships is shown in Table 1. Ref. [32] provided the details on rep-
resentation of uncertain parameters in intervals with assigned
BBA.

Following the said two steps, the belief structure for single
uncertain input is established. The evidential uncertainty represen-
tation is constructed by repeating the two steps for each uncertain
parameter.
Fig. 1. Three relationships between adjacent intervals.
2.2.3. Uncertainty propagation of fatigue life analysis
In the evidence theory community, uncertainty variable is usu-

ally expressed as a series of discrete focal elements based on lim-
ited information. Then, the uncertainty propagation is required to
determine the belief structure of system response of interest that
is influenced by the underlying material model uncertainties.
Therefore, uncertainty propagation is a process of finding the max-
imum and minimum of the system response value in each hyper-
cube interval (proposition of the joint belief structure). In
propagating the represented uncertainties of crack growth model
constants, final fatigue crack prediction lifetime N is considered
the system response.

Considering the epistemic uncertainty of the system, the belief
and plausibility functions of the response are obtained on the basis
of the combined BBAs of the input parameters from different infor-
mation sources using the evidence combination rules. The fatigue
crack prediction response process N = f(Y) has input parameter vec-
tor Y = (Y1, . . . , Yn) with n variables of epistemic uncertainty. The
joint proposition C of elementary proposition is constructed for
the fatigue crack prediction system model as

C ¼ fck ¼ ½x1i1 ; x2i2 ; . . . ; xnin � : x1i1 2 X1; x2i2 2 X2; . . . ; xnin 2 Xng;
ð6Þ

where X1, X2, . . . , Xn denote the interval sets of the n variables Y1,
Y2, . . . , Yn. The relevant numbers of the intervals are I1, I2, . . . , In.
x1i1 ; x2i2 ; . . . ; xnin , (i1 2 [1, I1], i2 2 [1, I2], . . . , in 2 [1, In]) denote the
subintervals of X1, X2, . . . , Xn; ck, k 2 [1, I1 � I2�, . . . , �In] denotes
the n-dimensional joint proposition set constructed by several
subintervals. The BBA of the joint proposition set C is defined as

mcðckÞ ¼ m1ðx1i1 Þm2ðx2i2 Þ � � �mnðxnin Þ: ð7Þ
Thus, every element of the Cartesian set C is required to be checked
in the evaluation of the belief and plausibility functions by finding
the system response bounds. In other words, the minimum and
maximum responses of each joint set should be calculated as

½Nmin;Nmax� ¼ ½min½f ðckÞ�;max½f ðckÞ��: ð8Þ
Given that uncertain variable is represented by many discontin-

uous sets instead of smooth and continuous explicit functions, the
UQ with evidence theory becomes time consuming. Sampling and
optimization are the two main approaches for finding the bounds
of the system response. The accuracy of sampling approach is
highly dependent on the number of samples and the number of
hypercubes, and the process is extremely costly. On the contrary,
optimization methods can dramatically reduce the computational
work. To alleviate the said computational burden, the optimization
approach in [37] based on DE [38] is used to calculate the response
bounds of each hypercube and to compute the composite BBA of
each hypercube, propagation of the represented uncertainty
through fatigue crack growth model Eq. (4). The DE method is
appropriate for such an interval bound task because of its
derivative-free characteristics and discrete belief structure han-
dling capability.

DE is a powerful stochastic real-parameter optimization algo-
rithm for solving complex computational optimization problems.
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As a novel evolutionary computation technique, DE resembles the
structure of an evolutionary algorithm (EA). However, unlike tradi-
tional EAs, the DE variants perturb the current generation popula-
tion members with the scaled differences of randomly selected and
distinct populationmembers. DE is a fast and robust algorithm that
can be used as an alternative to EA because of the inherent charac-
teristics of the former and other factors. Since the late 1990s, DE
started to find several significant applications to the optimization
problems arising from diverse domains of science and engineering.
In a recently published article, Das and Suganthan [39] provided a
comprehensive survey of the DE algorithm, including its basic con-
cepts, different structures, and variants for solving various opti-
mization problems as well as applications of the DE variants to
practical optimization problems.

In the DE context, the individual trial solutions (constituting a
population) are called parameter vectors or genomes. S 2 Rn is
the search space of the problem. Then, the n-dimensional vector
can be represented by xi = (xi1, xi2, . . . , xin)T 2 S, i = 1, 2, . . . , NP. DE
algorithm utilizes NP as a population for each iteration, called a
generation of the algorithm. For the fatigue crack prediction
response process, its parameter vector is generated by the uncer-
tainty variables (a0, C, and m) in ranges according to their respec-
tive belief structures. DE operates through the same
computational steps as employed by a standard EA, including
crossover, mutation, and selection operators. However, unlike tra-
ditional EAs, DE employs the difference in parameter vectors to
explore the objective function landscape. The pseudo-code of DE
is presented in Fig. 2. The detailed survey of the DE family of algo-
rithms can be found in [38,39].

The DE-based computational strategy with the pseudo code of
DE for finding the propagated belief structure is illustrated in
Fig. 3 (only one uncertain parameter is considered). The procedure
of uncertainty propagation using the DE strategy is as follows:
Fig. 2. DE pse
� For each uncertain parameter, collect all possible evidence, con-
struct the BBA structure, and combine the BBA structures under
the situation of pieces of evidence provided by different sources
or experts using combination rules of evidence.

� Determine the joint BBA structure for multiple uncertain
parameters by the Cartesian product operation.

� Use the DE algorithm to calculate the bound values of the sys-
tem response within each joint interval and then construct
the corresponding belief structures.

� Given the complete BBA on the output response of interest N,
develop the belief and plausibility functions on N given any gen-
eral subset by applying Eqs. (4) and (5).

2.2.4. Uncertainty measurement
After obtaining the BBA structure of the crack growth model

response, observed evidence on simulation responses is used in
determining the target propositions to estimate uncertainty mea-
sures, namely, Bel and Pl. Given the propagated focal elements
and associated belief structure as (½N1;min;N1;max�, m1), . . . ,
(½Ni;min; Ni;max�,mi), . . . , (½Nn;min;Nn;max�,mn), the evidential measures
of target proposition A = [NA;min;NA;max] can be written as

BelðAÞ ¼
X

½Ni;min ;Ni;max �# ½NA;min ;NA;max �
mi; ð9Þ
PlðAÞ ¼
X

½Ni;min ;Ni;max �\½NA;min ;NA;max �–£

mi: ð10Þ

In practical implementation of risk analysis and reliability
study, the probability bounds are preferred than the uncertainty
measures on single target proposition. Ferson et al. [40] con-
structed the cumulative belief function (CBF), which is also indi-
cated as the right probability bound of p-box, and the cumulative
udo code.
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Fig. 3. Finding system propagated belief structure by DE.
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plausibility function (CPF), which is also indicated as the left prob-
ability bound of p-box. Given the propagated focal elements and
associated belief structure (½N1;min;N1;max�, m1), . . . , (½Ni;min;Ni;max�,
mi), . . . , (½Nn;min;Nn;max�, mn), the lower and upper probability
bounds of the threshold value of fatigue life Nthre can be obtained
as

PðNthreÞ ¼
X

Ni;max6Nthre

mi; ð11Þ

PðNthreÞ ¼
X

Ni;min6Nthre

mi: ð12Þ

The UQ framework of evidence theory using DE optimization is
shown in Fig. 4.
Consolidate the joint fo
correspondin

Collect experim

Calculate the lower and upper 
bounds of each joint hypercube

Construct the evident
of system uncerta

Cartesian p

Extract uncertain parameter Y1

DE global optimization

Evidence from experimental data

Uncertainty

Construct the focal elements  
and corresponding BBA

Fig. 4. Procedure of UQ using DE global optim
3. Numerical and experimental studies

3.1. Tian et al.’s [35] data set

The uncertainty of fatigue crack growth prediction is investi-
gated using experimental data of 2024-T42 aluminum alloy speci-
mens (Fig. 5) under constant-amplitude loading (Pmax = 25.0 kN,
Pmin = 12.5 kN) given by Tian et al. [35]. The geometrical dimen-
sions of the plate and load are as follows: width of 100 mm, thick-
ness of 4 mm, stress range 4r = 32.5 MPa (i.e., rmax = 65 MPa
corresponding to the maximum applied load of 25.0 kN), and the
load ratio R of 0.5. A total of 14 sets of 2024-T42 aluminum alloy
specimen experiments are conducted in [35], and the correspond-
ing experimental data are listed in Tables 2–4.
Assign the composite BBA to
each joint hypercube

cal element and 
g BBA

Construct CBF and CPF

ental data

ial representation 
in response 

Uncertainty Representation

roduct

Extract uncertain parameter Yn

Uncertainty Propagation

 Measurement

Construct the focal elements  
and corresponding BBA

ization method for crack growth analysis.



B

2w 2a
Cyclic loading

max min( 25 , 12.5 )P kN P kN= =

Fig. 5. Thin rectangular plate under uniaxial tension.

Table 2
Test data of fatigue crack growth length of 2024-T42 aluminum alloy (mm).

N i

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 5.55 5.40 5.30 5.20 5.25 5.30 5.25 5.40 5.30 5.25 5.40 5.30 5.40 5.25
5000 6.15 5.80 5.70 5.50 5.75 5.40 5.55 5.83 5.80 5.60 5.90 5.60 5.75 5.63
10,000 6.75 6.30 6.30 6.08 6.45 5.75 6.05 6.35 6.28 6.10 6.30 6.05 6.35 6.20
15,000 7.50 6.90 6.90 6.55 7.20 6.20 6.55 6.95 6.90 6.70 6.75 6.55 7.15 6.80
20,000 8.25 7.50 7.70 7.10 8.00 6.75 7.25 7.65 7.55 7.25 7.60 7.25 7.90 7.50
25,000 9.25 8.25 8.50 7.65 8.85 7.30 8.00 8.45 8.40 8.10 8.35 7.85 8.65 8.38

30,000 10.25 9.10 9.45 8.25 10.00 8.00 8.90 9.25 9.15 9.00 9.15 8.60 9.75 9.30
35,000 11.25 10.00 10.55 9.05 11.20 8.75 9.80 10.25 10.15 9.90 10.15 9.35 10.90 10.25
40,000 12.65 11.10 11.60 9.85 12.60 9.55 11.00 11.20 11.10 11.35 11.25 10.35 12.25 11.40
45,000 14.50 12.60 13.00 10.75 14.90 10.45 12.40 12.50 12.35 12.80 12.75 11.50 13.90 12.75
50,000 17.25 14.45 14.70 11.75 17.95 11.75 14.10 14.25 14.15 14.75 14.65 13.00 16.60 14.95

52,500 19.80 14.90 16.05 15.60 13.85 17.75 16.25
55,000 21.85 15.55 15.90 12.30 20.00 15.05 15.05 16.10 17.60 17.00 15.00 21.75 17.90
57,500 26.05 16.90 17.60 13.20 13.65 16.35 16.30 17.50 19.50 18.75 16.75 26.25 20.25
60,000 18.55 19.35 14.25 24.00 17.90 17.75 19.45 23.00 20.60 18.50 23.90
58,000 27.25 20.35 21.75 15.60 16.30 20.00 19.75
58,500 29.25
59,000 31.70

61,000 22.65 17.10 21.00 20.55 20.20 25.50 19.45 25.90
62,000 22.50 23.75 20.00 22.25 21.50 21.00 27.35 20.45 29.90
63,000 25.30 18.75 24.25 22.75 22.30 21.50
64,000 25.00 28.75 19. 26.60 24.25 23.75 22.55
65,000 27.70 75 30.10 25.50 27.10 24.00

66,000 30.10 20.95 26.25
67,000 22.25
68,000 24.15 22.85
69,000 26.50
70,000 30.25 25.80

Table 3
Initial and critical crack length for every specimen (mean value of left and right length).

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Initial size(mm) 5.50 5.40 5.30 5.20 5.25 5.30 5.25 5.40 5.30 5.25 5.40 5.30 5.40 5.25
Critical size(mm) 32.5 31.5 33.0 32.0 31.0 32.0 33.0 32.5 32.0 32.0 32.0 32.0 32.0 32.5

Table 4
Fatigue crack growth lifetime (number of cycles) for every specimen.

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14

N 59,045 66,146 64,489 70,192 57,103 71,404 65,494 66,811 67,678 62,871 66,141 66,935 58,844 62,370

168 H. Tang et al. / International Journal of Fatigue 99 (2017) 163–174
For the uncertainty representation of material constants using
evidence theory, separate belief structures for each uncertain
parameter (three material constants of growth rates equation)
should be constructed. The derived data for material constants of
fatigue crack growth model (Tables 3 and 4) reflect the uncertainty
in behavior of the 2024-T42 aluminum alloy and is thus used as
available evidence in the construction of belief structures.

In general, the Paris law can be conveniently written in the log-
arithm form as

lgðda=dNÞ ¼ lgC þm lgðDKÞ: ð13Þ
The material constants of 2024-T42 aluminum alloy are deter-
mined using the experimental data provided in [35]. Least squares
curve fitting the growth rates in Eq. (13) with Bicoudate function
using ai-Ni data in Table 2 yields the corresponding Paris parameters
C andm, as shown in Table 5. The average relative fitting deviations
of crack length and crack growth ratio are also listed in Table 5.

In accordance with Salehghaffari et al.’s [32] criterion, the data
distribution and the corresponding belief structure for uncertain
material constants C, m, and a0 are constructed for 2024-T42 alu-
minum alloy using the data provided in Tables 3 and 5, as shown
in Fig. 6(a)–(c).



Table 5
Fitting results of parameters C and m.

No. Material constants Relative deviation (%) No. Material constants Relative deviation (%)
C (� 10�10) m C (� 10�10) m

1 5.58 3.49 2.57 8 9.25 3.14 1.97
2 7.33 3.28 2.87 9 6.28 3.37 5.02
3 8.69 3.21 4.31 10 6 3.44 2.89
4 2.86 3.81 3.10 11 10.64 3.06 2.00
5 11.45 3.12 2.03 12 4.73 3.53 1.68
6 3.18 3.70 6.87 13 6.74 3.38 3.63
7 4.72 3.55 1.87 14 5.23 3.52 2.51

Table 6
Distribution information of C, m, and a0.

Uncertain parameter Distribution type Distribution parameters

C Logarithmic normal lnu = �22.22 r = 0.576
m Normal u = 4.073 r = 0.331
a0 Uniform [5.20, 5.50]

Fig. 7. Fatigue lifetime cumulative distributions of evidence theory and probability
theory with parametric independence.
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For the first case study, the Paris parameters are taken from the
experimental data in Table 5 with assumption of independence.
The fatigue crack propagation lifetime can be obtained through
numerical integration of Eq. (4). The average value of critical size
ac = 32 mm in Table 3 is used to denote the failure criteria of spec-
imen. Therefore, the subsequent calculations are all terminated
when a = ac, and failure is then assumed to occur immediately.
Using the belief structures of C, m, and a0 listed in Fig. 6, the lower
and upper bounds of each joint focal element are obtained by the
framework of uncertainty propagation. For comparison with prob-
ability theory, the logarithmic normal distribution is used to model
C [41], the normal distribution is used to model m [41], and the
uniform distribution is used to model the initial size of crack a0.
The distribution information are listed in Table 6.

Employing the uncertain information in Table 6, MC sampling is
performed 10,000 times in the variable interval [u ± 3r], and the
CDF curve of fatigue life N is shown in Fig. 7. Using Eqs. (11) and
(12), the CBF and CPF of fatigue life are obtained as shown in
Fig. 7. To investigate the characters of UQ of probability theory, evi-
dence theory, and the interval analysis, the interval-based uncer-
tainty representation and propagation for C = [1.06, 9.25] � 10�10,
m = [3.06, 3.81], and a0 = [5.2, 5.5] are also performed. The corre-
sponding lower and upper bounds of interval calculation are
shown in Fig. 7. As the representative value, the left and right prob-
ability bounds for the expectation of experimental fatigue life
N ¼ 64;680 are presented in Fig. 7. The estimated belief and plau-
sibility of 95% confidence intervals for fatigue lifetime are also
listed in Fig. 7.

In comparison with the fatigue life interval of experimental data
N = [57,103, 71,404], the prediction values of the three prediction
methods are distributed in a huge range for the estimated lifetime
as presented in Fig. 7. For the expectation of experimental fatigue
life N, the probability is 0.502 and the interval calculation is [0, 1].
Using Eqs. (11) and (12), the right and left probability bounds of
Fig. 6. Data distribution and corresponding be
N = [0.209, 0.755] are presented by evidence theory. Meanwhile,
probability theory and evidence theory overestimate (i.e., 25,954
and [21,062, 41,809]) the actual solution set with 95% guarantee
probability. The estimates of the lifetime cannot be used as the
lief structure of parameters C, m, and a0.



Fig. 8. Correlation between lgC and m.

Fig. 9. Data distribution and belief structure of e.

Table 8
Evidential measurement for experimental precision intervals of fatigue life.

Target proposition Precision Fatigue life (N)
Bel Pl

[63,063, 66,297] 97.5% 0 0.5357
[61,446, 67,914] 95% 0.09 0.8955
[60,465, 68,896] N � r 0.1678 1
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lower and upper bounds in each case because of the parametric
independence.

The uncertainty measures (Bel and Pl) are used to access the
belief degree of a defined target proposition set using the propa-
gated belief structure. The nominal value N ¼ 64;680 and standard
derivation r = 4216 of the experimental data are employed to
define the three target propositions with different level scatters
as follows: ½0:975N;1:025N�. ½0:95N;1:05N�, and ½N � r;N þ r�.
According to Eqs. (9) and (10), the value of Bel and Pl can be esti-
mated by adding the BBA of propagated focal elements that fall
into the target proposition and that intersect with target proposi-
tion, respectively. The value of three target propositions is pre-
sented in Table 7.

Table 7 shows that the change in the uncertain measures (Bel
and Pl) of different target propositions is inconsistent with the
interval extension of the target proposition. Although the range
of target proposition varies from [63,063, 66,297] to [60,465,
68,896], the value of Bel and Pl are fixed at 0 and 0.5459, respec-
tively. As shown in Fig. 7 and Table 7, the overestimation of fatigue
life is attributed to the lack of experimental data and interval
explosion of ignoring the dependence of C and m. The resulting
interval range can be effectively reduced by considering the depen-
dencies between the parameters to reduce the effect of the para-
metric uncertainty on the estimated lifetime. In the subsequent
analysis, Paris parameters are assumed to be statistically depen-
dent, and the least square method is used to estimate the statistical
correlation from the data set. However, using the data set as the 14
samples in the tests may be inappropriate.

Despite the uncertain views on the derivation, the relationship
between C and m as fully described by lgC ¼ aþ bm is acknowl-
edged by many studies (e.g., [42–46]). Fig. 8 shows the fitting line
of lgC and m with correlation coefficient R = �0.988. The critical
correlation coefficient R0 is 0.66 when n = 14 and R > R0. This con-
dition indicates that lgC and m are significantly linearly correlated.
Therefore, the correlation between the parameters should be con-
sidered in this fatigue lifetime estimation.

In accordance with the fitting result of lgC and m shown in
Fig. 8, the nominal value lgCnom of coefficient lgC is formulated as
the linear expression of exponent m. Furthermore, the uncertainty
of C can be expressed as Cnom and a residual error e [47], and the
belief structure of residual error e is provided in Fig. 9.

C ¼ ð1þ eÞCnom ð14Þ

Introducing the uncertain information of uncertain parameters m
and e into the evidential UQ framework presented in Section 3
yields the uncertainty propagation results. Similar to the indepen-
dence case, the uncertainty measures (Bel and Pl) are used to esti-
mate the belief degree of target proposition under the condition
of the correlation between C and m. Table 8 lists the value of Bel
and Pl for the target proposition as follows: ½0:975N;1:025N�.
½0:95N;1:05N�; and ½N � r;N þ r�.

Table 8 shows that the evaluated values of Bel and Pl of exper-
imental precision intervals of fatigue life obviously increase as the
target proposition enlarges. Compared with the independence
case, the range of Bel and Pl becomes much tighter. This tendency
is due to the reduction in epistemic uncertainty of fatigue life
Table 7
Evidential measurement for experimental precision intervals of fatigue life.

Target proposition Precision Fatigue life (N)
Bel Pl

[63,063, 66,297] 97.5% 0 0.5459
[61,446, 67,914] 95% 0 0.5459
[60,465, 68,896] N � r 0 0.5459
N. Fig. 10 shows the estimated CBF, CPF, and CDF curves of the fati-
gue lifetime. The estimated belief and plausibility for 95% experi-
mental precision intervals for fatigue lifetime, and some results
of MC simulation and interval calculation are summarized in
Table 9.

As shown in Fig. 10 and Table 9, the scope of the estimated life-
time for the three methods significantly decreases when consider-
ing the parametric dependency as expected. Given such
consideration, the epistemic uncertainty in fatigue crack modeling
significantly decreases. With an appropriate fatigue crack model-
ing, the estimated bounds enclose any experimentally measured
data and actually yield usable estimates for the specimen lifetime.
Therefore, despite the availability of experimentally obtained Paris
law coefficients, considering the nature of parametric dependency
should still be considered cautiously.

Evidence theory can effectively handle uncertain variables
without exact probability distribution, and it excellently avoids



Fig. 10. Fatigue crack propagation lifetime cumulative distribution under para-
metric dependency.

Table 9
Calculation results of three methods under parametric dependency.

Results Evidence theory MC Interval calculation

95% [56,375, 60,493] 57,878 –
Entire range [55,760, 77,576] [51,784, 82,349] [55,760, 77,576]
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the error caused by probability theory. For example, the result
calculated by probability theory shows that the probability is no
more than 5% when the lifetime exceeds 57,878, while the result
by evidence theory is [56,375, 60,493]. The conservative estimation
of lifetime by evidence theory shows the minimum value of
56,375. In particular, evidence theory provides the prognosis for
the assumed specimen as the interval [56,375, 60,493] with 95%
guarantee probability, and estimated lifetime can be set as
56,375 to ensure the safety. Compared with the experimental
results, the lifetime of 14 specimens is all larger than 56,375, and
the maximum deviation is 26.7%. The gap between belief and plau-
sibility for experimental precision intervals reflects the epistemic
uncertainty embedded in the fatigue growth model.

3.2. Virkler et al.’s [2] data set

The impact of sparse experimental data (epistemic uncertainty)
on fatigue crack lifetime prediction analysis is resolved using the
large replicate experimental results of Virkler et al. [2]. The tests
involve 2024-T3 aluminum sheets with a 9 mm pre-centered
Fig. 11. Correlation between lgC and m
crack. These sheets are subjected to a cyclic loading with a maxi-
mum load of 23 kN and a stress ratio of R = 0.2, and the loading
is terminated with the critical size ac = 49.8 mm. Each of the 68
specimens tested is observed 163 times. Significant scatter can
be observed in the resulting ln[da/dN] versus ln[DK] data. Further
details can be found in [2].

An imprecise information situation can be assumed due to the
lack of information or data in the current example. In the example,
two data sets (11 and 68 specimens) are randomly selected from
the experimental results of 68 specimens. These data sets are then
used to quantify uncertainty for the fatigue crack lifetime predic-
tions. Considering the nature of parametric dependency, only
parameter m in the fatigue crack growth model is obtained by fit-
ting the available sparse experimental data (11 and 68 specimens).
The correlation relationship is shown in Fig. 11. The data distribu-
tion and the corresponding belief structure of m and residual error
e using 11 specimens are shown in Fig. 12 (a) and (b), and those for
68 specimens are shown in Fig. 13.

The evidential propagation results are obtained using the
belief structures of m and e listed in Figs. 12 and 13. Similar to
the first case study, three different-level target propositions
½0:975N;1:025N�, ½0:95N;1:05N�; and ½N � r;N þ r� are used in this
part to investigate the application of evidential measurement. The
uncertainty measurement of the three target propositions using 11
and 68 specimens are presented in Tables 10 and 11, respectively.

Comparing the results presented in Tables 10 and 11 shows that
the Bel and Pl of experimental precision intervals of fatigue life
obviously increase as the target proposition enlarges. The range
of the two measurements also becomes tighter. This condition is
attributed to the accumulation of experimental data. For compar-
ison with the probability theory, the uncertain parameter expo-
nent m and residual error e are estimated as normal distribution.
The distribution parameters are listed in Table 12.

Using the uncertain information presented in Table 12, MC sim-
ulation is implemented 10,000 times in the variable interval
[u ± 3r], and the probabilistic results are shown in Fig. 14
(a) and (b). The CPF and CBF curves of the number of cycles using
11 and 68 specimens are also shown in Fig. 14. The left and right
probability bounds for the expectation of experimental fatigue life
N ¼ 2:57� 105 are presented in Fig. 14.

Fig. 14(b) shows that the right and left probability bounds are
0.588 and 0.847, respectively, for fatigue lifetime at the cycle num-
ber of N ¼ 2:57� 105. The results show that the fatigue lifetime
probability is as high as 0.847 and as low as 0.588, and this condi-
tion can be written as a probability interval [0.588, 0.847]. Simi-
larly, the probability intervals obtained at the given number of
cycles by use of 11 specimens are represented as interval [0.438,
using (a) 11 and (b) 68 specimens.



Fig. 12. Data distribution and corresponding belief structure of (a) m and (b) e using 11 specimens.

Fig. 13. Data distribution and the corresponding belief structure of (a) m and (b) e using 68 specimens.

Table 10
Evidential measurement for experimental precision intervals of fatigue life using 11
specimens.

Target proposition Precision Fatigue life (N)
Bel Pl

[2.507, 2.636] � 105 97.5% 0 0.6860
[2.443, 2.700] � 105 95% 0 0.7521
[2.387, 2.756] � 105 N � r 0.1 0.9174

Table 11
Evidential measurement for experimental precision intervals of fatigue life using 68
specimens.

Target proposition Precision Fatigue life (N)
Bel Pl

[2.507, 2.636] � 105 97.5% 0 0.518
[2.443, 2.700] � 105 95% 0.173 0.752
[2.387, 2.756] � 105 N � r 0.396 0.833

Table 12
Distribution information of m, and e.

Sample
size

Uncertain
parameter

Distribution
type

Distribution parameters

11 m Normal u = 2.921 r = 0.161
e Normal u = 0 r = 2.9 � 10�3

68 m Normal u = 2.874 r = 0.165
e Normal u = 0 r = 2.7 � 10�3
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0.917], as shown in Fig. 14(a). When the number of sample sizes
increases, the bounds of evidence theory in Fig. 14(b) become
much smaller in quantity compared with those in Fig. 14(a), and
the ‘‘stair-step’’ of evidence theory appears smoother. Therefore,
the bounds of number of cycle probability are accurate and ade-
quate [48,49]. This deduction also shows that the three measure-
ments (belief, probability, and plausibility) eventually converge
to a single value with sufficiently increasing data information.
The 95 guarantee left and right probability bounds of estimated
intervals for fatigue lifetime are provided in Table 13. The results
of MC simulation are also listed in Table 13.

Table 13 shows that the estimated intervals of evidence theory
and MC simulation become close to experimental precision inter-
vals when experimental data are highly available. In addition, the
95% precision intervals of evidence theory using 68 specimens
are much smaller in quantity compared with those using 11 spec-
imens. In summary, the accuracy in parametric UQ using evidence
theory increases when sufficient data are available.



Fig. 14. Fatigue crack propagation lifetime cumulative distribution for (a) 11 and (b) 68 specimens.

Table 13
Estimated results of sparse experimental data.

Sample size Results Evidence theory Monte Carlo Test data

11 95% [2.080, 2.325] � 105 2.122 � 105 –
Entire range [2.080, 3.193] � 105 [1.776, 3.311] � 105 [2.228, 3.210] � 105

68 95% [2.173, 2.320] � 105 2.234 � 105 –
Entire range [2.088, 3.100] � 105 [1.986, 3.018] � 105 [2.228, 3.210] � 105
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4. Conclusions

In this article, epistemic UQ of crack propagation data using evi-
dence theory is presented. The evidential reasoning approach using
differential evolution provides a computationally efficient frame-
work for UQ of material constants in Paris crack growth model
under epistemic uncertainty. Uncertainty analysis of large repli-
cate experimental results (such as that of Virkler et al. [2] and Tian
et al. [35]) verifies the presented approach for the Paris model and
its potential applicability to other similar material models.
Notwithstanding the high efficient of DE based evidential UQ
framework, the computational burden is still the major challenge
due to exponential increase of joint focal elements of complex
and large scale problems. The advanced surrogated models are
expected to cope with this scenario.

The epistemic uncertainty of the estimated lifetime is signifi-
cantly decreased when considering the parametric dependency
and the increase in the number of sample sizes as expected. The
results of several replicated experiments show significant scatter
of Paris damage model parameters. This condition implies that
the existing deterministic analysis may be non-conservative, and
the epistemic uncertainties in Paris damage model should be con-
sidered in fatigue crack lifetime prediction analysis.
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