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ABSTRACT Peridynamics (PD) is a nonlocal continuum theory based on integro-differential equations without spatial
derivatives. The fracture criterion is implicitly incorporated in the PD theory and fracture is a natural outcome of the
simulation. However, capturing of complex mixed-mode crack patterns has been proven to be difficult with PD. On the
other hand, the extended finite element method (XFEM) is one of the most popular methods for fracture which allows
crack propagation with minimal remeshing. It requires a fracture criterion which is independent of the underlying
discretization though a certain refinement is needed in order to obtain suitable results. This article presents a comparative
study between XFEM and PD. Therefore, two examples are studied. The first example is crack propagation in a double
notched specimen under uniaxial tension with different crack spacings in loading direction. The second example is the
specimens with two center cracks. The results show that PD as well as XFEM are well suited to capture this type of
behaviour.
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1 Introduction

For crack propagation problems in the engineering
structure, it is difficult to obtain an analytical solution for
the stress, strain and displacement field and to determine
the direction of crack propagation. With the advancements
in computer science and computational science, the finite
element method has become a powerful tool which was
also applied to fracture problems. Analyzing the extension
characteristics of cracks and predicting the service life of
structures are of high importance in engineering. The
traditional finite element method (FEM) is not well suited
for crack propagation problems as the crack can only
propagating along existing element edges by node
splitting. The results will highly depend on the mesh
topology and therefore remeshing techniques are com-
monly exploited. Besides some recent advancements in
remeshing techniques, see for instance the work by Areias
and co-workers [1–6], their implementation to 3D and
complex fracture patterns remains still a challenge.

The extended finite element method (XFEM) [7] allows
crack propagation without remeshing. Though XFEM can
principally capture crack propagation without remeshing, a
certain mesh refinement is still required in order to obtain
results with satisfactory accuracy. For problems in linear
elastic fracture mechanics (LEFM), it was shown that its
accuracy is related to the position of the crack tip [8,9]. It is
also complicated to deal with complex fracture patterns
such as crack coalescence or crack branching. Daux et al.
developed strategies to deal with such type of problems
[8]. Nevertheless, reliable fracture criteria for such
applications are still missing. While the original XFEM
was developed for problems in LEFM, it was meanwhile
applied to non-linear problems including cohesive cracks;
see for instance the work by Fang et al. [10,11]. The
phantom node method [12,13] is similar to XFEM and it
was shown in Ref. [14] that the crack kinematics of the
phantom node method can be derived from XFEM.
However, it has some advantages: 1) It models the crack
by overlapping elements (not by enrichment) and there-
fore, existing element formulations can be readily
exploited. In contrast, efficient FEM formulations forArticle history: Received Mar 5, 2017; Accepted Apr 2, 2017
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problems with constraints for instance need to be
redeveloped and tested for the ‘standard’ XFEM. 2) No
‘mixed terms’ are needed in the phantom node method and
3) the implementation is easier. Nonetheless, the phantom
node method requires that the crack propagates through an
entire element though some special crack tip elements have
been developed which allow the crack tip inside an
element [15,16]. Both, the phantom node method as well
as XFEM has been implemented in the commercial
software package ABAQUS.
Meshless methods (MM) eliminate the mesh and can

therefore deal well with fracture problems as well, see e.g.,
the contributions by Rabczuk [17–25] or Zhuang and co-
workers [26–28]. However, as XFEM, they still require
fracture criteria. An interesting and powerful meshfree
method for fracture is the cracking particles method (CPM)
[29–31] which can— similarly to PD— also complex
fracture pattern such as crack coalescence, crack nuclea-
tion and crack coalescence without any special criteria. In
the CPM, the crack is modelled by a set of crack segments
and therefore the crack path is not continuous. It has been
shown by [32,33] that certain meshless methods are nearly
identical to the so-called state-based PD formulation which
will be explained in the next section.
Peridynamics (PD) is a new numerical method for

characterizing materials based on nonlocal models. It was
first proposed in 2000 by Silling [34,35]. For a linear
elastic solid, the original bond-based PD formulation [34]
modeled fracture by equating the critical energy release
rate of the continuum with the one from PD theory which
leads finally to a critical stretch between the particles as
fracture criterion which can be implemented with ease.
However, the extension to nonlinear materials and
complex mixed-mode fracture cannot easily be treated
with the bond-based PD. Therefore, the state-based PD
was developed which can handle more complex constitu-
tive models. However, it was shown in [32,33] that such
models are quite similar to meshfree methods. None-
theless, the theory has been further developed and applied
to some numerical simulation of discontinuous damage
problems in recent years [36]. The third generation of PD is
called dual-horizon peridynamics (DH-PD) and allows for
adaptive refinement [37]; it can be applied to bond-based
PD as well as state-based PD.
Silling and Bobaru proposed a weighted local function

of the particle weight method to determine the particle
damage problem [38]. In multi-scale problems, there are
some big challenges. Some researchers have done some
work on it [39–47], see also the contribution from Costa et
al. on a multi-scale PD finite element model [48]. Jung and
Seok modelled fatigue cracks and computed stress
intensity factors of stratified inhomogeneous materials
[49]. Shen et al. simulated the cracking process of concrete
[50]. Gu and Zhou captured the fracture process of a plate
with a round hole and provided new ideas and new
methods for material failure [51]. Cheng and Liu focused

on dynamic fracture of functionally graded materials and
analyzed the dynamic response of those materials [52]. The
article of Zhou and Shou [53] deals with rock-like
materials while Ren et al. proposed a new criteria for
damage determination of shear deformation [54].
In this paper, a comparative study of PD and XFEM is

done for problems involving crack propagation including
crack interactions for quasi-static problems. Two examples
are considered: crack propagation in a double-notched
specimen under uniaxial tension and a specimen with a
double center crack. Both specimen are made of Q345 steel
and experimental data is available. We use the XFEM
capabilities in ABAQUS to solve this problem while our
own PD program is employed to solve these problems.
Subsequently, the PD formulation is reviewed. Section 3
presents the numerical examples before the manuscript
closes with conclusions in section 4.

2 The peridynamic (PD) theory

2.1 Basic model

PD discretizes objects with many particles. In this article,
we employ the state-based PD formulation which is
subsequently summarized. The key in state-based PD is
how to compute the force state T depending on the
deformation state Y between the particles in the current
configuration. The initial relative position vector ðxðjÞ –
xðkÞÞ prior deformation becomes ðyðjÞ – yðkÞÞ after deforma-
tion. The relative position vector ðyðjÞ – yðkÞÞ and the stretch
between material points xðkÞ and xðjÞ can be defined as

ðyðjÞ – yðkÞÞ ¼ Y ðxðkÞ,tÞhxðjÞ – xðkÞi, (1)

and

sðkÞðjÞ ¼
ðjyðjÞ – yðkÞj – jxðjÞ – xðkÞjÞ

jxðjÞ – xðkÞj
: (2)

The force state for material point xðkÞ depends on other
material points within its horizon. It can also be expressed
as

T ðxðkÞ,tÞ ¼ T Y ðkÞ,t
� �

: (3)

Figure 1 shows the force density vector tðkÞðjÞ that the
material point xðjÞ exerts on the material point xðkÞ. It is
given as

tðkÞðjÞðuðjÞ – uðkÞ,xðjÞ – xðkÞ,tÞ ¼ T ðxðkÞ,tÞhxðjÞ – xðkÞi: (4)

The interaction between material points xðkÞ and xðjÞ can
be derived from a scalar-valued micropotential, wðkÞðjÞ

wðkÞðjÞ ¼ wðkÞðjÞðyð1kÞ – yðkÞ,yð2kÞ – yðkÞ,:::Þ, (5)

where yðkÞ is the positon vector of point xðkÞ in the
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deformed configuration and yð1kÞ is the positon vector of
the first material point that interacts with point xðkÞ.
Then strain energy density, WðkÞ, of material point xðkÞ

can be expressed as the summation of micro-potentials,
wðkÞðjÞ within its horizon of material points, xðkÞ and is
given by

WðkÞ ¼
1

2

X1
j¼1

1

2
wðkÞðjÞðyð1kÞ – yðkÞ,yð2kÞ – yðkÞ,:::Þ

�

þ1

2
wðjÞðkÞðyð1jÞ – yðjÞ,yð2jÞ – yðjÞ,:::Þ

�
⋅VðjÞ, (6)

in which wðkÞðjÞ ¼ 0 for k ¼ j.
Applying the principle of virtual work, the PD equations

of motion at material point xðkÞ can be derived as

δ!
t1

t0
ðT –UÞdt ¼ 0, (7)

where T and U represent the total kinetic and potential
energies in the body. Solving for the Lagrange’s equation,
this principle is satisfied as

d

dt

∂L
∂ _uðkÞ

 !
–

∂L
∂uðkÞ

¼ 0, (8)

where the Lagrangian L is defined as

L ¼ T –U : (9)

By summing the kinetic and potential energies of all
material points, the total kinetic and potential energies in
the body is obtained by

T ¼
X1
i¼1

1

2
�ðiÞ _uðiÞ⋅ _uðiÞVðiÞ, (10)

and

U ¼
X1
i¼1

WðiÞVðiÞ –
X1
i¼1

ðbðiÞ⋅uðiÞÞVðiÞ: (11)

Through the Eqs. (9), (10) and (11), Lagrange’s equation
of the material point xðkÞ can be recast as

�ðkÞuðkÞ ¼
X1
j¼1

½tðkÞðjÞðuðjÞ – uðkÞ,xðjÞ – xðkÞ,tÞ

– tðjÞðkÞðuðkÞ – uðjÞ,xðkÞ – xðjÞ,tÞ�VðjÞ þ bðkÞ, (12)

where

tðkÞðjÞðuðjÞ – uðkÞ,xðjÞ – xðkÞ,tÞ

¼ 1

2

1

VðkÞ

X1
i¼1

∂wðkÞðiÞ
∂ðyðiÞ – yðkÞÞ

VðiÞ

 !
, (13)

and

tðjÞðkÞðuðkÞ – uðjÞ,xðkÞ – xðjÞ,tÞ

¼ 1

2

1

VðjÞ

X1
i¼1

∂wðiÞðkÞ
∂ðyðkÞ – yðiÞÞ

VðiÞ

 !
: (14)

Finally, the PD equations of motion at material point xðkÞ
can be rewritten as

�ðkÞ€uðkÞ ¼
X1
j¼1

�
T ðxðkÞ,tÞhxðjÞ – xðkÞi –T ðxðjÞ,tÞ

� hxðkÞ – xðjÞi
�
VðjÞ þ bðkÞ: (15)

Because the volume of each material point VðjÞ is
infinitesimally small, the infinite summation can be
expressed as integration while considering only the
material points within the horizon,

X1
j¼1

ð⋅ÞVðjÞ↕ ↓!
H
ð⋅ÞdV#↕ ↓!

H
ð⋅ÞdH : (16)

Using the expression of Eq. (16), with the domain of
integral H and the thickness of the plate, the PD dynamic
equation is expressed as

�ðxÞ€uðkÞ ¼ !
H
ðtðu# –u,x# – x,tÞ – t#ðu – u#,x – x,tÞÞdH

þbðx,tÞ, (17)

in which bðx,tÞ denotes the body force.

2.2 Local damage model

Fracture is modelled by simply removing the interaction of
two particles when a certain stretch is exceed as illustrated
in Fig. 2. All of the micropotentials between the material
points xðkþÞ and xðj – Þ are located above and below the new
crack surface can be obtained as

Fig. 1 Kinematics of PD material points
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wðkþÞðj – Þ ¼ 4ad2δ2
XK –

i¼1

s2cVðiÞ

 !
þ 4δbs2c jxðj – Þ – xðkþÞj

 !
,

(18)

and

wðj – ÞðkþÞ ¼ 4ad2δ2
XJþ
i¼1

s2cVðiÞ

 !
þ 4δbs2c jxðkþÞ – xðj – Þj

 !
,

(19)

in which, a and d are the parameters of PD.
Then, total strain energy required to remove all of the

interactions across the newly created crack surface can be
recast as

W ¼ 1

2

XKþ

k¼1

1

2

XJ –

j¼1

wðkþÞðj – ÞVðkþÞVðj – Þ

þ 1

2

XKþ

k¼1

1

2

XJ –

j¼1

wðj – ÞðkþÞVðj – ÞVðkþÞ, (20)

where Kþ, J – indicate the number of material points xðkþÞ
and xðj – Þ above and below the crack surface.
The corresponding strain energy release rateGc is given by

Gc ¼
s2c
XKþ

k¼1

XJ –

j¼1

2δbjxðj – Þ – xðkþÞj þ ad2δ2
XK –

i¼1

VðiÞ þ
XJþ
i¼1

VðiÞ

 ! !
VðkþÞVðj – Þ

A
, (21)

where sc indicates the critical stretch.
For a 2D analysis, the expression for the critical energy

release rate becomes

Gc ¼ 2h!
δ

0
!

δ

z
!

cos – 1z=�

0

1

2
c�s2c�

� �
dfd�

� 	
dz ¼ 1

2
cs2c

hδ4

2

� �
,

(22)

in which h represents the thickness of the material. Hence,
the critical stretch can be expressed as

sc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Gc

6

π
�þ 16

9π2
ðκ – 2�Þ

�
δ:

�
vuuut (23)

In order to include damage initiation in the material
response, a history-dependent scalar-valued function � is
defined as

�ðxðjÞ – xðkÞ,tÞ ¼
1 if sðkÞðjÞðxðjÞ – xðkÞ,tÞ<sc
0 else

(
: (24)

Note that when the stretch between these material points
exceeds its critical stretch, failure occurs and � ¼ 1,
otherwise � ¼ 0. Then the force density vector can be

modified through �

tðkÞðjÞ ¼ 2δ ad
ΛðkÞðjÞ

jxðjÞ – xðkÞj
�ðkÞ þ b�ðxðjÞ – xðkÞ,tÞsðkÞðjÞ

( )

⋅
yðjÞ – yðkÞ
jyðjÞ – yðkÞj

: (25)

Local damage at a point is defined through the weight
ratio function. The local damage at a point can be
quantified as

φðxðkÞ,tÞ ¼ 1 –
!

H
�ðxðjÞ – xðkÞ,tÞdVðjÞ

!
H
dVðjÞ

: (26)

The local damage ranges from 0 to 1. When the damage
is zero, it means that all interactions are intact and when the
local damage is one, all the interactions initially associated
with the point have been eliminated. The crack has then be
completed formed and propagated. Then, half of the
interaction within its horizon, resulting in a local damage
value of one half.

3 Numerical example

3.1 Double-notched specimen made of Q345 steel under
uniaxial tension

Q345 material is a low alloy high strength structural steel,
with elasticity modulus E = 203 GPa, Poisson’s ratio v =
0.3, yield strength f = 410 MPa, ultimate strength �s = 572
MPa, elongation δ = 27.96% and density �= 7850 kg/m3.
The length and width of the specimen are 70 mm and 40
mm, respectively as shown in Fig. 3. The specimen is
loaded under uniaxial tension with a constant loading rateFig. 2 Interaction between material points xðkþÞ and xðj – Þ
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of 2.217�10–5 m/s. The crack length are 10 mm and three
different crack size distances in loading directions are
tested according to Table 1. The initial and fracture
specimen from the experiments are illustrated in Fig. 4 and
Fig. 5.
The C3D8R XFEM element in ABAQUS is employed

to simulate the crack propagation of the three specimens.
The XFEM region of the specimen is divided into two
parts. Each of them contains only one crack. Three kinds of
specimen crack growth results are given in Fig. 6. The
calculated results by XFEM are in good agreement with the
experimental results in Fig. 5.
The Q345 steel specimen is simplified model in 2D in

PD. A particle distance of x = 0.5 mm is employed in PD
and the load is applied displacement-controlled over a
width d ¼ 3x. To better visualize the crack, only the area
near the crack– i.e., 40 mm in longitudinal direction– is

shown.
The fracture patterns obtained by the PD simulations for

the 3 specimen are shown in Fig. 7. When the crack tip
damage value is close to 1, the PD force of two particles
disappears, and the crack propagates forward. With
increasing loading, the damage site expands and eventually
runs through the entire specimen as shown in Fig. 8.
For a vertical crack tip distance of 0 mm, two cracks

propagate expectedly along in the horizontal direction and
eventually join into one single crack as depicted in
Fig. 5(a) and Fig. 8 (a). When the vertical crack tip
distance is increased to 10 mm, the two cracks propagate
initially in the horizontal direction as well extended along
the horizontal direction before they turn in a 45° angle
versus the horizontal axis and finally join as shown in Fig.
5(b) and Fig. 8(b). Some artificial damage zone can be
observed in the PD simulation which do not occur in
XFEM but the overall agreement is good. The specimen
with a crack tip distance of 20 mm has a quite
distinguished fracture pattern. Instead of crack coales-
cence, both cracks propagate through the entire specimen.
No crack shielding occurs which is captured by both
XFEM and PD as illustrated in Fig. 5(c) and Fig. 8(c).

3.2 Double center crack problem

Let us consider a specimen with two double-center cracks
under uniaxial tension with a constant loading rate of
20 m/s. The material parameters from the previous
example are adopted. The thickness of the plate is 0.05
m, the length of one crack is 0.01 m. The longitudinal
spacing of the crack is varied from 5 mm (case 1) to 10 mm
(case 2). A tensile load is applied at both ends of the plate
in vertical direction. The particle spacing in all PD
simulations is 0.5 mm. The influence of the longitudinal
crack spacing on damage rate and crack propagation path
was analyzed.

Fig. 3 Specimen style and size (unit: mm) [55]

Table 1 Bilateral horizontal crack size (unit: mm)

left crack size right crack size crack longitudinal offset distance (specimen label)

10 10 0 (10-00) 10 (10-10) 20 (10-20)

Fig. 4 Experimental fracture process [55]. (a) 10-00 test; (b) 10-
10 test; (c) 10-20 test

Fig. 5 Experimental fracture results [55]. (a) 10-00 test; (b) 10-10
test; (c) 10-20 test
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Figures 9 and 10 depict the displacements y-direction at
different load steps. Note that the maximum displacement
for case 2 is less than for case 1 after the crack has grown
through the entire specimen. In both cases the maximum
displacement position change from the ends of the plate to
near the crack tip.

Figures 11 and 12 show that the crack distance has a
slight effect on the crack propagation path. The greater the
crack distance, the earlier the crack extension begins. At
27.2 ms, the crack length increases with respect to the
increase of the crack length of 10 mm, and the crack
propagation direction changes as the crack tip expands,

Fig. 6 Crack propagation results of XFEM. (a) 10-00 test; (b) 10-10 test; (c) 10-20 test

Fig. 7 Cracks propagation process of PD. (a) 10-00 test; (b) 10-10 test; (c) 10-20 test

Fig. 8 Crack propagation results of PD. (a) 10-00 test; (b) 10-10 test; (c) 10-20 test
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while the crack with the spacing of 5 mm spreads along the
vertical load direction. At 34 ms, cracks with 5 mm distance
propagation are changed to the opposite direction and the
crack with 10 mm distance propagation direction is
perpendicular to the load direction. At 40.8 ms, the crack
propagates through the entire length of the plate and the
spacing between the crack tips in both plates is much larger
than the initial crack spacing.

Figure 13 shows the damage value of the material in the
plates. The abscissa represents the ordinal value of the
particle and the ordinate represents the damage value. The
larger the damage value, the faster the crack will propagate.
So, the crack propagation rate of big crack spacing is much
higher than that of the small crack spacing, and this
phenomenon would become weaker with the crack
propagation. The damage rate of the two cracks with the

Fig. 9 Double crack spacing 5 mm plate length direction displacement. (a) t = 27.2 ms; (b) t = 34 ms; (c) t = 40.8 ms

Fig. 10 Double crack spacing 10 mm plate length direction displacement. (a) t = 27.2 ms; (b) t = 34 ms; (c) t = 40.8 ms

Fig. 11 Double crack spacing 5 mm plate damage distribution. (a) t = 27.2 ms; (b) t = 34 ms; (c) t = 40.8 ms
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crack spacing of 10 mm at 27.2 ms is significantly higher
than that at the crack spacing of 5 mm, the gap between the
two plates decreases gradually at 34 ms, and the maximum
of the two plates is nearly the same at 40.8 ms.

4 Conclusions

In this paper, the influence of bilateral crack and central
longitudinal crack on the crack propagation path is

simulated by PD theory. At the same time, the experiment
and XFEM are used to validate the simulation of the
bilateral crack propagation. The accuracy of the crack
propagation law of PD theory and the advantage the
XFEM method are obtained. A comparison between the
results of XFEM and PD demonstrates that PD is a good
competitor to XFEM.
For the center double crack spacing, the bigger the

spacing, the earlier the crack initiation time and the faster
the initial expansion rate. As the crack propagates, this

Fig. 12 Double crack spacing 10 mm plate damage distribution. (a) t = 27.2 ms; (b) t = 34 ms; (c) t = 40.8 ms

Fig. 13 The different time damage value of two kinds plate. (a) t = 27.2 ms; (b) t = 34 ms; (c) t = 40.8 ms
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phenomenon is progressively weakened. The results show
that PD theory can accurately simulate the relationship
between crack propagation and crack propagation with
time.
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